A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer’s Disease

  • Sutapa Som Chaudhury
  • Achinta Sannigrahi
  • Mridula Nandi
  • Vipin K. Mishra
  • Priyadarsi De
  • Krishnananda Chattopadhyay
  • Sabyashachi Mishra
  • Jaya Sil
  • Chitrangada Das MukhopadhyayEmail author


The amyloid cascade hypothesis dealing with the senile plaques is until date thought to be one of the causative pathways leading to the pathophysiology of Alzheimer’s disease (AD). Though many aggregation inhibitors of misfolded amyloid beta (Aβ42) peptide have failed in clinical trials, there are some positive aspects of the designed therapeutic peptides for diseases involving proteinaceous aggregation. Here, we evaluated a smart design of side chain tripeptide (Leu-Val-Phe)-based polymeric inhibitor addressing the fundamental hydrophobic amino acid stretch “Lys-Leu-Val-Phe-Phe-Ala” (KLVFFA) of the Aβ42 peptide. The in vitro analyses performed through the thioflavin T (ThT) fluorescence assay, infrared spectroscopy, isothermal calorimetry, cytotoxicity experiments, and so on evinced a promising path towards the development of new age AD therapeutics targeting the inhibition of misfolded Aβ42 peptide fibrillization. The in silico simulations done contoured the mechanism of drug action of the present block copolymer as the competitive inhibition of aggregate-prone hydrophobic stretch of Aβ42.

Graphical abstract

The production of misfolded Aβ42 peptide from amyloid precursor protein initiates amyloidosis pathway which ends with the deposition of fibrils via the oligomerization and aggregation of Aβ42 monomers. The side chain tripeptide-based PEGylated polymer targets these Aβ42 monomers and oligomers inhibiting their aggregation. This block copolymer also binds and helps degrading the preformed fibrils of Aβ42.


Alzheimer’s disease Amyloid beta peptide Fibrillization Inhibitor Peptidomimetics M.D. simulation 



We thank Mr. Kashinath Sahu at the Indian Institute of Science Education and Research (IISER), Kolkata, and Mr. Satyabrata Samaddar at the CSIR—Indian Institute of Chemical Biology (IICB), Kolkata, for the assistance with the FE-SEM and FT-IR work, respectively.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1542_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1479 kb).


  1. 1.
    Khachaturian ZS (1985) Diagnosis of Alzheimer's disease. Arch Neurol 42:1097–1105CrossRefGoogle Scholar
  2. 2.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–421Google Scholar
  3. 3.
    Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152CrossRefGoogle Scholar
  4. 4.
    Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimers Dement 14:367–429. ​ 
  5. 5.
    Khalsa DS, Perry G (2017) The four pillars of Alzheimer’s prevention. Cerebrum: The Dana Forum on Brain Science. 2017:cer-03-17. ​ Accessed 1 Mar 2017
  6. 6.
    Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M (2016) World Alzheimer report 2016: The global impact of dementia. Alzheimer's Disease International (ADI), LondonGoogle Scholar
  7. 7.
    Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–185CrossRefGoogle Scholar
  8. 8.
    Maccioni RB, Farías G, Morales I, Navarrete L (2010) The revitalized tau hypothesis on Alzheimer's disease. Arch Med Res 41:226–231CrossRefGoogle Scholar
  9. 9.
    Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842:1219–1231CrossRefGoogle Scholar
  10. 10.
    Chételat G, Villemagne VL, Bourgeat P (2010) Relationship between atrophy and β-amyloid deposition in Alzheimer disease. Ann Neurol 67:317–324PubMedGoogle Scholar
  11. 11.
    Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555CrossRefGoogle Scholar
  12. 12.
    Hane F (2013) Are amyloid fibrils molecular spandrels? FEBS Lett 587:3617–3619CrossRefGoogle Scholar
  13. 13.
    Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 15:349–357CrossRefGoogle Scholar
  14. 14.
    Dutta S, Foley AR, Warner CJ (2017) Suppression of oligomer formation and formation of non-toxic fibrils upon addition of mirror-image Aβ42 to the natural l-enantiomer. Angew Chem Int Ed 56:11506–11510CrossRefGoogle Scholar
  15. 15.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112CrossRefGoogle Scholar
  16. 16.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRefGoogle Scholar
  17. 17.
    Sullivan MG (2017) Alzheimer’s candidate drug Aducanumab moves to phase III. Caring for the Ages 18:18. ​
  18. 18.
    Gao N, Sun H, Dong K, Ren J, Qu X (2015) Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem Eur J 21:829–835CrossRefGoogle Scholar
  19. 19.
    Geng J, Li M, Ren J, Wang E, Qu X (2011) Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed 123:4270–4274CrossRefGoogle Scholar
  20. 20.
    Li M, Xu C, Ren J, Wang E, Qu X (2013) Photodegradation of β-sheet amyloid fibrils associated with Alzheimer's disease by using polyoxometalates as photocatalysts. Chem Commun 49:11394–11396CrossRefGoogle Scholar
  21. 21.
    Wong HE, Qi W, Choi HM, Fernandez EJ, Kwon I (2011) A safe, blood-brain barrier permeable triphenylmethane dye inhibits amyloid-β neurotoxicity by generating nontoxic aggregates. ACS Chem Neurosci 2:645–657CrossRefGoogle Scholar
  22. 22.
    Cohen SI, Arosio P, Presto J et al (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207–213CrossRefGoogle Scholar
  23. 23.
    Evans CG, Wisén S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1–42) aggregation in vitro. J Biol Chem 281:33182–33191CrossRefGoogle Scholar
  24. 24.
    McKoy AF, Chen J, Schupbach T, Hecht MH (2012) A novel inhibitor of amyloid β (Aβ) peptide aggregation from high throughput screening to efficacy in an animal model of Alzheimer disease. J Biol Chem 287:38992–39000CrossRefGoogle Scholar
  25. 25.
    Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814CrossRefGoogle Scholar
  26. 26.
    Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castaño EM, Frangione B (1998) β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat Med 4:822–826CrossRefGoogle Scholar
  27. 27.
    Han X, Park J, Wu W, Malagon A, Wang L, Vargas E, Wikramanayake A, Houk KN et al (2017) A resorcinarene for inhibition of Aβ fibrillation. Chem Sci 8:2003–2009CrossRefGoogle Scholar
  28. 28.
    Mukhopadhyay CD, Ruidas B, Chaudhury SS (2017) Role of curcumin in treatment of Alzheimer disease. Int J Neurorehabilitation 4:274Google Scholar
  29. 29.
    Skaat H, Chen R, Grinberg I, Margel S (2012) Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules 13:2662–2670CrossRefGoogle Scholar
  30. 30.
    Bachurin SO, Bovina EV, Ustyugov AA (2017) Drugs in clinical trials for Alzheimer's disease: the major trends. Med Res Rev 37:1186–1225CrossRefGoogle Scholar
  31. 31.
    Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37CrossRefGoogle Scholar
  32. 32.
    Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer's disease: clinical trials and drug development. Lancet Neurol 9:702–716CrossRefGoogle Scholar
  33. 33.
    Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, Mantua V, Mecocci P et al (2014) Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014. J Intern Med 275:251–283CrossRefGoogle Scholar
  34. 34.
    Cheng YS, Chen ZT, Liao TY, Lin C et al (2017) An intranasally delivered peptide drug ameliorates cognitive decline in Alzheimer transgenic mice. EMBO Mol Med 9:703–715Google Scholar
  35. 35.
    Taylor M, Moore S, Mayes J, Parkin E, Beeg M, Canovi M, Gobbi M, Mann DMA et al (2010) Development of a proteolytically stable retro-inverso peptide inhibitor of β-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry 49:3261–3272CrossRefGoogle Scholar
  36. 36.
    Som Chaudhury S, Das Mukhopadhyay C (2018) Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. International Journal of Neuroscience 128:449–463Google Scholar
  37. 37.
    De Santis S, Chiaraluce R, Consalvi V et al (2017) PEGylated β-sheet breaker peptides as inhibitors of β-amyloid fibrillization. Chempluschem 82:241–250CrossRefGoogle Scholar
  38. 38.
    Zhang C, Zheng X, Wan X, Shao X, Liu Q, Zhang Z, Zhang Q (2014) The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer's disease. J Control Release 192:317–324CrossRefGoogle Scholar
  39. 39.
    Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S et al (2015) Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 32:3837–3849CrossRefGoogle Scholar
  40. 40.
    Kumar S, Acharya R, Chatterji U, De P (2014) Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments via RAFT polymerization. Polym Chem 5:6039–6050CrossRefGoogle Scholar
  41. 41.
    Reinke AA, Gestwicki JE (2007) Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des 70:206–215CrossRefGoogle Scholar
  42. 42.
    Saleem S, Biswas SC (2017) Tribbles pseudokinase 3 induces both apoptosis and autophagy in amyloid-β-induced neuronal death. J Biol Chem 292:2571–2585CrossRefGoogle Scholar
  43. 43.
    Lee KH, Shin BH, Shin KJ, Kim DJ, Yu J (2005) A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by β-amyloid (1–42). Biochem Biophys Res Commun 328:816–823CrossRefGoogle Scholar
  44. 44.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, van Nostrand WE et al (2010) Structural conversion of neurotoxic amyloid-β 1–42 oligomers to fibrils. Nat Struct Mol Biol 17:561–567CrossRefGoogle Scholar
  45. 45.
    Dehle FC, Ecroyd H, Musgrave IF, Carver JA (2010) αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress Chaperones 15:1013–1026CrossRefGoogle Scholar
  46. 46.
    Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B et al (2016) Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J Am Chem Soc 138:9663–9674CrossRefGoogle Scholar
  47. 47.
    Pham JD, Spencer RK, Chen KH, Nowick JS (2014) A fibril-like assembly of oligomers of a peptide derived from β-amyloid. J Am Chem Soc 136:12682–12690CrossRefGoogle Scholar
  48. 48.
    Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D (2002) Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment: similarity with a virus fusion domain. Eur J Biochem 269:5642–5648CrossRefGoogle Scholar
  49. 49.
    Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D et al (2011) Molecular basis for amyloid-β polymorphism. Proc Natl Acad Sci U S A 108:16938–16943CrossRefGoogle Scholar
  50. 50.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802CrossRefGoogle Scholar
  51. 51.
    MacKerell AD Jr, Bashford D, Bellott ML et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  52. 52.
    Jorgensen WL, Madura JD (1983) Solvation and conformation of methanol in water. J Am Chem Soc 105:1407–1413CrossRefGoogle Scholar
  53. 53.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690PubMedPubMedCentralGoogle Scholar
  54. 54.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  55. 55.
    DeLano WL (2009) The PyMOL molecular graphics system 2009. DeLano Scientific, San CarlosGoogle Scholar
  56. 56.
    Sannigrahi A, Maity P, Karmakar S, Chattopadhyay K (2017) Interaction of KMP-11 with phospholipid membranes and its implications in leishmaniasis: effects of single tryptophan mutations and cholesterol. J Phys Chem B 121:1824–1834CrossRefGoogle Scholar
  57. 57.
    Jameson LP, Smith NW, Dzyuba SV (2012) Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (Aβ) self-assembly. ACS Chem Neurosci 3:807–819CrossRefGoogle Scholar
  58. 58.
    Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187CrossRefGoogle Scholar
  59. 59.
    Li J, Tian C, Yuan Y, Yang Z, Yin C, Jiang R, Song W, Li X et al (2015) A water-soluble conjugated polymer with pendant disulfide linkages to PEG chains: a highly efficient ratiometric probe with solubility-induced fluorescence conversion for thiol detection. Macromolecules 48:1017–1025CrossRefGoogle Scholar
  60. 60.
    Adochitei A, Drochioiu G (2011) Rapid characterization of peptide secondary structure by FT-IR spectroscopy. Rev Roum Chim 56:783–791Google Scholar
  61. 61.
    Zandomeneghi G, Krebs MR, McCammon MG, Fändrich M (2004) FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321CrossRefGoogle Scholar
  62. 62.
    Castelletto V, Ryumin P, Cramer R, Hamley IW, Taylor M, Allsop D, Reza M, Ruokolainen J et al (2017) Self-assembly and anti-amyloid cytotoxicity activity of amyloid beta peptide derivatives. Sci Rep 7:43637CrossRefGoogle Scholar
  63. 63.
    Hubin E, Deroo S, Schierle GK, Kaminski C, Serpell L, Subramaniam V, van Nuland N, Broersen K et al (2015) Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cell Mol Life Sci 72:4899–4913CrossRefGoogle Scholar
  64. 64.
    Sarkar-Banerjee S, Chowdhury S, Paul SS, Dutta D, Ghosh A, Chattopadhyay K (2016) The non-native helical intermediate state may accumulate at low pH in the folding and aggregation landscape of the intestinal fatty acid binding protein. Biochemistry 55:4457–4468CrossRefGoogle Scholar
  65. 65.
    Amini Z, Fatemi MH, Rauk A (2016) Molecular dynamics studies of a β-sheet blocking peptide with the full-length amyloid beta peptide of Alzheimer’s disease. Can J Chem 94:833–841CrossRefGoogle Scholar
  66. 66.
    Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H (2005) Conformational transition of amyloid β-peptide. Proc Natl Acad Sci U S A 102:5403–5407CrossRefGoogle Scholar
  67. 67.
    Xie L, Luo Y, Wei G (2013) Aβ (16–22) peptides can assemble into ordered β-barrels and bilayer β-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates. J Phys Chem B 117:10149–10160CrossRefGoogle Scholar
  68. 68.
    Zhang M, Chen J, Tian Z, Wang H (2017) Reply to the ‘Comment on “Magnetic-field-enabled resolution enhancement in super-resolution imaging”’ by Bergmann et al., Physical Chemistry Chemical Physics, 2017, 19. Phys Chem Chem Phys 19:4891–4892CrossRefGoogle Scholar
  69. 69.
    Berhanu WM, Hansmann UH (2013) The stability of cylindrin β-barrel amyloid oligomer models—a molecular dynamics study. Proteins 81:1542–1555CrossRefGoogle Scholar
  70. 70.
    Han X, Tian C, Gandra I, Eslava V, Galindres D, Vargas E, Leblanc R (2017) The investigation on Resorcinarenes towards either inhibiting or promoting insulin fibrillation. Chem Eur J 23:17903–17907CrossRefGoogle Scholar
  71. 71.
    Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S, Lieberburg I et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45:373–379PubMedGoogle Scholar
  72. 72.
    Soto C, Castaño EM, Kumar RA, Beavis RC, Frangione B (1995) Fibrillogenesis of synthetic amyloid-β peptides is dependent on their initial secondary structure. Neurosci Lett 200:105–108CrossRefGoogle Scholar
  73. 73.
    Jarvet J, Damberg P, Bodell K, Göran Eriksson LE, Gräslund A (2000) Reversible random coil to β-sheet transition and the early stage of aggregation of the Aβ (12–28) fragment from the Alzheimer peptide. J Am Chem Soc 122:4261–4268CrossRefGoogle Scholar
  74. 74.
    Sureshbabu N, Kirubagaran R, Jayakumar R (2009) Surfactant-induced conformational transition of amyloid β-peptide. Eur Biophys J 38:355–367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sutapa Som Chaudhury
    • 1
  • Achinta Sannigrahi
    • 2
  • Mridula Nandi
    • 3
  • Vipin K. Mishra
    • 4
  • Priyadarsi De
    • 3
  • Krishnananda Chattopadhyay
    • 2
  • Sabyashachi Mishra
    • 4
  • Jaya Sil
    • 1
  • Chitrangada Das Mukhopadhyay
    • 1
    Email author
  1. 1.Centre for Healthcare Science and TechnologyIIEST, ShibpurHowrahIndia
  2. 2.Structural Biology & Bioinformatics DivisionCSIR-IICB, KolkataKolkataIndia
  3. 3.Department of Chemical SciencesIISER KolkataNadiaIndia
  4. 4.Department of ChemistryIIT KharagpurKharagpurIndia

Personalised recommendations