Advertisement

Exercise Prevents Memory Consolidation Defects Via Enhancing Prolactin Responsiveness of CA1 Neurons in Mice Under Chronic Stress

  • Yea-Hyun Leem
  • Jin-Sun Park
  • Hyukki Chang
  • Jonghoon Park
  • Hee-Sun KimEmail author
Article

Abstract

We investigated the effects of regular exercise on chronic stress-induced memory consolidation impairment and its underlying mechanism. We focused on prolactin (PRL)-modulated calcium-permeable (CP)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) in neurons in the CA1 stratum lacunosum-moleculare (SLM) area of the dorsal hippocampus. Regular exercise protected against memory retention defects and prevented dendritic retraction in apical distal segments of hippocampal CA1 neurons, as indicated by enhanced dendritic ramification, dendritic length, spine density, and synaptic protein levels following chronic stress. Regular exercise normalized synaptic CP-AMPAR assembly in the hippocampal CA1 SLM area, as evidenced by an enhanced ratio of GluR1 to GluR2 during chronic stress. This alteration in AMPARs was critical to memory retention, whereby memory retention was blunted by local blockage of CP-AMPARs in the SLM of naïve and exercised mice. Regular exercise improved PRL responsiveness in the hippocampal CA1 region during chronic stress, which led to increased binding of PRL to its receptor (PRLR) and PRL-dependent enhancement in phosphorylated signal transducer and activator of transcription 5 levels. The improvement in PRL responsiveness contributed to memory retention during chronic stress, as the protective action of exercise on memory persistence during stress was abolished by PRLR knockdown in the hippocampal CA1 area. Finally, in primary hippocampal cultures, repeated treatment with corticosterone led to decreased AMPAR-mediated Ca2+ influx, which was restored by PRL treatment. The above findings suggest a protective role for exercise against chronic stress-evoked defects in memory consolidation via PRL-modulated incorporation of CP-AMPARs into hippocampal CA1 synapses.

Keywords

Chronic stress Regular exercise Memory consolidation Prolactin Calcium-permeable AMPA receptor Hippocampus 

Notes

Funding Information

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2010-0027945 and 2018R1A2B6003074).

Supplementary material

12035_2019_1560_MOESM1_ESM.pdf (304 kb)
ESM 1 (PDF 303 kb)

References

  1. 1.
    Yang Q, Zhu G, Liu D, Ju JG, Liao ZH, Xiao YX (2017) Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons. Sci Rep 7(1):3045CrossRefGoogle Scholar
  2. 2.
    Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5(1):45–54CrossRefGoogle Scholar
  3. 3.
    Xu Y, Pan J, Sun J, Ding L, Ruan L, Reed M, Yu X, Klabnik J et al (2015) Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress. Neurobiol Aging 36(2):955–970CrossRefGoogle Scholar
  4. 4.
    Morales-Medina JC, Sanchez F, Flores G, Dumont Y, Quirion R (2009) Morphological reorganization after repeated corticosterone administration in the hippocampus, nucleus accumbens and amygdala in the rat. J Chem Neuroanat 38(4):266–272CrossRefGoogle Scholar
  5. 5.
    Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic change to spike pattern, rate, and dendritic location. Pro Natl Acad Sci USA 109:3991–3996CrossRefGoogle Scholar
  6. 6.
    Park P, Sanderson TM, Amici M, Choi SL, Bortolotto ZA, Zhuo M, Kaang BK, Collingridge GL (2016) Calcium-permeable AMPA receptors mediate the induction of the protein kinase A-dependent component of long-term potentiation in the hippocampus. J Neurosci 36:622–631CrossRefGoogle Scholar
  7. 7.
    Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, Collingridge GL, Isaac JT (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9:602–604CrossRefGoogle Scholar
  8. 8.
    Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64(3):381–390CrossRefGoogle Scholar
  9. 9.
    Issac JT, Ashby M, McBrain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871CrossRefGoogle Scholar
  10. 10.
    Man HY (2011) GluA2-lacking, calcium-permeable AMPA receptors—inducers of plasticity? Curr Opin Neurobiol 21(2):291–298CrossRefGoogle Scholar
  11. 11.
    Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL (2018) The role of calcium-permeable AMPARs in long-term potentiation at principal neurons in the rodent hippocampus. Front Synaptic Neurosci 22(10):42CrossRefGoogle Scholar
  12. 12.
    Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, Collingridge GL, Isaac JTR (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9:602–604CrossRefGoogle Scholar
  13. 13.
    Wiltgen BJ, Royle GA, Gray EE, Abdipranoto A, Thangthaeng N, Jacobs N, Saab F, Tonegawa S et al (2010) A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS One 29:5(9).  https://doi.org/10.1371/journal.pone.0012818 CrossRefGoogle Scholar
  14. 14.
    Kallarackal AJ, Kvarta MD, Cammarata E, Jaberi L, Cai X, Bailey AM, Thompson SM (2013) Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J Neurosci 33(40):15669–15674CrossRefGoogle Scholar
  15. 15.
    Zhang WJ, Wang HH, Lv YD, Liu CC, Sun WY, Tian LJ (2018) Downregulation of Egr-1 expression level via GluN2B underlies the antidepressant effects of ketamine in a chronic unpredictable stress animal model of depression. Neuroscience 372:38–45CrossRefGoogle Scholar
  16. 16.
    Ben-Jonathan N, LaPensee CR, LaPensee EW (2008) What can we learn from rodents about prolactin in humans? Endocr Rev 29:1–41CrossRefGoogle Scholar
  17. 17.
    Bernard V, Young J, Chanson P, Binart N (2015) New insights in prolactin: pathological implications. Nat Rev Endocrinol 11:265–275CrossRefGoogle Scholar
  18. 18.
    Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ (2015) Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol 37:108–118CrossRefGoogle Scholar
  19. 19.
    Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross JC, Weiss S (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–120CrossRefGoogle Scholar
  20. 20.
    Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioral and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389CrossRefGoogle Scholar
  21. 21.
    Faron-Górecka A, Kuśmider M, Solich J, Kolasa M, Szafran K, Zurawek D, Pabian P, Dziedzicka-Wasylewska M (2013) Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs. Pharmacol Rep 65(6):1640–1646CrossRefGoogle Scholar
  22. 22.
    Torner L, Karg S, Blume A, Kandasamy M, Kuhn HG, Winkler J, Aigner L, Neumann ID (2009) Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 29(6):1826–1833CrossRefGoogle Scholar
  23. 23.
    Walker TL, Vukovic J, Koudijs MM, Blackmore DG, Mackay EW, Sykes AM, Overall RW, Hamlin AS et al (2012) Prolactin stimulates precursor cells in the adult mouse hippocampus. PLoS One 7(9):e44371CrossRefGoogle Scholar
  24. 24.
    Aguiar AS Jr, Stragier E, da Luz SD, Remor AP, Oliveira PA, Prediger RD, Latini A, Raisman-Vozari R et al (2014) Effects of exercise on mitochondrial function, neuroplasticity and anxio-depressive behavior of mice. Neuroscience 20(271):56–63CrossRefGoogle Scholar
  25. 25.
    Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25(1):165–175CrossRefGoogle Scholar
  26. 26.
    van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431CrossRefGoogle Scholar
  27. 27.
    Loprinzi PD, Edwards MK, Frith E (2017) Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. Eur J Neurosci 46(5):2067–2077CrossRefGoogle Scholar
  28. 28.
    Kim DM, Leem YH (2016) Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience 324:271–285CrossRefGoogle Scholar
  29. 29.
    Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11):2278–2287CrossRefGoogle Scholar
  30. 30.
    Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25(1):165–175CrossRefGoogle Scholar
  31. 31.
    Sajadi A, Amiri I, Gharebaghi A, Komaki A, Asadbegi M, Shahidi S, Mehdizadeh M, Soleimani Asl S (2017) Treadmill exercise alters ecstasy-induced long-term potentiation disruption in the hippocampus of male rats. Metab Brain Dis 32(5):1603–1607CrossRefGoogle Scholar
  32. 32.
    Tsai SF, Ku NW, Wang TF, Yang YH, Shih YH, Wu SY, Lee CW, Yu M et al (2018) Long-term moderate exercise rescues age-related decline in hippocampal neuronal complexity and memory. Gerontology 64(6):551–561CrossRefGoogle Scholar
  33. 33.
    Hackney AC (2006) Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab 1:783–792CrossRefGoogle Scholar
  34. 34.
    Meeusen R, de Meierleir K (1995) Exercise and brain neurotransmission. Sports Med 3:160–188CrossRefGoogle Scholar
  35. 35.
    Smallridge RC, Whorton NE, Burman KD, Fergusson EW (1985) Effects of exercise and physical fitness on the pituitary-thyroid axis and on prolactin secretion in male runners. Metabolism 3:949–954CrossRefGoogle Scholar
  36. 36.
    Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A (2018) Aerobic exercise upregulates the BDNF-serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem 155:528–542.  https://doi.org/10.1016/j.nlm.2018.05.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Christian H, Chapman L, Morris J (2007) Thyrotrophin releasing hormone, vasoactive intestinal peptide, prolactin-releasing peptide and dopamine regulation of prolactin secretion by different lactotroph morphological subtype in the rat. J Neuroendocrinol 19:605–613CrossRefGoogle Scholar
  38. 38.
    Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8(12):2531–2537CrossRefGoogle Scholar
  39. 39.
    Yi ES, Oh S, Lee JK, Leem YH (2017) Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression. Biochem Biophys Res Commun 486(3):671–678CrossRefGoogle Scholar
  40. 40.
    Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540CrossRefGoogle Scholar
  41. 41.
    Manadas B, Santos AR, Szabadfi K, Gomes JR, Garbis SD, Fountoulakis M, Duarte CB (2009) BDNF-induced changes in the expression of the translation machinery in hippocampal neurons: protein levels and dendritic mRNA. J Proteome Res 8:4536–4552CrossRefGoogle Scholar
  42. 42.
    McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251CrossRefGoogle Scholar
  43. 43.
    Tsai SF, Ku NW, Wang TF, Yang YH, Shih YH, Wu SY, Lee CW, Yu M et al (2018) Long-term moderate exercise rescues age-related decline in hippocampal neuronal complexity and memory. Gerontology 7:1–11Google Scholar
  44. 44.
    Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alteration in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022CrossRefGoogle Scholar
  45. 45.
    Ferrante M, Migliore M, Ascoli GA (2013) Functional impact of dendritic branch-point morphology. J Neurosci 33:2156–2165CrossRefGoogle Scholar
  46. 46.
    London M, Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532CrossRefGoogle Scholar
  47. 47.
    Brill J, Huguenard JR (2008) Sequential changes in AMPA receptor targeting in the developing neocortical excitatory circuit. J Neurosci 28:13918–13928CrossRefGoogle Scholar
  48. 48.
    Stubblefield EA, Benke TA (2010) Distinct AMPA-type glutamatergic synapses in developing rat CA1 hippocampus. J Neurophysiol 104:1899–1912CrossRefGoogle Scholar
  49. 49.
    Asrar S, Zhou Z, Ren W, Jia Z (2009) Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS One 4(2):e4339CrossRefGoogle Scholar
  50. 50.
    Megill A, Tran T, Eldred K, Lee NJ, Wong PC, Hoe HS, Kirkwood A, Lee HK (2015) Defective age-dependent metaplasticity in a mouse model of Alzheimer’s disease. J Neurosci 35:11346–11357CrossRefGoogle Scholar
  51. 51.
    Whitcomb DJ, Hogg EL, Regan P, Piers T, Narayan P, Whitehead G, Winters BL, Kim DH et al (2015) Intracellular oligomeric amyloid-b rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 5:10934CrossRefGoogle Scholar
  52. 52.
    Schmidt MV, Trumbach D, Weber P, Wagner K, Scharf SH, Liebl C, Datson N, Namendorf C et al (2010) Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. J Neurosci 30:16949–16958CrossRefGoogle Scholar
  53. 53.
    Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352CrossRefGoogle Scholar
  54. 54.
    Martinez-Turrillas R, Frechilla D, Del Río J (2002) Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus. Neuropharmacology 43:1230–1237CrossRefGoogle Scholar
  55. 55.
    Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z (2012) Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73(5):962–977CrossRefGoogle Scholar
  56. 56.
    Lynch G (2006) Glutamate-based therapeutic approaches: ampakines. Current Opin Pharmacol 6:82–88CrossRefGoogle Scholar
  57. 57.
    Real CC, Ferreira AF, Hernandes MS, Britto LR, Pires RS (2010) Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain Res 1363:63–71CrossRefGoogle Scholar
  58. 58.
    VanLeeuwen JE, Petzinger GM, Walsh JP, Akopian GK, Vuckovic M, Jakowec MW (2010) Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci Res 88:650–668PubMedGoogle Scholar
  59. 59.
    Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25(6):1804–1814CrossRefGoogle Scholar
  60. 60.
    Vega C, Moreno-Carranza B, Zamorano M, Quintanar-Stéphano A, Méndez I, Thebault S, Martínez de la Escalera G, Clapp C (2010) Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol 299(6):R1701–R1708CrossRefGoogle Scholar
  61. 61.
    Faron-Górecka A, Kuśmider M, Kolasa M, Zurawek D, Gruca P, Papp M, Szafran K, Solich J et al (2014) Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Res 1555:48–59CrossRefGoogle Scholar
  62. 62.
    Lyons DJ, Ammari R, Hellysaz A, Broberger C (2016) Serotonin and antidepressant SSRIs inhibit rat neuroendocrine dopamine neurons: parallel actions in the lactotrophic axis. J Neurosci 36(28):7392–7406CrossRefGoogle Scholar
  63. 63.
    Van de Kar LD, Rittenhhous PA, Qian L, Levy AD (1996) Serotonergic regulation of renin and prolactin secretion. Behav Brain Res 13:237–246Google Scholar
  64. 64.
    Struder HK, Weicker H (2001) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Int J Sport Med 22:467–497CrossRefGoogle Scholar
  65. 65.
    Arnold E, Thebault S, Baeza-Cruz G, Arredondo Zamarripa D, Adán N, Quintanar-Stéphano A, Condés-Lara M, Rojas-Piloni G et al (2014) The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration. J Neurosci 34(5):1868–1878CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Medicine and Tissue Injury Defense Research Center, School of MedicineEwha Womans UniversitySeoulSouth Korea
  2. 2.Department of Human MovementSeoul Women’s UniversitySeoulSouth Korea
  3. 3.Department of Physical EducationKorea UniversitySeoulSouth Korea
  4. 4.Department of Brain & Cognitive SciencesEwha Womans UniversitySeoulSouth Korea

Personalised recommendations