Advertisement

A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats

  • Heloisa Helena Vilela-Costa
  • Ailton SpiacciJr
  • Isabella Galante Bissolli
  • Hélio ZangrossiJrEmail author
Article
  • 84 Downloads

Abstract

A wealth of evidence indicates that the lateral wings subnucleus of the dorsal raphe nucleus (lwDR) is implicated in the processing of panic-associated stimuli. Escape expression in the elevated T-maze, considered a panic-related defensive behavior, markedly and selectively recruits non-serotonergic cells within this DR subregion and in the dorsal periaqueductal gray (dPAG), another key panic-associated area. However, whether anti-panic drugs may interfere with this pattern of neuronal activation is still unknown. In the present study, the effects of acute (10 mg/kg) or chronic fluoxetine (10 mg/kg/daily/21 days) treatment on the number of serotonergic and non-serotonergic cells induced by escape expression within the rat DR and PAG subnuclei were investigated by immunochemistry. The results showed that chronic, but not acute, treatment with fluoxetine impaired escape expression, indicating a panicolytic-like effect, and markedly decreased the number of non-serotonergic cells that were recruited in the lwDR and dPAG. The same treatment selectively increased the number of serotonergic neurons within the lwDR. Our immunochemistry analyses also revealed that the non-serotonergic cells recruited in the lwDR and dPAG by the escape expression were not nitrergic. Overall, our findings suggest that the anti-panic effect of chronic treatment with fluoxetine is mediated by stimulation of the lwDR-dPAG pathway that controls the expression of panic-associated escape behaviors.

Keywords

Panic Dorsal raphe Serotonin Nitric oxide Elevated T-maze Antidepressant 

Notes

Acknowledgments

The authors thank Afonso Paulo Padovan and Tadeu Franco Vieira for the helpful technical support.

Funding

This work was supported by research grants from the Research Foundation of the State of São Paulo (FAPESP; HHVC, Grant Number 2017/18437-7; 2013/05903-9); the National Council of Science and Technology, Brazil (CNPq); and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Paul ED, Lowry CA (2013) Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. J Psychopharmacol 27(12):1090–1106PubMedCrossRefGoogle Scholar
  2. 2.
    Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668PubMedCrossRefGoogle Scholar
  3. 3.
    Descarries L, Watkins KC, Garcia S, Beaudet A (1982) The serotonin neurons in nucleus raphe dorsalis of adult rat: a light and electron microscope radioautographic study. J Comp Neurol 207(3):239–254PubMedCrossRefGoogle Scholar
  4. 4.
    Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667PubMedCrossRefGoogle Scholar
  5. 5.
    Hale MW, Shekhar A, Lowry CA (2012) Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 32(5):695–708PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C, Heemstra LA, Beck SG (2011) Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61(3):524–543PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Abrams JK, Johnson PL, Hollis JH et al (2004) Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018:46–57PubMedCrossRefGoogle Scholar
  8. 8.
    Steinbusch HW, Nieuwenhuys R, Verhofstad AA et al (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol 77:157–174Google Scholar
  9. 9.
    Palkovits M, Brownstein M, Saavedra JM (1974) Serotonin content of the brain stem nuclei in the rat. Brain Res 80:237–249PubMedCrossRefGoogle Scholar
  10. 10.
    Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RGH, To¨rk I (1991) Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience 42(3):757–775PubMedCrossRefGoogle Scholar
  11. 11.
    Soiza-Reilly M, Commons KG (2011) Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J Comp Neurol 519(18):3802–3814PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fu W, Maitre EL, Fabre V et al (2010) Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 518:3464–3494PubMedCrossRefGoogle Scholar
  13. 13.
    Brown R, McKenna JT, Winston S et al (2008) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67–green fluorescent protein knock-in mice. Eur J Neurosci 27(2):352–363PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Michelsen KA, Prickaerts J, Steinbusch HW (2008) The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res 172:233–264PubMedCrossRefGoogle Scholar
  15. 15.
    Johnson PL, Lowry C, Truitt W, Shekhar A (2008) Disruption of GABAergic tone in the dorsomedial hypothalamus attenuates responses in a subset of serotonergic neurons in the dorsal raphe nucleus following lactate-induced panic. J Psychopharmacol 22(6):642–652PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Johnson PL, Hollis JH, Moratalla R, Lightman SL, Lowry CA (2005) Acute hypercarbic gas exposure reveals functionally distinct subpopulations of serotonergic neurons in rats. J Psychopharmacol 19(4):327–341PubMedCrossRefGoogle Scholar
  17. 17.
    Spiga F, Lightman SL, Shekhar A, Lowry CA (2006) Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons. Neuroscience 138(4):1265–1276PubMedCrossRefGoogle Scholar
  18. 18.
    Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133(4):983–997PubMedCrossRefGoogle Scholar
  19. 19.
    Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA (2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 72(1):32–43PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826(1):35–43PubMedCrossRefGoogle Scholar
  21. 21.
    Spiacci A Jr, Coimbra NC, Zangrossi H Jr (2012) Differential involvment of dorsal raphe subnuclei in the regulation of anxiety- and panic-related defensive behaviors. Neuroscience 227:350–360PubMedCrossRefGoogle Scholar
  22. 22.
    Zangrossi H Jr, Graeff FG (2014) Serotonin in anxiety and panic: contributions of the elevated T-maze. Neurosci Biobehav Rev 46(3):397–406PubMedCrossRefGoogle Scholar
  23. 23.
    Vicente MA, Zangrossi H Jr (2014) Involvement of 5-HT2C and 5-HT1A receptors of the basolateral nucleus of the amygdala in the anxiolytic effect of chronic antidepressant treatment. Neuropharmacology 79:127–135PubMedCrossRefGoogle Scholar
  24. 24.
    Zanoveli JM, Pobbe RL, de Bortoli VC et al (2010) Facilitation of 5-HT1A-mediated neurotransmission in dorsal periaqueductal grey matter accounts for the panicolytic-like effect of chronic fluoxetine. Int J Neuropsychopharmacol 13(8):1079–1088PubMedCrossRefGoogle Scholar
  25. 25.
    Pinheiro SN, Del-Ben CM, Zangrossi H Jr et al (2008) Anxiolytic and panicolytic effects of escitalopram in the elevated T-maze. J Psychopharmacol 22(2):132–137PubMedCrossRefGoogle Scholar
  26. 26.
    Bandelow B, Michaelis S, Wedekind D (2017) Treatment of anxiety disorders. Dialogues Clin Neurosci 19(2):93–107PubMedPubMedCentralGoogle Scholar
  27. 27.
    Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Dis Primers 3:17024PubMedCrossRefGoogle Scholar
  28. 28.
    Baldwin DS, Anderson IM, Nutt DJ, Allgulander C, Bandelow B, den Boer JA, Christmas DM, Davies S et al (2014) Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacol 28(5):403–439PubMedCrossRefGoogle Scholar
  29. 29.
    Matthiesen M, Spiacci A Jr, Zangrossi H Jr (2017) Effects of chemical stimulation of the lateral wings of the dorsal raphe nucleus on panic-like behaviors and Fos protein expression in rats. Behav Brain Res 326:103–111PubMedCrossRefGoogle Scholar
  30. 30.
    Canteras NS, Graeff FG (2014) Executive and modulatory neural circuits of defensive reactions: implications for panic disorder. Neurosci Biobehav Rev 3:325–364Google Scholar
  31. 31.
    Schenberg LC, Schimitel FG, Armini RS et al (2014) Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 3:472–496CrossRefGoogle Scholar
  32. 32.
    Johnson PL, Shekhar A (2012) An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 107(5):686–698PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    McDevitt RA, Neumaier JF (2011) Regulation of dorsal raphe nucleus function by serotonin autoreceptors: a behavioral perspective. J Chem Neuroanat 41(4):234–246PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Commons KG (2008) Evidence for topographically organized endogenous 5-HT1A receptor-dependent feedback inhibition of the ascending serotonin system. Eur J Neurosci 27(10):2611–2618PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hajós M, Hoffmann WE, Tetko IV, Hyland B, Sharp T, Villa AEP (2001) Different tonic regulation of neuronal activity in the rat dorsal raphe and medial prefrontal cortex via 5-HT(1A) receptors. Neurosci Lett 304(3):129–132PubMedCrossRefGoogle Scholar
  36. 36.
    Spiacci A Jr, Pobbe RLH, Matthiesen M, Zangrossi H Jr (2016) 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses. Neuropharmacology 107:471–479PubMedCrossRefGoogle Scholar
  37. 37.
    Haddjeri N, Lavoie N, Blier P (2004) Electrophysiological evidence for the tonic activation of 5-HT(1A) autoreceptors in the rat dorsal raphe nucleus. Neuropsychopharmacology 29(10):1800–1806PubMedCrossRefGoogle Scholar
  38. 38.
    De Bortoli VC, Yamashita PS, Zangrossi H Jr (2013) 5-HT1A and 5-HT2A receptor control of a panic-like defensive response in the rat dorsomedial hypothalamic nucleus. J Psychopharmacol 27(12):1116–1123PubMedCrossRefGoogle Scholar
  39. 39.
    Spiacci A Jr, Sergio TO, da Silva GS et al (2015) Serotonin in the dorsal periaqueductal gray inhibits panic-like defensive behaviors in rats exposed to acute hypoxia. Neurocience 304:191–198CrossRefGoogle Scholar
  40. 40.
    Zanoveli JM, Nogueira RL, Zangrossi H (2003) Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. Eur J Pharmacol 473:153–161PubMedCrossRefGoogle Scholar
  41. 41.
    Schütz MT, de Aguiar JC, Graeff FG (1985) Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology 85(3):340–345PubMedCrossRefGoogle Scholar
  42. 42.
    Vasudeva RK, Lin RC, Simpson KL et al (2011) Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 41(4):281–293PubMedCrossRefGoogle Scholar
  43. 43.
    Chanrion B, Mannoury la Cour C, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P (2007) Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci 104(19):8119–8124PubMedCrossRefGoogle Scholar
  44. 44.
    Kuhn DM, Arthur RE Jr (1996) Inactivation of brain tryptophan hydroxylase by nitric oxide. J Neurochem 67:1072–1077PubMedCrossRefGoogle Scholar
  45. 45.
    Poltronieri SC, Zangrossi H Jr, de Barros VM (2003) Antipanic-like effect of serotonin reuptake inhibitors in the elevated T-maze. Behav Brain Res 147(1–2):185–192PubMedCrossRefGoogle Scholar
  46. 46.
    Yamashita PS, Spiacci A Jr, Hassel JE Jr et al (2017) Desinhibition of the rat prelimbic cortex promotes serotonergic activation of dorsal raphe nucleus and panicolytic-like behavioral effects. J Psychopharmacol 31(6):704–714PubMedCrossRefGoogle Scholar
  47. 47.
    Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784PubMedCrossRefGoogle Scholar
  48. 48.
    Paul ED, Johnson PL, Shekhar A et al (2014) The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev 3:379–396CrossRefGoogle Scholar
  49. 49.
    Roche M, Commons KG, Peoples A, Valentino RJ (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23(3):970–977PubMedCrossRefGoogle Scholar
  50. 50.
    Rodrigo J, Springall DR, Uttenthal O (1994) Localization of nitric oxide synthase in the adult rat brain. Philos Trans R Soc Lond Ser B Biol Sci 345(1312):175–221CrossRefGoogle Scholar
  51. 51.
    Johnson MD, Ma PM (1993) Localization of NADPH diaphorase activity in monoaminergic neurons of the rat brain. J Comp Neurol 332(4):391–406PubMedCrossRefGoogle Scholar
  52. 52.
    Onstott D, Mayer B, Beitz AJ (1993) Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: analysis using laser confocal microscopy. Brain Res 610(2):317–324PubMedCrossRefGoogle Scholar
  53. 53.
    Gualda LB, Martins GG, Muller B et al (2011) 5-HT1A autoreceptor modulation of locomotor activity induced by nitric oxide in the rat dorsal raphe nucleus. Braz J Med Biol Res 44(4):332–336PubMedCrossRefGoogle Scholar
  54. 54.
    Miguel TL, Pobbe RL, Spiacci A Jr et al (2010) Dorsal raphe nucleus regulation of a panic-like defensive behavior evoked by chemical stimulation of the rat dorsal periaqueductal gray matter. Behav Brain Res 213(2):195–200PubMedCrossRefGoogle Scholar
  55. 55.
    Braga AA, Aguiar DC, Guimarães FS (2009) Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus. Neurosci Lett 459(2):79–83PubMedCrossRefGoogle Scholar
  56. 56.
    Moreira FA, Guimarães FS (2005) Role of serotonin receptors in panic-like behavior induced by nitric oxide in the rat dorsolateral periaqueductal gray: effects of chronic clomipramine treatment. Life Sci 77(16):1972–1982PubMedCrossRefGoogle Scholar
  57. 57.
    Moreira FA, Guimarães FS (2004) Benzodiazepine receptor and serotonin 2A receptor modulate the aversive-like effects of nitric oxide in the dorsolateral periaqueductal gray of rats. Psychopharmacology 176(3–4):362–368PubMedCrossRefGoogle Scholar
  58. 58.
    Grahn RE, Watkins LR, Maier SF (2000) Impaired escape performance and enhanced conditioned fear in rats following exposure to an uncontrollable stressor are mediated by glutamate and nitric oxide in the dorsal raphe nucleus. Behav Brain Res 112(1–2):33–41PubMedCrossRefGoogle Scholar
  59. 59.
    De Oliveira RW, Del Bel EA, Guimarães FS (2000) Behavioral and c-fos expression changes induced by nitric oxide donors microinjected into the dorsal periaqueductal gray. Brain Res Bull 51:457–464PubMedCrossRefGoogle Scholar
  60. 60.
    Beijamini V, Guimarães FS (2006) c-Fos expression increase in NADPH-diaphorase positive neurons after exposure to a live cat. Behav Brain Res 170(1):52–61PubMedCrossRefGoogle Scholar
  61. 61.
    Guimarães FS, Beijamini V, Moreira FA, Aguiar DC, de Lucca ACB (2005) Role of nitric oxide in brain regions related to defensive reactions. Neurosci Biobehav Rev 29(8):1313–1322PubMedCrossRefGoogle Scholar
  62. 62.
    Chiavegatto S, Scavone C, Canteras NS (1998) Nitric oxide synthase activity in the dorsal periaqueductal gray of rats expressing innate fear responses. Neuroreport 9(4):571–576PubMedCrossRefGoogle Scholar
  63. 63.
    Day HE, Greenwood BN, Hammack SE et al (2004) Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 474(3):364–378PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Challis C, Boulden J, Veerakumar A, Espallergues J, Vassoler FM, Pierce RC, Beck SG, Berton O (2013) Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci 33(35):13978–13988PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tao R, Auerbach SB (2003) Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. Brain Res 961(1):109–120PubMedCrossRefGoogle Scholar
  66. 66.
    Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14(2):100–113PubMedCrossRefGoogle Scholar
  67. 67.
    Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20:4217–4225PubMedCrossRefGoogle Scholar
  68. 68.
    Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur J Pharmacol 39:357–364PubMedCrossRefGoogle Scholar
  69. 69.
    Kirby LG, Lucki I (1997) Interaction between the forced swimming test and fluoxetine treatment on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the rat. J Pharmacol Exp Ther 282(2):967–976PubMedGoogle Scholar
  70. 70.
    Kirby LG, Allen AR, Lucki I (1995) Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 682(1–2):189–196PubMedCrossRefGoogle Scholar
  71. 71.
    Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T (2018) A synaptic threshold mechanism for computing escape decisions. Nature 558(7711):590–594PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Guiard BP, Mansari ME, Murphy DL, Blier P (2012) Altered response to the selective serotonin reuptake inhibitor escitalopram in mice heterozygous for the serotonin transporter: an electrophysiological and neurochemical study. Int J Neuropsychopharmacol 15(3):349–361PubMedCrossRefGoogle Scholar
  73. 73.
    Guilloux JP, David DJ, Xia L et al (2011) Characterization of 5-HT(1A/1B)-/- mice: an animal model sensitive to anxiolytic treatments. Neuropharmacology 61(3):478–488PubMedCrossRefGoogle Scholar
  74. 74.
    Kreiss DS, Lucki I (1995) Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp Ther 274(2):866–876PubMedGoogle Scholar
  75. 75.
    Piñeyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 58(3):533–591Google Scholar
  76. 76.
    Descarries L, Riad M (2012) Effects of the antidepressant fluoxetine on the subcelullar localization of the 5-HT1A receptors and SERT. Phil Trans R Soc B 367:2416–2425PubMedCrossRefGoogle Scholar
  77. 77.
    Castro M, Diaz A, del Olmo et al (2003) Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44(1):93–101PubMedCrossRefGoogle Scholar
  78. 78.
    Hensler JG (2002) Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26(5):565–573PubMedCrossRefGoogle Scholar
  79. 79.
    Blier P, El Mansari M (2013) Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond Ser B Biol Sci 368(1615):20120536CrossRefGoogle Scholar
  80. 80.
    De Bortoli VC, Nogueira RL, Zangrossi H Jr (2006) Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology 183(4):422–428PubMedCrossRefGoogle Scholar
  81. 81.
    Mongeau R, Marsden CA (1997) Effect of imipramine treatments on the 5-HT1A-receptor-mediated inhibition of panic-like behaviours in rats. Psychopharmacology 131(4):321–328PubMedCrossRefGoogle Scholar
  82. 82.
    Nogueira RL, Graeff FG (1995) Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52(1):1–6PubMedCrossRefGoogle Scholar
  83. 83.
    Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct Funct 221(1):535–561PubMedCrossRefGoogle Scholar
  84. 84.
    Stezhka VV, Lovick TA (1997) Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro. Neurosci Lett 230(1):57–60PubMedCrossRefGoogle Scholar
  85. 85.
    Vasudeva RK, Waterhouse BD (2014) Cellular profile of the dorsal raphe lateral wing sub-region: relationship to the lateral dorsal tegmental nucleus. J Chem Neuroanat 57-58:15–23PubMedCrossRefGoogle Scholar
  86. 86.
    Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103(5):2652–2663PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Payet JM, Burnie E, Sathananthan NJ, Russo AM, Lawther AJ, Kent S, Lowry CA, Hale MW (2018) Exposure to acute and chronic fluoxetine has differential effects on sociability and activity of serotonergic neurons in the dorsal raphe nucleus of juvenile male BALB/c mice. Neuroscience 386:1–15PubMedCrossRefGoogle Scholar
  88. 88.
    Hassell JE, Yamashita PSM, Johnson PL et al (2017) Stress, panic, and central serotonergic inhibition. In: Stress: neuroendocrinology and neurobiology. Elsevier, Amsterdam, pp. 153–164CrossRefGoogle Scholar
  89. 89.
    Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94PubMedCrossRefGoogle Scholar
  90. 90.
    Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116(3):669–683PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Beck SG, Pan Y, Akanwa AC (2004) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91(2):994–1005PubMedCrossRefGoogle Scholar
  92. 92.
    Zanoveli JM, Nogueira RL, Zangrossi H Jr (2007) Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: evidence from the elevated T-maze. Neuropharmacology 52(4):1188–1195PubMedCrossRefGoogle Scholar
  93. 93.
    Zanoveli JM, Nogueira RL, Zangrossi H Jr (2005) Chronic imipramine treatment sensitizes 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal gray matter: evidence from the elevated T-maze test of anxiety. Behav Pharmacol 16(7):543–552PubMedCrossRefGoogle Scholar
  94. 94.
    Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM (2013) Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Neurosci 4(1):72–83PubMedCrossRefGoogle Scholar
  95. 95.
    Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22(10):1406–1412PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology, School of Medicine of Ribeirão PretoUniversity of São Paulo (USP)Ribeirão PretoBrazil

Personalised recommendations