Advertisement

Transferrin Enhances Microglial Phagocytic Capacity

  • Tomás R. Carden
  • Jorge Correale
  • Juana M. Pasquini
  • María Julia PérezEmail author
Article

Abstract

Transferrin (Tf) is a glycoprotein playing a critical role in iron homeostasis and transport and distribution throughout the body and within tissues and cells. This molecule has been shown to accelerate the process of myelination and remyelination in the central nervous system (CNS) in vivo and induce oligodendroglial cell maturation in vitro. While the mechanisms involved in oligodendroglial precursor cell (OPC) differentiation have not been fully elucidated yet, our group has previously described the first molecular events taking place in OPC in response to extracellular Tf. Here, we show the effect of Tf on the different glial cell populations. We demonstrate that, after a CNS demyelinating injury, Tf can be incorporated by all glial cells—i.e., microglia, astrocytes, and OPC—and that, acting on microglial cells in vitro, Tf increases microglial proliferation rates and phagocytic capacity. It may be then speculated that the in vivo correlation of this process could generate a favorable microenvironment for OPC maturation and remyelination.

Keywords

Transferrin Microglial phagocytosis Demyelination Remyelination Astrocytes 

Abbreviations

aTf

Human apotransferrin

BrdU

Bromodeoxyuridine

CC

Corpus callosum

CD11b

Cluster of differentiation 11b (integrin alpha M)

CNS

Central nervous system

CPZ

Cuprizone

Ctl

Control

Cyt B

Cytochalasin B

EIA

Enzyme immunoassays

FCS

Fetal calf serum

GFAP

Glial fibrillary acidic protein

Griffonia

Griffonia simplicifolia isolectin B4

Hoechst

bisbenzimide H-33258

HRP

Horseradish peroxidase

ICI

Intracranial injection

IL

Interleukin

LPS

Lipopolysaccharide

MBP

Myelin basic protein

MS

Multiple sclerosis

MTT

Thiazolyl blue tetrazolium bromide

NG2

Neural/glial antigen 2

OLG

Oligodendrocyte

OPC

Oligodendrocyte precursor cells

PDGFR-α

Platelet-derived growth factor receptor-alpha

PFA

Paraformaldehyde

PI

Propidium iodide

Tf

Transferrin

TfR

Tf receptor 1

Tf-TR

Human Tf conjugated to Texas Red

TNF-α

Tumor necrosis factor alpha

Notes

Acknowledgments

The authors are grateful to Dr. Lucas Silvestroff for insightful comments and helpful discussions on this manuscript and María Marta Rancez for the revision of English spelling, grammar, and style in the manuscript.

Funding Sources

This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (BID- PICT 2015-0503) and the University of Buenos Aires (UBA).

References

  1. 1.
    Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171.  https://doi.org/10.1172/JCI58644 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Davies CL, Miron VE (2018) Distinct origins, gene expression and function of microglia and monocyte-derived macrophages in CNS myelin injury and regeneration. Clin Immunol 189:57–62.  https://doi.org/10.1016/j.clim.2016.06.016 PubMedGoogle Scholar
  3. 3.
    Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857–860PubMedGoogle Scholar
  4. 4.
    Calderó J, Brunet N, Ciutat D, Hereu M, Esquerda JE (2009) Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. J Neurosci Res 87(11):2447–2466.  https://doi.org/10.1002/jnr.22084 PubMedGoogle Scholar
  5. 5.
    Kotter MR, Zhao C, van Rooijen N, Franklin RJ (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18(1):166–175PubMedGoogle Scholar
  6. 6.
    Psachoulia K, Chamberlain KA, Heo D, Davis SE, Paskus JD, Nanescu SE, Dupree JL, Wynn TA et al (2016) IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation. Brain 139(Pt 12):3121–3136PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178PubMedGoogle Scholar
  8. 8.
    Correale J (2014) The role of microglial activation in disease progression. Mult Scler 20(10):1288–1295.  https://doi.org/10.1177/1352458514533230 PubMedGoogle Scholar
  9. 9.
    Griffin WS, Mrak RE (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 72(2):233–238 Review PubMedPubMedCentralGoogle Scholar
  10. 10.
    Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 76(3):846–854PubMedGoogle Scholar
  11. 11.
    Li Y, Liu L, Barger SW, Mrak RE, Griffin WS (2001) Vitamin E suppression of microglial activation is neuroprotective. J Neurosci Res 66(2):163–170PubMedPubMedCentralGoogle Scholar
  12. 12.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543PubMedGoogle Scholar
  13. 13.
    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10):e13693.  https://doi.org/10.1371/journal.pone.0013693 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 8:312–318 ReviewGoogle Scholar
  15. 15.
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349PubMedGoogle Scholar
  16. 16.
    Schwartz M, Butovsky O, Brück W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29(2):68–74PubMedGoogle Scholar
  17. 17.
    Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211(8):1533–1549.  https://doi.org/10.1084/jem.20132477 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218.  https://doi.org/10.1038/nn.3469 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 18(12):753–769.  https://doi.org/10.1038/nrn.2017.136 PubMedGoogle Scholar
  20. 20.
    Ravichandran KS (2003) “Recruitment signals” from apoptotic cells: invitation to a quiet meal. Cell 113(7):817–820PubMedGoogle Scholar
  21. 21.
    Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80(6):1298–1307PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686PubMedGoogle Scholar
  23. 23.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969.  https://doi.org/10.1038/nri2448 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295.  https://doi.org/10.1093/brain/awn109.
  25. 25.
    Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJ (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225(1):18–23.  https://doi.org/10.1016/j.expneurol.2009.12.020 PubMedGoogle Scholar
  26. 26.
    Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60(2):306–321.  https://doi.org/10.1002/glia.21266 PubMedGoogle Scholar
  27. 27.
    Ludwin SK, VTs R, Moore CS, Antel JP (2016) Astrocytes in multiple sclerosis. Mult Scler 22(9):1114–1124.  https://doi.org/10.1177/1352458516643396 ReviewPubMedGoogle Scholar
  28. 28.
    Williams A, Piaton G, Lubetzki C (2007) Astrocytes--friends or foes in multiple sclerosis? Glia 55(13):1300–1312 ReviewGoogle Scholar
  29. 29.
    Skripuletz T, Wurster U, Worthmann H, Heeren M, Schuppner R, Trebst C, Kielstein JT, Weissenborn K et al (2013) Blood-cerebrospinal fluid barrier dysfunction in patients with neurological symptoms during the 2011 Northern German E. coli serotype O104:H4 outbreak. Brain 136(Pt 8):e241.  https://doi.org/10.1093/brain/aws361 PubMedGoogle Scholar
  30. 30.
    Bartlett WP, Li XS, Connor JR (1991) Expression of transferrin mRNA in the CNS of normal and jimpy mice. J Neurochem 57(1):318–322PubMedGoogle Scholar
  31. 31.
    Escobar Cabrera OE, Bongarzone ER, Soto EF, Pasquini JM (1994) Single intracerebral injection of apotransferrin in young rats induces increased myelination. Dev Neurosci 16(5–6):248–254PubMedGoogle Scholar
  32. 32.
    Escobar Cabrera OE, Zakin MM, Soto EF, Pasquini JM (1997) Single intracranial injection of apotransferrin in young rats increases the expression of specific myelin protein mRNA. J Neurosci Res 47(6):603–608PubMedGoogle Scholar
  33. 33.
    Escobar Cabrera OE, Soto EF, Pasquini JM (2000) Myelin membranes isolated from rats intracranially injected with apotransferrin are more susceptible to in vitro peroxidation. Neurochem Res 25(1):87–93PubMedGoogle Scholar
  34. 34.
    Marta CB, Paez P, Lopez M, Pellegrino de Iraldi A, Soto EF, Pasquini JM (2003) Morphological changes of myelin sheaths in rats intracranially injected with apotransferrin. Neurochem Res 28(1):101–110PubMedGoogle Scholar
  35. 35.
    Paez PM, Marta CB, Moreno MB, Soto EF, Pasquini JM (2002) Apotransferrin decreases migration and enhances differentiation of oligodendroglial progenitor cells in an in vitro system. Dev Neurosci 24(1):47–58PubMedGoogle Scholar
  36. 36.
    Paez PM, García CI, Davio C, Campagnoni AT, Soto EF, Pasquini JM (2004) Apotransferrin promotes the differentiation of two oligodendroglial cell lines. Glia 46(2):207–217PubMedGoogle Scholar
  37. 37.
    Espinosa de los Monteros A, Peña LA, de Vellis J (1989) Does transferrin have a special role in the nervous system? J Neurosci Res 24(2):125–136 ReviewPubMedGoogle Scholar
  38. 38.
    Espinosa de los Monteros A, Kumar S, Zhao P, Huang CJ, Nazarian R, Pan T, Scully S, Chang R et al (1999) Transferrin is an essential factor for myelination. Neurochem Res 24(2):235–248PubMedGoogle Scholar
  39. 39.
    Espinosa-Jeffrey A, Kumar S, Zhao PM, Awosika O, Agbo C, Huang A, Chang R, De Vellis J (2002) Transferrin regulates transcription of the MBP gene and its action synergizes with IGF-1 to enhance myelinogenesis in the md rat. Dev Neurosci 24(2–3):227–241PubMedGoogle Scholar
  40. 40.
    Franco PG, Pasquini LA, Pérez MJ, Rosato-Siri MV, Silvestroff L, Pasquini JM (2015) Paving the way for adequate myelination: The contribution of galectin-3, transferrin and iron. FEBS Lett 589(22):3388–3395PubMedGoogle Scholar
  41. 41.
    Perez MJ, Ortiz EH, Roffé M, Soto EF, Pasquini JM (2009) Fyn kinase is involved in oligodendroglial cell differentiation induced by apotransferrin. J Neurosci Res 87(15):3378–3389PubMedGoogle Scholar
  42. 42.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  43. 43.
    McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902PubMedGoogle Scholar
  44. 44.
    Griess P (1879) BemerkungenzuderAbhandlung der HH.Weselsky und BenediktUebereinigeAzoverbindungen. Ber Dtsch Chem Ges 12(1879):426–428Google Scholar
  45. 45.
    Lee SJ, So IS, Park SY, Kim IS (2008) Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett 582(15):2161–2166.  https://doi.org/10.1016/j.febslet.2008.03.058 PubMedGoogle Scholar
  46. 46.
    Schrijvers DM, Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM (2004) Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. J Immunol Methods 287(1–2):101–108PubMedGoogle Scholar
  47. 47.
    Ribes S, Ebert S, Regen T, Agarwal A, Tauber SC, Czesnik D, Spreer A, Bunkowski S et al (2010) Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated Streptococcus pneumoniae by murine microglia. 78(2):865–871.  https://doi.org/10.1128/IAI.01110-09
  48. 48.
    Oberhammer F, Fritsch G, Schmied M, Pavelka M, Printz D, Purchio T, Lassmann H, Schulte-Hermann R (1993) Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci 104(Pt 2):317–326PubMedGoogle Scholar
  49. 49.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517.  https://doi.org/10.1016/S0140-6736(08)61620-7 PubMedGoogle Scholar
  50. 50.
    Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585(23):3715–3723.  https://doi.org/10.1016/j.febslet.2011.08.004. Review.
  51. 51.
    Johnson ES, Ludwin SK (1981) The demonstration of recurrent demyelination and remyelination of axons in the central nervous system. Acta Neuropathol 53(2):93–98PubMedGoogle Scholar
  52. 52.
    Kondo A, Nakano T, Suzuki K (1987) Blood-brain barrier permeability to horseradish peroxidase in twitcher and cuprizone-intoxicated mice. Brain Res 425(1):186–190PubMedGoogle Scholar
  53. 53.
    Adamo AM, Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, Pasquini JM, Soto EF (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198(2):519–529PubMedGoogle Scholar
  54. 54.
    Matsushima GK, Morell P (2001) Theneurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116 ReviewPubMedGoogle Scholar
  55. 55.
    McMahon EJ, Suzuki K, Matsushima GK (2002) Peripheral macrophage recruitment in cuprizone-induced CNS demyelination despite an intact blood-brain barrier. J Neuroimmunol 130(1–2):32–45PubMedGoogle Scholar
  56. 56.
    Remington LT, Babcock AA, Zehntner SP, Owens T (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170(5):1713–1724PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736.  https://doi.org/10.1007/s00401-009-0591-3 Review
  58. 58.
    Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26(1):328–332PubMedGoogle Scholar
  59. 59.
    Syed YA, Baer AS, Lubec G, Hoeger H, Widhalm G, Kotter MR (2008) Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurg Focus 24(3–4):E5.  https://doi.org/10.3171/FOC/2008/24/3-4/E4 PubMedGoogle Scholar
  60. 60.
    Lampron A, Larochelle A, Laflamme N, Préfontaine P, Plante MM, Sánchez MG, Yong VW, Stys PK et al (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. Exp Med 212(4):481–495.  https://doi.org/10.1084/jem.20141656 Google Scholar
  61. 61.
    Plemel JR, Manesh SB, Sparling JS, Tetzlaff W (2013) Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia 61(9):1471–1487.  https://doi.org/10.1002/glia.22535 PubMedGoogle Scholar
  62. 62.
    Grommes C, Lee CY, Wilkinson BL, Jiang Q, Koenigsknecht-Talboo JL, Varnum B, Landreth GE (2008) Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases. J NeuroImmune Pharmacol 3(2):130–140.  https://doi.org/10.1007/s11481-007-9090-2 PubMedGoogle Scholar
  63. 63.
    Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109(4):1144–1156.  https://doi.org/10.1111/j.1471-4159.2009.06042.x PubMedPubMedCentralGoogle Scholar
  64. 64.
    Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346 Review PubMedGoogle Scholar
  65. 65.
    Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661.  https://doi.org/10.1126/science.1178331 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Yu Z, Sun D, Feng J, Tan W, Fang X, Zhao M, Zhao X, Pu Y et al (2015) MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci 35(16):6350–6365.  https://doi.org/10.1523/JNEUROSCI.2468-14.2015 PubMedGoogle Scholar
  67. 67.
    Rawji KS, Mishra MK, Yong VW (2016) Regenerative capacity of macrophages for remyelination. Front Cell Dev Biol 4:47PubMedPubMedCentralGoogle Scholar
  68. 68.
    Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, Wang D, Zhao X et al (2017) LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 18(10):1801–1816.  https://doi.org/10.15252/embr.201643668 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kalakh S, Mouihate A (2017) Androstenediol reduces demyelination-induced Axonopathy in the rat corpus callosum: impact on microglial polarization. Front Cell Neurosci 23(11):49.  https://doi.org/10.3389/fncel.2017.00049. Google Scholar
  70. 70.
    Miron VE (2013) Dissecting the damaging versus regenerative roles of CNS macrophages: implications for the use of immunomodulatory therapeutics. Regen Med 8(6):673–676.  https://doi.org/10.2217/rme.13.73 Review
  71. 71.
    Silvestroff L, Franco PG, Pasquini JM (2013) Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation. ASN Neuro 5(1):e00107.  https://doi.org/10.1042/AN20120075. PubMedPubMedCentralGoogle Scholar
  72. 72.
    Saksida T, Miljkovic D, Timotijevic G, Stojanovic I, Mijatovic S, Fagone P, Mangano K, Mammana S et al (2013) Apotransferrin inhibits interleukin-2 expression and protects mice from experimental autoimmune encephalomyelitis. J Neuroimmunol 262(1–2):72–78.  https://doi.org/10.1016/j.jneuroim.2013.07.001 PubMedGoogle Scholar
  73. 73.
    Sfagos C, Makis AC, Chaidos A, Hatzimichael EC, Dalamaga A, Kosma K, Bourantas KL (2005) Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult Scler 11(3):272–275PubMedGoogle Scholar
  74. 74.
    Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585.  https://doi.org/10.1101/gad.1806309 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhao C, Ma D, Zawadzka M, Fancy SP, Elis-Williams L, Bouvier G, Stockley JH, de Castro GM et al (2015) Sox2 sustains recruitment of oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during remyelination. J Neurosci 35(33):11482–11499.  https://doi.org/10.1523/JNEUROSCI.3655-14.2015 PubMedGoogle Scholar
  76. 76.
    Franklin RJ, ffrench-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8(11):624–634.  https://doi.org/10.1038/nrneurol.2012.200 PubMedGoogle Scholar
  77. 77.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487.  https://doi.org/10.1038/nature21029 PubMedPubMedCentralGoogle Scholar
  78. 78.
    McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee CH, Wessling-Resnick MJ (2018) Inflammation-induced iron transport and metabolism by brain microglia. Biol Chem 293(20):7853–7863.  https://doi.org/10.1074/jbc.RA118.001949 Google Scholar
  79. 79.
    Connor JR, Benkovic SA (1992) Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol 32(Suppl):S51–S61 ReviewGoogle Scholar
  80. 80.
    Suzumura A, Sawada M, Mokuno K, Kato K, Marunouchi T, Yamamoto H (1993) Effects of microglia-derived cytokines on astrocyte proliferation. Restor Neurol Neurosci 5(5):347–352.  https://doi.org/10.3233/RNN-1993-55605 PubMedGoogle Scholar
  81. 81.
    Moos T (1996) Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. J Comp Neurol 375(4):675–692PubMedGoogle Scholar
  82. 82.
    Leitner DF, Connor JR (2012) Functional roles of transferrin in the brain. Biochim Biophys Acta 1820(3):393–402.  https://doi.org/10.1016/j.bbagen.2011.10.016 Review

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tomás R. Carden
    • 1
  • Jorge Correale
    • 2
  • Juana M. Pasquini
    • 1
  • María Julia Pérez
    • 1
    Email author
  1. 1.Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológica “Prof. Alejandro C. Paladini” (IQUIFIB), Facultad de Farmacia y Bioquímica (FFyB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos Aires (UBA)Buenos AiresArgentina
  2. 2.Instituto de Investigaciones Neurológicas “Dr. Raúl Carrea”FLENIBuenos AiresArgentina

Personalised recommendations