Changes in Dendritic Spine Density and Inhibitory Perisomatic Connectivity onto Medium Spiny Neurons in l-Dopa-Induced Dyskinesia

  • G. Gomez
  • M. V. Escande
  • L. M. Suarez
  • L. Rela
  • J. E. Belforte
  • R. Moratalla
  • M. G. Murer
  • O. S. Gershanik
  • I. R. E. TaraviniEmail author


Using bacterial artificial chromosome–double transgenic mice expressing tdTomato in D1 receptor-medium spiny neurons (MSNs) and enhanced green fluorescent protein in D2 receptor-MSNs, we have studied changes in spine density and perisomatic GABAergic boutons density in MSNs of both the D1R and D2R pathways, in an experimental model of parkinsonism (mouse injected with 6-hydroxydopamine in the medial forebrain bundle), both in the parkinsonian and dyskinetic condition induced by l-DOPA treatment. To assess changes in perisomatic GABAergic connectivity onto MSNs, we measured the number of contacts originated from parvalbumin (PV)-containing striatal “fast-spiking” interneurons (FSIs), the major component of a feed-forward inhibition mechanism that regulates spike timing in MSNs, in both cell types as well as the number of vesicular GABA transporter (VGAT) contacts. Furthermore, we determined changes in PV-immunoreactive cell density by PV immunolabeling combined with Wisteria floribunda agglutinin (WFA) labeling to detect FSI in a PV-independent manner. We also explored the differential expression of striatal activity–regulated cytoskeleton-associated protein (Arc) and c-Fos in both types of MSNs as a measure of neuronal activation. Our results confirm previous findings of major structural changes in dendritic spine density after nigrostriatal denervation, which are further modified in the dyskinetic condition. Moreover, the finding of differential modifications in perisomatic GABAergic connectivity and neuronal activation in MSNs suggests an attempt by the system to regain homeostasis after denervation and an imbalance between excitation and inhibition leading to the development of dyskinesia after exposure to l-DOPA.


Parkinson’s disease l-DOPA-induced dyskinesia Medium spiny neuron Dendritic spines Parvalbumin 



The authors would like to thank Germán La Iacona for his technical assistance.

Funding Information

This work was supported by grants from the Argentine Agency for the Promotion of Science (PICT 2011-1758 and PICT 2015-3687), University of Buenos Aires (UBACyT 2014-2017 249), and Argentine National Research Council (CONICET, PIP 2013-0401) and by grants from the Spanish Ministries of Economía, Industria y Competitividad (SAF2016-78207-R) and PCIN-2015-098 and of Sanidad Servicios Sociales e Igualdad (ISCIII, CIBERNED CB06/05/0055, PNSD2016I033) and 172275 from Ramón Areces Foundation to RM. GG is a research fellow of the CONICET. LR, JEB, MGM, and IRET are members of the research career of CONICET.

Compliance with Ethical Standards

All surgical procedures and experimental manipulations were performed in accordance with European Council Directive 2010/63/EU guidelines for the care of laboratory animals and the regulations for the Care and Use of Laboratory Animals of the National Institutes of Health, USA. Animal experiments were approved by our local Ethics Committee (IACUC EXP-UBA No. 0027665/2014).

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12035_2019_1515_MOESM1_ESM.doc (54 kb)
ESM 1 (DOC 54 kb)
12035_2019_1515_Fig5_ESM.png (3.1 mb)

(PNG 3144 kb)

12035_2019_1515_MOESM2_ESM.tif (3.1 mb)
High resolution image (TIF 3144 kb)
12035_2019_1515_Fig6_ESM.png (4.6 mb)

(PNG 4674 kb)

12035_2019_1515_MOESM3_ESM.tif (4.6 mb)
High resolution image (TIF 4674 kb)
12035_2019_1515_Fig7_ESM.png (3.1 mb)

(PNG 3144 kb)

12035_2019_1515_MOESM4_ESM.tif (3.1 mb)
High resolution image (TIF 3144 kb)
12035_2019_1515_Fig8_ESM.png (18.8 mb)

(PNG 19200 kb)

12035_2019_1515_MOESM5_ESM.tif (18.8 mb)
High resolution image (TIF 19200 kb)


  1. 1.
    Birkmayer W, Hornykiewicz O (1961) The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 73:787–788PubMedGoogle Scholar
  2. 2.
    Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134:1591–1609. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Holtmaat A, Caroni P (2016) Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 19:1553–1562. CrossRefPubMedGoogle Scholar
  4. 4.
    Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60:287–305. CrossRefPubMedGoogle Scholar
  5. 5.
    Graf ER, Zhang X, Jin S-X, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu G (2004) Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci 7:373–379. CrossRefPubMedGoogle Scholar
  7. 7.
    Prange O, Wong TP, Gerrow K, Wang YT, el-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci 101:13915–13920. CrossRefPubMedGoogle Scholar
  8. 8.
    Levinson JN, El-Husseini A (2005) Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 48:171–174. CrossRefPubMedGoogle Scholar
  9. 9.
    Kawaguchi Y (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res 27:1–8CrossRefGoogle Scholar
  10. 10.
    Bolam J, Hanley J, Booth P, Bevan M (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gerfen CR, Young WS (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460:161–167CrossRefGoogle Scholar
  12. 12.
    Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen Y, Sabatini BL (2012) Signaling in dendritic spines and spine microdomains. Curr Opin Neurobiol 22:389–396. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Suárez L, Solís O, Caramés J et al (2014) L-DOPA treatment selectively restores spine density in dopamine receptor d2-expressing projection neurons in dyskinetic mice. Biol Psychiatry 75:711–722. CrossRefPubMedGoogle Scholar
  15. 15.
    Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R (2016) L-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 26:4253–4264. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nishijima H, Suzuki S, Kon T, Funamizu Y, Ueno T, Haga R, Suzuki C, Arai A et al (2014) Morphologic changes of dendritic spines of striatal neurons in the levodopa-induced dyskinesia model. Mov Disord 29:336–343. CrossRefPubMedGoogle Scholar
  17. 17.
    Fieblinger T, Graves SM, Sebel LE, Alcacer C, Plotkin JL, Gertler TS, Chan CS, Heiman M et al (2014) Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 5:5316. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang Y, Meredith GE, Mendoza-Elias N, Rademacher DJ, Tseng KY, Steece-Collier K (2013) Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses. J Neurosci 33:11655–11667. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923CrossRefGoogle Scholar
  20. 20.
    Tepper JM, Tecuapetla F, Koós T, Ibáñez-Sandoval O (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mallet N, Ballion B, Le Moine C, Gonon F (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884. CrossRefPubMedGoogle Scholar
  22. 22.
    Berke JD, Okatan M, Skurski J, Eichenbaum HB (2004) Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43:883–896. CrossRefPubMedGoogle Scholar
  23. 23.
    Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669. CrossRefPubMedGoogle Scholar
  24. 24.
    Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15CrossRefGoogle Scholar
  25. 25.
    Bennett B, Bolam J (1994) Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. Neuroscience 62:707–719CrossRefGoogle Scholar
  26. 26.
    Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gittis AH, Hang GB, LaDow ES et al (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Salin P, López IP, Kachidian P, Barroso-Chinea P, Rico AJ, Gómez-Bautista V, Coulon P, Kerkerian-le Goff L et al (2009) Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson’s disease. Neurobiol Dis 34:545–552. CrossRefPubMedGoogle Scholar
  29. 29.
    Shuen J, Chen M, Gloss B, Calakos N (2008) Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 28:2681–2685. CrossRefPubMedGoogle Scholar
  30. 30.
    Escande MV, Taravini IRE, Zold CL, Belforte JE, Murer MG (2016) Loss of homeostasis in the direct pathway in a mouse model of asymptomatic parkinson’s disease. J Neurosci 36:5686–5698. CrossRefPubMedGoogle Scholar
  31. 31.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  32. 32.
    Cenci MA, Lundblad M (2007) Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci Chapter 9:Unit 9.25.
  33. 33.
    Francardo V, Recchia A, Popovic N, Andersson D, Nissbrandt H, Cenci MA (2011) Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis 42:327–340. CrossRefPubMedGoogle Scholar
  34. 34.
    Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R (2012) L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 48:271–281. CrossRefPubMedGoogle Scholar
  35. 35.
    Larramendy C, Taravini IRE, Saborido MD, Ferrario JE, Murer MG, Gershanik OS (2008) Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behav Brain Res 194:44–51. CrossRefPubMedGoogle Scholar
  36. 36.
    Lundblad M, Picconi B, Lindgren H, Cenci MA (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16:110–123. CrossRefPubMedGoogle Scholar
  37. 37.
    Ruiz-Dediego I, Mellstrom B, Vallejo M et al (2015) Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 77:95–105. CrossRefPubMedGoogle Scholar
  38. 38.
    Solís O, Garcia-Montes JR, González-Granillo A, Xu M, Moratalla R (2017) Dopamine D3 receptor modulates L-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex 27:435–446. CrossRefPubMedGoogle Scholar
  39. 39.
    Taravini IRE, Ferrario JE, Delbe J, Ginestet L, Debeir T, Courty J, Murer MG, Gershanik OS et al (2005) Immunodetection of heparin-binding growth associated molecule (pleiotrophin) in striatal interneurons. Brain Res 1066:196–200. CrossRefPubMedGoogle Scholar
  40. 40.
    Taravini IRE, Chertoff M, Cafferata EG, Courty J, Murer MG, Pitossi FJ, Gershanik OS (2011) Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Mol Neurodegener 6:40. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: a comparative study in human and monkey. J Neurosci 21:RC163CrossRefGoogle Scholar
  42. 42.
    Enwright JF, Sanapala S, Foglio A et al (2016) Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 41:2206–2214. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Braz BY, Galiñanes GL, Taravini IR et al (2015) Altered corticostriatal connectivity and exploration/exploitation imbalance emerge as intermediate phenotypes for a neonatal dopamine dysfunction. Neuropsychopharmacology 40:1–12. CrossRefGoogle Scholar
  44. 44.
    Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gagnon D, Petryszyn S, Sanchez MG, Bories C, Beaulieu JM, de Koninck Y, Parent A, Parent M (2017) Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 7:9–17. CrossRefGoogle Scholar
  46. 46.
    McNeill TH, Brown SA, Rafols JA, Shoulson I (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455:148–152CrossRefGoogle Scholar
  47. 47.
    Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A, Deutch AY, Montine TJ (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547. CrossRefPubMedGoogle Scholar
  48. 48.
    Gittis AH, Leventhal DK, Fensterheim B et al (2011) Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci 31:15727–15731. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Galarraga E, Vilchis C, Tkatch T, Salgado H, Tecuapetla F, Perez-Rosello T, Perez-Garci E, Hernandez-Echeagaray E et al (2007) Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons. Neuroscience 146:537–554. CrossRefPubMedGoogle Scholar
  50. 50.
    Kubota Y, Kawaguchi Y (2000) Dependence of GABAergic synaptic areas on the interneuron type and target size. J Neurosci 20:375–386CrossRefGoogle Scholar
  51. 51.
    Straub C, Saulnier JL, Bègue A, Feng DD, Huang KW, Sabatini BL (2016) Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron 92:84–92. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    DiFiglia M, Aronin N (1982) Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus. J Neurosci 2:1267–1274CrossRefGoogle Scholar
  53. 53.
    Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J Comp Neurol 194:599–615. CrossRefPubMedGoogle Scholar
  55. 55.
    Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci U S A 97:13372–13377. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Orduz D, Bischop DP, Schwaller B, Schiffmann SN, Gall D (2013) Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons. J Physiol 591:3215–3232. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Filice F, Vörckel KJ, Sungur AÖ, Wöhr M, Schwaller B (2016) Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 9:10. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Parker JG, Marshall JD, Ahanonu B, Wu YW, Kim TH, Grewe BF, Zhang Y, Li JZ et al (2018) Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557:177–182. CrossRefPubMedGoogle Scholar
  59. 59.
    Girasole AE, Lum MY, Nathaniel D, Bair-Marshall CJ, Guenthner CJ, Luo L, Kreitzer AC, Nelson AB (2018) A subpopulation of striatal neurons mediates levodopa-induced dyskinesia. Neuron 97:787–795.e6. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang JQ, Smith AJ, McGinty JF (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain. Neuroscience 68:83–95CrossRefGoogle Scholar
  61. 61.
    Kravitz AV, Freeze BS, Parker PRL et al (2010) Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature 466:622–626. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Aubert I, Guigoni C, Håkansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE et al (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26. CrossRefPubMedGoogle Scholar
  63. 63.
    Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia. Nat Neurosci 6:501–506. CrossRefPubMedGoogle Scholar
  64. 64.
    Picconi B, Paillé V, Ghiglieri V, Bagetta V, Barone I, Lindgren HS, Bernardi G, Angela Cenci M et al (2008) l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis 29:327–335. CrossRefPubMedGoogle Scholar
  65. 65.
    Andersson M, Hilbertson A, Cenci MA (1999) Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis 6:461–474. CrossRefPubMedGoogle Scholar
  66. 66.
    Feyder M, Bonito-Oliva A, Fisone G (2011) L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci 5:71. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry 62:800–810. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sgambato-Faure V, Buggia V, Gilbert F, Lévesque D, Benabid AL, Berger F (2005) Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J Neuropathol Exp Neurol 64:936–947. CrossRefPubMedGoogle Scholar
  69. 69.
    Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bézard E (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192. CrossRefPubMedGoogle Scholar
  70. 70.
    Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751CrossRefGoogle Scholar
  71. 71.
    Steward O, Worley P (2002) Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol Learn Mem 78:508–527CrossRefGoogle Scholar
  72. 72.
    Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bello EP, Casas-Cordero R, Galiñanes GL, Casey E, Belluscio MA, Rodríguez V, Noaín D, Murer MG et al (2017) Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mol Psychiatry 22:595–604. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. Gomez
    • 1
    • 2
  • M. V. Escande
    • 3
  • L. M. Suarez
    • 4
    • 5
  • L. Rela
    • 3
  • J. E. Belforte
    • 3
  • R. Moratalla
    • 4
    • 5
  • M. G. Murer
    • 3
  • O. S. Gershanik
    • 1
    • 2
  • I. R. E. Taravini
    • 1
    • 2
    • 6
    Email author
  1. 1.Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Instituto de Investigaciones Farmacológicas (ININFA), Laboratorio de Parkinson ExperimentalCONICET - Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de SistemasUniversidad de Buenos Aires, CONICETBuenos AiresArgentina
  4. 4.Instituto CajalConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  5. 5.CIBERNEDInstituto de Salud Carlos IIIMadridSpain
  6. 6.Laboratorio de Neurobiología Experimental (LNE), CONICET - Facultad de BromatologíaUniversidad Nacional de Entre RíosGualeguaychúArgentina

Personalised recommendations