Advertisement

Oxytocin Neurons Enable Melanocortin Regulation of Male Sexual Function in Mice

  • Erin Semple
  • Firas Shalabi
  • Jennifer W. Hill
Article

Abstract

The melanocortin pathway has been implicated in both metabolism and sexual function. When the melanocortin 4 receptor (MC4R) is knocked out globally, male mice display obesity, low sexual desire, and copulatory difficulties; however, it is unclear whether these phenotypes are interdependent. To elucidate the neuronal circuitry involved in sexual dysfunction in MC4R knockouts, we re-expressed the MC4R in these mice exclusively on Sim1 neurons (tbMC4RSim1 mice) or on a subset of Sim1 neurons, namely oxytocin neurons (tbMC4Roxt mice). The groups were matched at young ages to control for the effects of obesity. Interestingly, young MC4R null mice had no deficits in sexual motivation or erectile function. However, MC4R null mice were found to have an increased latency to reach ejaculation compared to control mice, which was restored in both tbMC4RSim1 and tbMC4Roxt mice. These results indicate that melanocortin signaling via the MC4R on oxytocin neurons is important for normal ejaculation independent of the male’s metabolic health.

Keywords

Paraventricular nucleus Erectile dysfunction Ejaculation Melanocortin Obesity PVH Hypothalamus Oxytocin Male Mice Sim1 Sim-1 MC4R POMC 

Notes

Acknowledgements

We would like to acknowledge the University of Toledo Advanced Microscopy & Imaging Center and the University of Virginia Ligand Assay and Analysis Core for the analysis of LH/FSH serum concentrations.

Funding Information

This work was supported by NIH award R01 HD081792 to JWH. The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core is supported by the Eunice Kennedy Shriver NICHD/NIH (NCTRI) Grant P50-HD28934.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Lewis RW, Fugl-Meyer KS, Corona G, Hayes RD, Laumann EO, Moreira ED Jr, Rellini AH, Segraves T (2010) Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med 7(4 Pt 2):1598–1607.  https://doi.org/10.1111/j.1743-6109.2010.01778.x CrossRefPubMedGoogle Scholar
  2. 2.
    Hatzimouratidis K, Amar E, Eardley I, Giuliano F, Hatzichristou D, Montorsi F, Vardi Y, Wespes E (2010) Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. Eur Urol 57(5):804–814.  https://doi.org/10.1016/j.eururo.2010.02.020 CrossRefPubMedGoogle Scholar
  3. 3.
    McCabe MP, Sharlip ID, Lewis R, Atalla E, Balon R, Fisher AD, Laumann E, Lee SW et al (2016) Incidence and prevalence of sexual dysfunction in women and men: a consensus statement from the fourth international consultation on sexual medicine 2015. J Sex Med 13(2):144–152.  https://doi.org/10.1016/j.jsxm.2015.12.034 CrossRefPubMedGoogle Scholar
  4. 4.
    Nicolosi A, Moreira ED Jr, Shirai M, Bin Mohd Tambi MI, Glasser DB (2003) Epidemiology of erectile dysfunction in four countries: cross-national study of the prevalence and correlates of erectile dysfunction. Urology 61(1):201–206CrossRefGoogle Scholar
  5. 5.
    Hatzimouratidis K (2007) Epidemiology of male sexual dysfunction. Am J Mens Health 1(2):103–125.  https://doi.org/10.1177/1557988306298006 CrossRefPubMedGoogle Scholar
  6. 6.
    Mitchell KR, Mercer CH, Ploubidis GB, Jones KG, Datta J, Field N, Copas AJ, Tanton C et al (2013) Sexual function in Britain: findings from the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3). Lancet 382(9907):1817–1829.  https://doi.org/10.1016/s0140-6736(13)62366-1 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gades NM, Jacobson DJ, McGree ME, St Sauver JL, Lieber MM, Nehra A, Girman CJ, Jacobsen SJ (2009) Longitudinal evaluation of sexual function in a male cohort: the Olmsted county study of urinary symptoms and health status among men. J Sex Med 6(9):2455–2466.  https://doi.org/10.1111/j.1743-6109.2009.01374.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thorve VS, Kshirsagar AD, Vyawahare NS, Joshi VS, Ingale KG, Mohite RJ (2011) Diabetes-induced erectile dysfunction: epidemiology, pathophysiology and management. J Diabetes Complicat 25(2):129–136.  https://doi.org/10.1016/j.jdiacomp.2010.03.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Giuliano F, Allard J (2001) Dopamine and male sexual function. Eur Urol 40(6):601–608CrossRefGoogle Scholar
  10. 10.
    Wessells H, Gralnek D, Dorr R, Hruby VJ, Hadley ME, Levine N (2000) Effect of an alpha-melanocyte stimulating hormone analog on penile erection and sexual desire in men with organic erectile dysfunction. Urology 56(4):641–646CrossRefGoogle Scholar
  11. 11.
    Safarinejad MR, Hosseini SY (2008) Salvage of sildenafil failures with bremelanotide: a randomized, double-blind, placebo controlled study. J Urol 179(3):1066–1071.  https://doi.org/10.1016/j.juro.2007.10.063 CrossRefPubMedGoogle Scholar
  12. 12.
    Shadiack AM, Sharma SD, Earle DC, Spana C, Hallam TJ (2007) Melanocortins in the treatment of male and female sexual dysfunction. Curr Top Med Chem 7(11):1137–1144CrossRefGoogle Scholar
  13. 13.
    Hadley ME (2005) Discovery that a melanocortin regulates sexual functions in male and female humans. Peptides 26(10):1687–1689.  https://doi.org/10.1016/j.peptides.2005.01.023 CrossRefPubMedGoogle Scholar
  14. 14.
    Van der Ploeg LH, Martin WJ, Howard AD, Nargund RP, Austin CP, Guan X, Drisko J, Cashen D et al (2002) A role for the melanocortin 4 receptor in sexual function. Proc Natl Acad Sci U S A 99(17):11381–11386.  https://doi.org/10.1073/pnas.172378699 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shadiack AM, Althof S (2008) Preclinical effects of melanocortins in male sexual dysfunction. Int J Impot Res 20(Suppl 1):S11–S16.  https://doi.org/10.1038/ijir.2008.17 CrossRefPubMedGoogle Scholar
  16. 16.
    Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5):571–578.  https://doi.org/10.1038/nn1455 CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Y (2011) Structure, function and regulation of the melanocortin receptors. Eur J Pharmacol 660(1):125–130.  https://doi.org/10.1016/j.ejphar.2010.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schioth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JE (1996) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci 59(10):797–801CrossRefGoogle Scholar
  19. 19.
    Mountjoy KG (2010) Distribution and function of melanocortin receptors within the brain. Adv Exp Med Biol 681:29–48.  https://doi.org/10.1007/978-1-4419-6354-3_3 CrossRefPubMedGoogle Scholar
  20. 20.
    Rodrigues AR, Almeida H, Gouveia AM (2015) Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 72(7):1331–1345.  https://doi.org/10.1007/s00018-014-1800-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Adan RA, Tiesjema B, Hillebrand JJ, la Fleur SE, Kas MJ, de Krom M (2006) The MC4 receptor and control of appetite. Br J Pharmacol 149(7):815–827.  https://doi.org/10.1038/sj.bjp.0706929 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141.  https://doi.org/10.1016/S0092-8674(00)81865-6 CrossRefGoogle Scholar
  23. 23.
    Argiolas A, Melis MR, Murgia S, Schioth HB (2000) ACTH- and alpha-MSH-induced grooming, stretching, yawning and penile erection in male rats: site of action in the brain and role of melanocortin receptors. Brain Res Bull 51(5):425–431CrossRefGoogle Scholar
  24. 24.
    Faulkner LD, Dowling AR, Stuart RC, Nillni EA, Hill JW (2015) Reduced melanocortin production causes sexual dysfunction in male mice with POMC neuronal insulin and leptin insensitivity. Endocrinology 156(4):1372–1385.  https://doi.org/10.1210/en.2014-1788 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tao YX (2010) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31(4):506–543.  https://doi.org/10.1210/er.2009-0037 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tolson KP, Gemelli T, Gautron L, Elmquist JK, Zinn AR, Kublaoui BM (2010) Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci 30(10):3803–3812.  https://doi.org/10.1523/jneurosci.5444-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Michaud JL, Rosenquist T, May NR, Fan CM (1998) Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12(20):3264–3275CrossRefGoogle Scholar
  28. 28.
    Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V et al (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123(3):493–505.  https://doi.org/10.1016/j.cell.2005.08.035 CrossRefPubMedGoogle Scholar
  29. 29.
    Semple E, Hill JW (2018) Sim1 neurons are sufficient for MC4R-mediated sexual function in male mice. Endocrinology 159(1):439–449.  https://doi.org/10.1210/en.2017-00488 CrossRefPubMedGoogle Scholar
  30. 30.
    Shah BP, Vong L, Olson DP, Koda S, Krashes MJ, Ye C, Yang Z, Fuller PM et al (2014) MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc Natl Acad Sci U S A 111(36):13193–13198.  https://doi.org/10.1073/pnas.1407843111 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Xu Y, Wu Z, Sun H, Zhu Y, Kim ER, Lowell BB, Arenkiel BR, Xu Y et al (2013) Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab 18(6):860–870.  https://doi.org/10.1016/j.cmet.2013.11.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR (2008) Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 22(7):1723–1734.  https://doi.org/10.1210/me.2008-0067 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Barberis C, Mouillac B, Durroux T (1998) Structural bases of vasopressin/oxytocin receptor function. J Endocrinol 156(2):223–229CrossRefGoogle Scholar
  34. 34.
    Argiolas A, Melis MR, Gessa GL (1988) Yawning and penile erection: central dopamine-oxytocin-adrenocorticotropin connection. Ann N Y Acad Sci 525:330–337CrossRefGoogle Scholar
  35. 35.
    Melis MR, Melis T, Cocco C, Succu S, Sanna F, Pillolla G, Boi A, Ferri GL et al (2007) Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur J Neurosci 26(4):1026–1035.  https://doi.org/10.1111/j.1460-9568.2007.05721.x CrossRefGoogle Scholar
  36. 36.
    Succu S, Sanna F, Cocco C, Melis T, Boi A, Ferri GL, Argiolas A, Melis MR (2008) Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur J Neurosci 28(4):813–821.  https://doi.org/10.1111/j.1460-9568.2008.06385.x CrossRefPubMedGoogle Scholar
  37. 37.
    Behnia B, Heinrichs M, Bergmann W, Jung S, Germann J, Schedlowski M, Hartmann U, Kruger TH (2014) Differential effects of intranasal oxytocin on sexual experiences and partner interactions in couples. Horm Behav 65(3):308–318.  https://doi.org/10.1016/j.yhbeh.2014.01.009 CrossRefPubMedGoogle Scholar
  38. 38.
    Burri A, Heinrichs M, Schedlowski M, Kruger TH (2008) The acute effects of intranasal oxytocin administration on endocrine and sexual function in males. Psychoneuroendocrinology 33(5):591–600.  https://doi.org/10.1016/j.psyneuen.2008.01.014 CrossRefPubMedGoogle Scholar
  39. 39.
    Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG, Landgraf R, Young LJ (2015) Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology 40(8):1856–1865.  https://doi.org/10.1038/npp.2015.35 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Alexandre L, Giuliano F (2010) Neuroanatomical evidence for a role of central melanocortin-4 receptors and oxytocin in the efferent control of the rodent clitoris and vagina. J Sex Med 7(6):2056–2067.  https://doi.org/10.1111/j.1743-6109.2010.01760.x CrossRefPubMedGoogle Scholar
  41. 41.
    Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG, Marsh DJ, Forrest MJ et al (2000) Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 9(2):145–154CrossRefGoogle Scholar
  42. 42.
    Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, Campbell JN, Gavrilova O et al (2015) A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 18(6):863–871.  https://doi.org/10.1038/nn.4011 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Glavas MM, Joachim SE, Draper SJ, Smith MS, Grove KL (2007) Melanocortinergic activation by melanotan II inhibits feeding and increases uncoupling protein 1 messenger ribonucleic acid in the developing rat. Endocrinology 148(7):3279–3287.  https://doi.org/10.1210/en.2007-0184 CrossRefPubMedGoogle Scholar
  44. 44.
    Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD (2000) A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci U S A 97(22):12339–12344.  https://doi.org/10.1073/pnas.220409497 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tallam LS, Stec DE, Willis MA, da Silva AA, Hall JE (2005) Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension 46(2):326–332.  https://doi.org/10.1161/01.HYP.0000175474.99326.bf CrossRefPubMedGoogle Scholar
  46. 46.
    Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37(9):1163–1167CrossRefGoogle Scholar
  47. 47.
    Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD (2001) Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 4(6):605–611.  https://doi.org/10.1038/88423 CrossRefPubMedGoogle Scholar
  48. 48.
    Xi D, Gandhi N, Lai M, Kublaoui BM (2012) Ablation of Sim1 neurons causes obesity through hyperphagia and reduced energy expenditure. PLoS One 7(4):e36453.  https://doi.org/10.1371/journal.pone.0036453 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hull EM, Dominguez JM (2007) Sexual behavior in male rodents. Horm Behav 52(1):45–55.  https://doi.org/10.1016/j.yhbeh.2007.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dewsbury DA (1969) Copulatory behaviour of rats (Rattus norvegicus) as a function of prior copulatory experience. Anim Behav 17(2):217–223CrossRefGoogle Scholar
  51. 51.
    Swaney WT, Dubose BN, Curley JP, Champagne FA (2012) Sexual experience affects reproductive behavior and preoptic androgen receptors in male mice. Horm Behav 61(4):472–478.  https://doi.org/10.1016/j.yhbeh.2012.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Allouh MZ (2015) Effects of swimming activity on the copulatory behavior of sexually active male rats. Int J Impot Res 27(3):113–117.  https://doi.org/10.1038/ijir.2014.42 CrossRefPubMedGoogle Scholar
  53. 53.
    Gajbhiye SV, Jadhav KS, Marathe PA, Pawar DB (2015) Animal models of erectile dysfunction. Indian J Urol 31(1):15–21.  https://doi.org/10.4103/0970-1591.128496 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    McMurray G, Casey JH, Naylor AM (2006) Animal models in urological disease and sexual dysfunction. Br J Pharmacol 147(Suppl 2):S62–S79.  https://doi.org/10.1038/sj.bjp.0706630 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hackett G (2009) The burden and extent of comorbid conditions in patients with erectile dysfunction. Int J Clin Pract 63(8):1205–1213.  https://doi.org/10.1111/j.1742-1241.2009.02088.x CrossRefPubMedGoogle Scholar
  56. 56.
    Bacon CG, Mittleman MA, Kawachi I, Giovannucci E, Glasser DB, Rimm EB (2003) Sexual function in men older than 50 years of age: results from the health professionals follow-up study. Ann Intern Med 139(3):161–168CrossRefGoogle Scholar
  57. 57.
    Han TS, Tajar A, O'Neill TW, Jiang M, Bartfai G, Boonen S, Casanueva F, Finn JD et al (2011) Impaired quality of life and sexual function in overweight and obese men: the European Male Ageing Study. Eur J Endocrinol 164(6):1003–1011.  https://doi.org/10.1530/eje-10-1129 CrossRefPubMedGoogle Scholar
  58. 58.
    Kolotkin RL, Zunker C, Ostbye T (2012) Sexual functioning and obesity: a review. Obesity (Silver Spring) 20(12):2325–2333.  https://doi.org/10.1038/oby.2012.104 CrossRefGoogle Scholar
  59. 59.
    Bacon CG, Mittleman MA, Kawachi I, Giovannucci E, Glasser DB, Rimm EB (2006) A prospective study of risk factors for erectile dysfunction. J Urol 176(1):217–221.  https://doi.org/10.1016/s0022-5347(06)00589-1 CrossRefPubMedGoogle Scholar
  60. 60.
    Dong JY, Zhang YH, Qin LQ (2011) Erectile dysfunction and risk of cardiovascular disease: meta-analysis of prospective cohort studies. J Am Coll Cardiol 58(13):1378–1385.  https://doi.org/10.1016/j.jacc.2011.06.024 CrossRefPubMedGoogle Scholar
  61. 61.
    Esposito K, Giugliano F, Di Palo C, Giugliano G, Marfella R, D'Andrea F, D'Armiento M, Giugliano D (2004) Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. Jama 291(24):2978–2984.  https://doi.org/10.1001/jama.291.24.2978 CrossRefPubMedGoogle Scholar
  62. 62.
    Horasanli K, Boylu U, Kendirci M, Miroglu C (2008) Do lifestyle changes work for improving erectile dysfunction? Asian J Androl 10(1):28–35.  https://doi.org/10.1111/j.1745-7262.2008.00363.x CrossRefPubMedGoogle Scholar
  63. 63.
    Jastrzebska S, Walczak-Jedrzejowska R, Kramek E, Marchlewska K, Oszukowska E, Filipiak E, Kula K, Slowikowska-Hilczer J (2014) Relationship between sexual function, body mass index and levels of sex steroid hormones in young men. Endokrynol Pol 65(3):203–209.  https://doi.org/10.5603/ep.2014.0028 CrossRefPubMedGoogle Scholar
  64. 64.
    Jura M, Kozak LP (2016) Obesity and related consequences to ageing. Age 38(1).  https://doi.org/10.1007/s11357-016-9884-3
  65. 65.
    Pinto E (2007) Blood pressure and ageing. Postgrad Med J 83(976):109–114.  https://doi.org/10.1136/pgmj.2006.048371 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gambert SR, Pinkstaff S (2006) Emerging epidemic: diabetes in older adults: demography, economic impact, and pathophysiology. Diabetes Spectr 19(4):221–228CrossRefGoogle Scholar
  67. 67.
    Jousilahti P, Vartiainen E, Tuomilehto J, Puska P (1999) Sex, age, cardiovascular risk factors, and coronary heart disease. Circulation 99(9):1165–1172CrossRefGoogle Scholar
  68. 68.
    Silva FH, Alexandre EC, Calmasini FB, Calixto MC, Antunes E (2015) Treatment with metformin improves erectile dysfunction in a murine model of obesity associated with insulin resistance. Urology 86(2):423.e421–423.e426.  https://doi.org/10.1016/j.urology.2015.04.035 CrossRefGoogle Scholar
  69. 69.
    Almundarij TI, Smyers ME, Spriggs A, Heemstra LA, Beltz L, Dyne E, Ridenour C, Novak CM (2016) Physical activity, energy expenditure, and defense of body weight in melanocortin 4 receptor-deficient male rats. Sci Rep 6:37435.  https://doi.org/10.1038/srep37435 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hill JW (2008) Hypothalamic pathways linking energy balance and reproduction. 294(5):E827–E832.  https://doi.org/10.1152/ajpendo.00670.2007
  71. 71.
    Hill JW, Elias CF (2018) Neuroanatomical framework of the metabolic control of reproduction. Physiol Rev 98(4):2349–2380.  https://doi.org/10.1152/physrev.00033.2017 CrossRefPubMedGoogle Scholar
  72. 72.
    Martin WJ, McGowan E, Cashen DE, Gantert LT, Drisko JE, Hom GJ, Nargund R, Sebhat I et al (2002) Activation of melanocortin MC4 receptors increases erectile activity in rats ex copula. Eur J Pharmacol 454(1):71–79.  https://doi.org/10.1016/S0014-2999(02)02479-2 CrossRefPubMedGoogle Scholar
  73. 73.
    Wessells H, Levine N, Hadley ME, Dorr R, Hruby V (2000) Melanocortin receptor agonists, penile erection, and sexual motivation: human studies with melanotan II. Int J Impot Res 12(Suppl 4):S74–S79CrossRefGoogle Scholar
  74. 74.
    Muceniece R, Zvejniece L, Kirjanova O, Liepinsh E, Krigere L, Vilskersts R, Baumane L, Gordjusina V et al (2005) Beta-MSH inhibits brain inflammation via MC(3)/(4) receptors and impaired NF-kappaB signaling. J Neuroimmunol 169(1–2):13–19.  https://doi.org/10.1016/j.jneuroim.2005.07.024 CrossRefPubMedGoogle Scholar
  75. 75.
    Caruso C, Mohn C, Karara AL, Rettori V, Watanobe H, Schioth HB, Seilicovich A, Lasaga M (2004) Alpha-melanocyte-stimulating hormone through melanocortin-4 receptor inhibits nitric oxide synthase and cyclooxygenase expression in the hypothalamus of male rats. Neuroendocrinology 79(5):278–286.  https://doi.org/10.1159/000079321 CrossRefPubMedGoogle Scholar
  76. 76.
    Galimberti D, Baron P, Meda L, Prat E, Scarpini E, Delgado R, Catania A, Lipton JM et al (1999) Alpha-MSH peptides inhibit production of nitric oxide and tumor necrosis factor-alpha by microglial cells activated with beta-amyloid and interferon gamma. Biochem Biophys Res Commun 263(1):251–256.  https://doi.org/10.1006/bbrc.1999.1276 CrossRefPubMedGoogle Scholar
  77. 77.
    Mountjoy KG, Guan J, Elia CJ, Sirimanne ES, Williams CE (1999) Melanocortin-4 receptor messenger RNA expression is up-regulated in the non-damaged striatum following unilateral hypoxic-ischaemic brain injury. Neuroscience 89(1):183–190CrossRefGoogle Scholar
  78. 78.
    Toque HA, da Silva FH, Calixto MC, Lintomen L, Schenka AA, Saad MJ, Zanesco A, Antunes E (2011) High-fat diet associated with obesity induces impairment of mouse corpus cavernosum responses. BJU Int 107(10):1628–1634.  https://doi.org/10.1111/j.1464-410X.2010.09704.x CrossRefPubMedGoogle Scholar
  79. 79.
    Courtois F, Carrier S, Charvier K, Guertin PA, Journel NM (2013) The control of male sexual responses. Curr Pharm Des 19(24):4341–4356CrossRefGoogle Scholar
  80. 80.
    Alwaal A, Breyer BN, Lue TF (2015) Normal male sexual function: emphasis on orgasm and ejaculation. Fertil Steril 104(5):1051–1060.  https://doi.org/10.1016/j.fertnstert.2015.08.033 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Arletti R, Benelli A, Bertolini A (1992) Oxytocin involvement in male and female sexual behavior. Ann N Y Acad Sci 652:180–193CrossRefGoogle Scholar
  82. 82.
    Clement P, Bernabe J, Denys P, Alexandre L, Giuliano F (2007) Ejaculation induced by i.c.v. injection of the preferential dopamine D(3) receptor agonist 7-hydroxy-2-(di-N-propylamino)tetralin in anesthetized rats. Neuroscience 145(2):605–610.  https://doi.org/10.1016/j.neuroscience.2006.12.003 CrossRefPubMedGoogle Scholar
  83. 83.
    Holstege G, Georgiadis JR, Paans AM, Meiners LC, van der Graaf FH, Reinders AA (2003) Brain activation during human male ejaculation. J Neurosci 23(27):9185–9193CrossRefGoogle Scholar
  84. 84.
    Georgiadis JR, Reinders AA, Van der Graaf FH, Paans AM, Kortekaas R (2007) Brain activation during human male ejaculation revisited. Neuroreport 18(6):553–557.  https://doi.org/10.1097/WNR.0b013e3280b10bfe CrossRefPubMedGoogle Scholar
  85. 85.
    Coolen LM, Allard J, Truitt WA, McKenna KE (2004) Central regulation of ejaculation. Physiol Behav 83(2):203–215.  https://doi.org/10.1016/j.physbeh.2004.08.023 CrossRefPubMedGoogle Scholar
  86. 86.
    Marson L, Platt KB, McKenna KE (1993) Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus. Neuroscience 55(1):263–280CrossRefGoogle Scholar
  87. 87.
    Dean RC, Lue TF (2005) Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin N Am 32(4):379–37v.  https://doi.org/10.1016/j.ucl.2005.08.007 CrossRefGoogle Scholar
  88. 88.
    Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205(3):260–272.  https://doi.org/10.1002/cne.902050306 CrossRefPubMedGoogle Scholar
  89. 89.
    Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 257(3):275–325CrossRefGoogle Scholar
  90. 90.
    Sofroniew MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28(5):475–478.  https://doi.org/10.1177/28.5.7381192 CrossRefPubMedGoogle Scholar
  91. 91.
    Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683.  https://doi.org/10.1152/physrev.2001.81.2.629 CrossRefPubMedGoogle Scholar
  92. 92.
    Clement P, Giuliano F (2016) Physiology and pharmacology of ejaculation. Basic Clin Pharmacol Toxicol 119:18–25.  https://doi.org/10.1111/bcpt.12546 CrossRefPubMedGoogle Scholar
  93. 93.
    Argiolas A, Melis MR (2005) Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog Neurobiol 76(1):1–21.  https://doi.org/10.1016/j.pneurobio.2005.06.002 CrossRefPubMedGoogle Scholar
  94. 94.
    Arletti R, Bazzani C, Castelli M, Bertolini A (1985) Oxytocin improves male copulatory performance in rats. Horm Behav 19(1):14–20CrossRefGoogle Scholar
  95. 95.
    Clement P, Bernabe J, Compagnie S, Alexandre L, McCallum S, Giuliano F (2013) Inhibition of ejaculation by the non-peptide oxytocin receptor antagonist GSK557296: a multi-level site of action. Br J Pharmacol 169(7):1477–1485.  https://doi.org/10.1111/bph.12198 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Fjellstrom D, Kihlstrom JE, Melin P (1968) The effect of synthetic oxytocin upon seminal characteristics and sexual behaviour in male rabbits. J Reprod Fertil 17(1):207–209CrossRefGoogle Scholar
  97. 97.
    de Jong TR, Veening JG, Olivier B, Waldinger MD (2007) Oxytocin involvement in SSRI-induced delayed ejaculation: a review of animal studies. J Sex Med 4(1):14–28.  https://doi.org/10.1111/j.1743-6109.2006.00394.x CrossRefPubMedGoogle Scholar
  98. 98.
    Melis MR, Succu S, Mascia MS, Argiolas A (2005) PD-168077, a selective dopamine D4 receptor agonist, induces penile erection when injected into the paraventricular nucleus of male rats. Neurosci Lett 379(1):59–62.  https://doi.org/10.1016/j.neulet.2004.12.053 CrossRefPubMedGoogle Scholar
  99. 99.
    Chan JS, Snoeren EM, Cuppen E, Waldinger MD, Olivier B, Oosting RS (2011) The serotonin transporter plays an important role in male sexual behavior: a study in serotonin transporter knockout rats. J Sex Med 8(1):97–108.  https://doi.org/10.1111/j.1743-6109.2010.01961.x CrossRefPubMedGoogle Scholar
  100. 100.
    Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM et al (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51(2):239–249.  https://doi.org/10.1016/j.neuron.2006.06.004 CrossRefPubMedGoogle Scholar
  101. 101.
    Abdel-Hamid IA, Elsaied MA, Mostafa T (2016) The drug treatment of delayed ejaculation. Transl Androl Urol 5(4):576–591.  https://doi.org/10.21037/tau.2016.05.05 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Walch K, Eder R, Schindler A, Feichtinger W (2001) The effect of single-dose oxytocin application on time to ejaculation and seminal parameters in men. J Assist Reprod Genet 18(12):655–659CrossRefGoogle Scholar
  103. 103.
    Lazzari VM, Becker RO, de Azevedo MS, Morris M, Rigatto K, Almeida S, Lucion AB, Giovenardi M (2013) Oxytocin modulates social interaction but is not essential for sexual behavior in male mice. Behav Brain Res 244:130–136.  https://doi.org/10.1016/j.bbr.2013.01.025 CrossRefPubMedGoogle Scholar
  104. 104.
    Frye CA, Vongher JM (1999) Progesterone has rapid and membrane effects in the facilitation of female mouse sexual behavior. Brain Res 815(2):259–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Erin Semple
    • 1
  • Firas Shalabi
    • 1
  • Jennifer W. Hill
    • 1
  1. 1.Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoUSA

Personalised recommendations