Advertisement

Pathological Alterations of Tau in Alzheimer’s Disease and 3xTg-AD Mouse Brains

  • Longfei Li
  • Yanli Jiang
  • Wen Hu
  • Yunn Chyn Tung
  • Chunling Dai
  • Dandan Chu
  • Cheng-Xin Gong
  • Khalid Iqbal
  • Fei LiuEmail author
Article

Abstract

Microtubule-associated protein tau in Alzheimer’s disease (AD) brain is hyperphosphorylated, truncated, and aggregated into neurofibrillary tangles. Oligomeric and hyperphosphorylated tau (Oligo-tau) isolated from AD brain captures and templates normal tau into filaments both in vitro and in vivo; this prion-like activity is believed to be responsible for the progression of neurofibrillary pathology in AD. The 3xTg-AD mouse model develops both Aβ and tau pathologies and thus gains popularity in preclinical studies of AD. Despite the histopathological similarity of the 3xTg-AD model to AD, biochemical authenticity of tau alterations in this model remains elusive. To investigate the biochemical basis of tau pathology in 3xTg-AD brain, we here compared pathological alterations of tau in the aged 3xTg-AD brain to those in AD brain. We found that in contrast to substantial high molecular weight smear tau (HMW-tau) lacking the N-terminal portion and hyperphosphorylated at multiple sites in AD brain, tau in 3xTg-AD mouse brain showed no detectable HMW-tau or truncation but slightly increased phosphorylation when normalized with total tau. In addition, AT8 immunostaining exhibited filamentous tau inclusions in AD brain, but predominantly truffle-like morphology in aged 3xTg-AD mouse brain. Further, Oligo-tau isolated from 3xTg-AD mice showed minimal potency in capturing tau in vitro and seeding tau aggregation in cultured cells when compared to AD Oligo-tau. These findings suggest that the alterations of tau in 3xTg-AD mouse brain differ from those in AD brain. In 3xTg-AD mice, the lack of N-terminal truncation, scarce SDS/reducing reagent-resistant HMW-tau, and minimal hyperphosphorylation may collectively result in low potency in prion-like activity of the Oligo-tau.

Keywords

Alzheimer’s disease 3xTg-AD mice Tau Phosphorylation Truncation Prion-like properties 

Notes

Funding Information

This work was supported in part by funds from Nantong University, New York State Office for People Developmental Disabilities, and the Neural Regeneration Co-innovation Center of Jiangsu Province and by grants from US Alzheimer’s Association (DSAD-15-363172, 2016-NIRG-397030) and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_2413).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Iqbal KGrundke-Iqbal I (2010) Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6(5):420–424CrossRefGoogle Scholar
  2. 2.
    Gong CX, Liu F, Iqbal K (2018) Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J Alzheimers Dis 64(s1):S107–S117CrossRefGoogle Scholar
  3. 3.
    Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11(3):205–242CrossRefGoogle Scholar
  4. 4.
    Alafuzoff I, Iqbal K, Friden H, Adolfsson R, Winblad B (1987) Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol 74(3):209–225CrossRefGoogle Scholar
  5. 5.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639CrossRefGoogle Scholar
  6. 6.
    Quiroz YT, Sperling RA, Norton DJ, Baena A, Arboleda-Velasquez JF, Cosio D, Schultz A, Lapoint M et al (2018) Association between amyloid and tau accumulation in young adults with autosomal dominant Alzheimer disease. JAMA Neurol 75:548–556CrossRefGoogle Scholar
  7. 7.
    Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089PubMedGoogle Scholar
  8. 8.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917CrossRefGoogle Scholar
  9. 9.
    Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384PubMedGoogle Scholar
  10. 10.
    Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91(12):5562–5566CrossRefGoogle Scholar
  11. 11.
    Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787CrossRefGoogle Scholar
  12. 12.
    Lindwall GCole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305Google Scholar
  13. 13.
    Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928CrossRefGoogle Scholar
  14. 14.
    Kovacech B, Novak M (2010) Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer’s disease. Curr Alzheimer Res 7(8):708–716CrossRefGoogle Scholar
  15. 15.
    Holmes BBDiamond MI (2014) Prion-like properties of tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem 289(29):19855–19861CrossRefGoogle Scholar
  16. 16.
    Margittai M, Langen R (2004) Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 101(28):10278–10283CrossRefGoogle Scholar
  17. 17.
    Weismiller HA, Murphy R, Wei G, Ma B, Nussinov R, Margittai M (2018) Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. J Biol Chem 293(45):17336–17348CrossRefGoogle Scholar
  18. 18.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRefGoogle Scholar
  19. 19.
    Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121(5):589–595CrossRefGoogle Scholar
  20. 20.
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913CrossRefGoogle Scholar
  21. 21.
    Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, Parhizkar S, Ward MA et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127(5):667–683CrossRefGoogle Scholar
  22. 22.
    Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA et al (2015) Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun 6:8490CrossRefGoogle Scholar
  23. 23.
    Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT et al (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 110(23):9535–9540CrossRefGoogle Scholar
  24. 24.
    Boluda S, Iba M, Zhang B, Raible KM, Lee VM, Trojanowski JQ (2015) Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol 129(2):221–237CrossRefGoogle Scholar
  25. 25.
    Hu W, Zhang X, Tung YC, Xie S, Liu F, Iqbal K (2016) Hyperphosphorylation determines both the spread and the morphology of tau pathology. Alzheimers Dement 12(10):1066–1077CrossRefGoogle Scholar
  26. 26.
    Dai CL, Hu W, Tung YC, Liu F, Gong CX, Iqbal K (2018) Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3xTg-AD mice. Alzheimers Res Ther 10(1):13CrossRefGoogle Scholar
  27. 27.
    Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852CrossRefGoogle Scholar
  28. 28.
    Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley AC et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82(6):1271–1288CrossRefGoogle Scholar
  29. 29.
    Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M (2013) “Prion-like” templated misfolding in tauopathies. Brain Pathol 23(3):342–349CrossRefGoogle Scholar
  30. 30.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421CrossRefGoogle Scholar
  31. 31.
    Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S (2018) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell:e12873Google Scholar
  32. 32.
    Braak HBraak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–278 discussion 278-284CrossRefGoogle Scholar
  33. 33.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486CrossRefGoogle Scholar
  34. 34.
    Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4(1):29–37CrossRefGoogle Scholar
  35. 35.
    Blanchard J, Wanka L, Tung YC, Cardenas-Aguayo Mdel C, LaFerla FM, Iqbal K, Grundke-Iqbal I (2010) Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting Abeta and tau pathologies in 3xTg-AD mice. Acta Neuropathol 120(5):605–621CrossRefGoogle Scholar
  36. 36.
    Carroll JC, Rosario ER, Kreimer S, Villamagna A, Gentzschein E, Stanczyk FZ, Pike CJ (2010) Sex differences in beta-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res 1366:233–245CrossRefGoogle Scholar
  37. 37.
    Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, McGaugh JL, LaFerla FM (2007) Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis 28(1):76–82CrossRefGoogle Scholar
  38. 38.
    Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua F et al (2008) Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res 1216:92–103CrossRefGoogle Scholar
  39. 39.
    Alonso AD, Grundke-Iqbal I, Iqbal K (1995) Bovine and human tau, highly homologous but less crossreactive: implications for Alzheimer disease. Brain Res Mol Brain Res 31(1–2):194–200CrossRefGoogle Scholar
  40. 40.
    Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 19(13):5245–5254CrossRefGoogle Scholar
  41. 41.
    Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(29):10804–10809CrossRefGoogle Scholar
  42. 42.
    Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58(9):1010–1019CrossRefGoogle Scholar
  43. 43.
    Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle RK, Gong CX (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512(1–3):101–106CrossRefGoogle Scholar
  44. 44.
    Goedert M, Spillantini MG, Crowther RA (1992) Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. Proc Natl Acad Sci U S A 89(5):1983–1987CrossRefGoogle Scholar
  45. 45.
    Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1):95–130CrossRefGoogle Scholar
  46. 46.
    Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251(4994):675–678CrossRefGoogle Scholar
  47. 47.
    Zhou Y, Shi J, Chu D, Hu W, Guan Z, Gong CX, Iqbal K, Liu F (2018) Relevance of phosphorylation and truncation of tau to the etiopathogenesis of Alzheimer’s disease. Front Aging Neurosci 10:27CrossRefGoogle Scholar
  48. 48.
    Sjogren M, Davidsson P, Tullberg M, Minthon L, Wallin A, Wikkelso C, Granerus AK, Vanderstichele H et al (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 70(5):624–630CrossRefGoogle Scholar
  49. 49.
    Yin Y, Gao D, Wang Y, Wang ZH, Wang X, Ye J, Wu D, Fang L et al (2016) Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A 113(26):E3773–E3781CrossRefGoogle Scholar
  50. 50.
    Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(13):4884–4888CrossRefGoogle Scholar
  51. 51.
    Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C et al (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(12):4506–4510CrossRefGoogle Scholar
  52. 52.
    Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, Horowitz PM, Fu Y, Wang T, Cahill ME, Bigio EH et al (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 26(7):1015–1022CrossRefGoogle Scholar
  53. 53.
    Horowitz PM, Patterson KR, Guillozet-Bongaarts AL, Reynolds MR, Carroll CA, Weintraub ST, Bennett DA, Cryns VL et al (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24(36):7895–7902CrossRefGoogle Scholar
  54. 54.
    Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E et al (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580(15):3582–3588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
  2. 2.Department of Neurochemistry, Inge Grundke-Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUSA

Personalised recommendations