Pluripotent Stem Cells as Models of Retina Development
- 63 Downloads
Abstract
The ability of pluripotent stem cells (PSCs) to differentiate into retinal tissue has led to many attempts to direct this process to yield specific retinal cell types. The ability to do so would greatly impact both the study of normal retina development in model systems that can be precisely controlled and the generation of a homogeneous population of cells optimized for transplantation in cell replacement therapy. Thus far, many reviews have focused on the translational potential of PSC retinal studies. Here, we focus on the former by summarizing the advances and reflecting on the current limitations to using in vitro differentiation of PSCs into retinal cells and organoids to model in vivo retinal development, with a specific emphasis on photoreceptors. We discuss the versatility of PSC retinal differentiation systems in investigating specific developmental time points that are difficult to assess with classic developmental model systems as well as the potential for efficient screening of factors involved in regulating photoreceptor differentiation. PSCs can be used in conjunction with existing model systems to contribute to the understanding of retina and photoreceptor development, which in turn can enhance the success of using stem cells in translational studies.
Keywords
Retina Photoreceptor Development Differentiation Pluripotent Stem cellsNotes
References
- 1.Barnstable CJ (1987) Immunological studies of the diversity and development of the mammalian visual system. Immunol Rev 100:47–78. https://doi.org/10.1111/j.1600-065X.1987.tb00527.x CrossRefPubMedGoogle Scholar
- 2.Zhang SS-M, Xu X, Liu M-G et al (2006) A biphasic pattern of gene expression during mouse retina development. BMC Dev Biol 6:48. https://doi.org/10.1186/1471-213X-6-48 CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Dorrell MI, Aguilar E, Weber C, Friedlander M (2004) Global gene expression analysis of the developing postnatal mouse retina. Investig Ophthalmol Vis Sci 45:1009–1019. https://doi.org/10.1167/iovs.03-0806 CrossRefGoogle Scholar
- 4.Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Zuber ME (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130:5155–5167. https://doi.org/10.1242/dev.00723 CrossRefPubMedGoogle Scholar
- 6.Andreazzoli M, Gestri G, Angeloni D, Menna E, Barsacchi G (1999) Role of Xrx1 in Xenopus eye and anterior brain development. Development 126:2451–2460PubMedGoogle Scholar
- 7.Heavner W, Pevny L (2012) Eye development and retinogenesis. Cold Spring Harb Perspect Biol 4:a008391–a008391. https://doi.org/10.1101/cshperspect.a008391 CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Centanin L, Wittbrodt J (2014) Retinal neurogenesis. Development 141:241–244. https://doi.org/10.1242/dev.083642 CrossRefPubMedGoogle Scholar
- 9.Jeon C-J, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946. https://doi.org/10.1523/JNEUROSCI.18-21-08936.1998 CrossRefPubMedGoogle Scholar
- 10.Volland S, Esteve-Rudd J, Hoo J, Yee C, Williams DS (2015) A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS One 10:e0125631. https://doi.org/10.1371/journal.pone.0125631 CrossRefPubMedPubMedCentralGoogle Scholar
- 11.May CA (2008) Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. Open Ophthalmol J 2:94–101. https://doi.org/10.2174/1874364100802010094 CrossRefGoogle Scholar
- 12.Petersen-Jones SM, Occelli LM, Winkler PA, Lee W, Sparrow JR, Tsukikawa M, Boye SL, Chiodo V et al (2017) Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. J Clin Invest 128:190–206. https://doi.org/10.1172/JCI95161 CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Narfström K, Holland Deckman K, Menotti-Raymond M (2011) The domestic cat as a large animal model for characterization of disease and therapeutic intervention in hereditary retinal blindness. J Ophthalmol 2011:1–8. https://doi.org/10.1155/2011/906943 CrossRefGoogle Scholar
- 14.Occelli LM, Tran NM, Narfström K, Chen S, Petersen-Jones SM (2016) CrxRdy cat: a large animal model for CRX-associated Leber congenital amaurosis. Invest Ophthalmol Vis Sci 57:3780–3792. https://doi.org/10.1167/iovs.16-19444 CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Streilein JW, Ma N, Wenkel H, Fong Ng T, Zamiri P (2002) Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res 42:487–495. https://doi.org/10.1016/S0042-6989(01)00185-7 CrossRefPubMedGoogle Scholar
- 16.Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889. https://doi.org/10.1038/nri1224 CrossRefPubMedGoogle Scholar
- 17.Barnea-Cramer AO, Wang W, Lu S-J, Singh MS, Luo C, Huo H, McClements ME, Barnard AR et al (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 6:29784. https://doi.org/10.1038/srep29784 CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Decembrini S, Koch U, Radtke F, Moulin A, Arsenijevic Y (2014) Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Reports 2:853–865. https://doi.org/10.1016/j.stemcr.2014.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJI et al (2013) Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 31:741–747. https://doi.org/10.1038/nbt.2643 CrossRefPubMedGoogle Scholar
- 20.Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, Goh D, Duran Y et al (2017) Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Reports 9:820–837. https://doi.org/10.1016/j.stemcr.2017.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
- 21.MacLaren RE, Pearson RA, MacNeil A et al (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207. https://doi.org/10.1038/nature05161 CrossRefPubMedGoogle Scholar
- 22.West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M et al (2012) Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 30:1424–1435. https://doi.org/10.1002/stem.1123 CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Niehrs C, Glinka A, Wu W et al (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389:517–519. https://doi.org/10.1038/39092 CrossRefPubMedGoogle Scholar
- 24.Kengaku M, Okamoto H (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121:3121–3130PubMedGoogle Scholar
- 25.Durston AJ, Timmermans JPM, Hage WJ, Hendriks HFJ, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144. https://doi.org/10.1038/340140a0 CrossRefPubMedGoogle Scholar
- 26.Richard-Parpaillon L, Héligon C, Chesnel F, Boujard D, Philpott A (2002) The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev Biol 244:407–417. https://doi.org/10.1006/dbio.2002.0605 CrossRefPubMedGoogle Scholar
- 27.Eivers E, McCarthy K, Glynn C et al (2004) Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo. Int J Dev Biol 48:1131–1140. https://doi.org/10.1387/ijdb.041913ee CrossRefPubMedGoogle Scholar
- 28.Pera EM, Wessely O, Li S-Y, De Robertis EM (2001) Neural and head induction by insulin-like growth factor signals. Dev Cell 1:655–665. https://doi.org/10.1016/S1534-5807(01)00069-7 CrossRefPubMedGoogle Scholar
- 29.Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci 99:2020–2025. https://doi.org/10.1073/pnas.022626999 CrossRefPubMedGoogle Scholar
- 30.Kaewkhaw R, Kaya KD, Brooks M, Homma K, Zou J, Chaitankar V, Rao M, Swaroop A (2015) Transcriptome dynamics of developing photoreceptors in three-dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and gene networks. Stem Cells 33:3504–3518. https://doi.org/10.1002/stem.2122 CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Lu AQ, Popova EY, Barnstable CJ (2017) Activin signals through SMAD2/3 to increase photoreceptor precursor yield during embryonic stem cell differentiation. Stem Cell Reports 9:838–852. https://doi.org/10.1016/j.stemcr.2017.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Hirano M, Yamamoto A, Yoshimura N, Tokunaga T, Motohashi T, Ishizaki K, Yoshida H, Okazaki K et al (2003) Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn 228:664–671. https://doi.org/10.1002/dvdy.10425 CrossRefPubMedGoogle Scholar
- 33.Zhao X, Liu J, Ahmad I (2002) Differentiation of embryonic stem cells into retinal neurons. Biochem Biophys Res Commun 297:177–184. https://doi.org/10.1016/S0006-291X(02)02126-5 CrossRefPubMedGoogle Scholar
- 34.Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y et al (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 102:11331–11336. https://doi.org/10.1073/pnas.0500010102 CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774. https://doi.org/10.1073/pnas.0601990103 CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Lamba DA, Reh TA, A M et al (2011) Microarray characterization of human embryonic stem cell–derived retinal cultures. Invest Ophthalmol Vis Sci 52:4897–4906. https://doi.org/10.1167/iovs.10-6504 CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79. https://doi.org/10.1016/j.stem.2008.10.015 CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763. https://doi.org/10.1371/journal.pone.0008763 CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Ringuette R, Wang Y, Atkins M, Mears AJ, Yan K, Wallace VA (2014) Combinatorial hedgehog and mitogen signaling promotes the in vitro expansion but not retinal differentiation potential of retinal progenitor cells. Invest Ophthalmol Vis Sci 55:43–54. https://doi.org/10.1167/iovs.13-12592 CrossRefPubMedGoogle Scholar
- 40.Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA (2009) Progenitor cell proliferation in the retina is dependent on notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol 184:101–112. https://doi.org/10.1083/jcb.200805155 CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Nelson BR, Gumuscu B, Hartman BH, Reh TA (2006) Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev Neurosci 28:128–141. https://doi.org/10.1159/000090759 CrossRefPubMedGoogle Scholar
- 42.Zhang SS-M, Wei J, Qin H, Zhang L, Xie B, Hui P, Deisseroth A, Barnstable CJ et al (2004) STAT3-mediated signaling in the determination of rod photoreceptor cell fate in mouse retina. Invest Ophthalmol Vis Sci 45:2407. https://doi.org/10.1167/iovs.04-0003 CrossRefPubMedGoogle Scholar
- 43.Pinzon-Guzman C, Zhang SS-M, Barnstable CJ (2011) Specific protein kinase C isoforms are required for rod photoreceptor differentiation. J Neurosci 31:18606–18617. https://doi.org/10.1523/JNEUROSCI.2578-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Jadhav AP, Mason HA, Cepko CL (2006) Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133:913–923. https://doi.org/10.1242/dev.02245 CrossRefPubMedGoogle Scholar
- 45.Do Rhee K, Goureau O, Chen S, Yang X-J (2004) Cytokine-induced activation of signal transducer and activator of transcription in photoreceptor precursors regulates rod differentiation in the developing mouse retina. J Neurosci 24:9779–9788. https://doi.org/10.1523/JNEUROSCI.1785-04.2004 CrossRefPubMedGoogle Scholar
- 46.Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224. https://doi.org/10.1038/nbt1384 CrossRefPubMedGoogle Scholar
- 47.Völkner M, Zschätzsch M, Rostovskaya M, Overall RW, Busskamp V, Anastassiadis K, Karl MO (2016) Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports 6:525–538. https://doi.org/10.1016/j.stemcr.2016.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, Nandrot EF, Sahel JA et al (2014) From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A 111:8518–8523. https://doi.org/10.1073/pnas.1324212111 CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. https://doi.org/10.1016/j.stem.2012.05.009 CrossRefPubMedGoogle Scholar
- 50.Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nat Cell Biol 6:547–554. https://doi.org/10.1038/ncb1138 CrossRefPubMedGoogle Scholar
- 51.Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N, Gotoh Y (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:2553–2563. https://doi.org/10.1242/dev.02419 CrossRefPubMedGoogle Scholar
- 52.Zhang SS-M, Wei J, Li C, Barnstable CJ, Fu XY (2003) Expression and activation of STAT proteins during mouse retina development. Exp Eye Res 76:421–431. https://doi.org/10.1016/S0014-4835(03)00002-2 CrossRefPubMedGoogle Scholar
- 53.Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131. https://doi.org/10.1016/j.neulet.2009.04.035 CrossRefPubMedGoogle Scholar
- 54.Swaroop A, Kim D, Forrest D (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 11:563–576. https://doi.org/10.1038/nrn2880 CrossRefPubMedGoogle Scholar
- 55.Yang X-J (2004) Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin Cell Dev Biol 15:91–103. https://doi.org/10.1016/j.semcdb.2003.09.004 CrossRefPubMedGoogle Scholar
- 56.Fuhrmann S, Levine EM, Reh TA (2000) Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 127:4599–4609PubMedGoogle Scholar
- 57.Cavodeassi F, Carreira-Barbosa F, Young RM, Concha ML, Allende ML, Houart C, Tada M, Wilson SW (2005) Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/β-catenin pathway. Neuron 47:43–56. https://doi.org/10.1016/j.neuron.2005.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Hyer J, Kuhlman J, Afif E, Mikawa T (2003) Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev Biol 259:351–363. https://doi.org/10.1016/S0012-1606(03)00205-7 CrossRefPubMedGoogle Scholar
- 59.Singh RK, Mallela RK, Cornuet PK, Reifler AN, Chervenak AP, West MD, Wong KY, Nasonkin IO (2015) Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells Dev 24:2778–2795. https://doi.org/10.1089/scd.2015.0144 CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci 106:16698–16703. https://doi.org/10.1073/pnas.0905245106 CrossRefPubMedGoogle Scholar
- 61.Boucherie C, Mukherjee S, Henckaerts E, Thrasher AJ, Sowden JC, Ali RR (2013) Brief report: Self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors. Stem Cells 31:408–414. https://doi.org/10.1002/stem.1268 CrossRefPubMedGoogle Scholar
- 62.Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. https://doi.org/10.1038/nature09941 CrossRefPubMedGoogle Scholar
- 63.Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452. https://doi.org/10.1016/j.cell.2010.12.032 CrossRefPubMedPubMedCentralGoogle Scholar
- 64.Sun C, Zhang J, Zheng D, Wang J, Yang H, Zhang X (2018) Transcriptome variations among human embryonic stem cell lines are associated with their differentiation propensity. PLoS One 13:e0192625. https://doi.org/10.1371/journal.pone.0192625 CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315. https://doi.org/10.1038/nbt1383 CrossRefPubMedGoogle Scholar
- 66.Wang L, Hiler D, Xu B, AlDiri I, Chen X, Zhou X, Griffiths L, Valentine M et al (2018) Retinal cell type DNA methylation and histone modifications predict reprogramming efficiency and retinogenesis in 3D organoid cultures. Cell Rep 22:2601–2614. https://doi.org/10.1016/j.celrep.2018.01.075 CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, Xu B, Johnson D et al (2015) Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell 17:101–115. https://doi.org/10.1016/j.stem.2015.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Akagawa K, Hicks D, Barnstable CJ (1987) Histiotypic organization and cell differentiation in rat retinal reaggregate cultures. Brain Res 437:298–308. https://doi.org/10.1016/0006-8993(87)91644-1 CrossRefPubMedGoogle Scholar
- 69.Layer PG, Rothermel A, Willbold E (2001) From stem cells towards neural layers: a lesson from re-aggregated embryonic retinal cells. Neuroreport 12:A39–A46. https://doi.org/10.1097/00001756-200105250-00001 CrossRefPubMedGoogle Scholar
- 70.Sheffield JB, Moscona AA (1970) Electron microscopic analysis of aggregation of embryonic cells: the structure and differentiation of aggregates of neural retina cells. Dev Biol 23:36–61. https://doi.org/10.1016/S0012-1606(70)80006-9 CrossRefPubMedGoogle Scholar
- 71.Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532. https://doi.org/10.1016/j.stem.2008.09.002 CrossRefPubMedGoogle Scholar
- 72.Eiraku M, Sasai Y (2012) Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7:69–79. https://doi.org/10.1038/nprot.2011.429 CrossRefGoogle Scholar
- 73.Lu AQ, Barnstable CJ (2018) Generation of photoreceptor precursors from mouse embryonic stem cells. Stem Cell Rev 14:247–261. https://doi.org/10.1007/s12015-017-9773-x CrossRefPubMedGoogle Scholar
- 74.Chen HY, Kaya KD, Dong L, Swaroop A (2016) Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation. Mol Vis 22:1077–1094PubMedPubMedCentralGoogle Scholar
- 75.Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A, Park TS et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047. https://doi.org/10.1038/ncomms5047 CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Wahlin KJ, Maruotti JA, Sripathi SR, Ball J, Angueyra JM, Kim C, Grebe R, Li W et al (2017) Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep 7:766. https://doi.org/10.1038/s41598-017-00774-9 CrossRefPubMedPubMedCentralGoogle Scholar
- 77.Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032 CrossRefPubMedPubMedCentralGoogle Scholar
- 78.DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, Morgan NY, Pohida T et al (2018) Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-Wall vessel bioreactors. Stem Cell Reports 10:300–313. https://doi.org/10.1016/j.stemcr.2017.11.001 CrossRefPubMedGoogle Scholar
- 79.Zhou S, Flamier A, Abdouh M, Tétreault N, Barabino A, Wadhwa S, Bernier G (2015) Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 142:3294–3306. https://doi.org/10.1242/dev.125385 CrossRefPubMedGoogle Scholar
- 80.Arai E, Parmar VM, Sahu B, Perusek L, Parmar T, Maeda A (2017) Docosahexaenoic acid promotes differentiation of photoreceptor cells in three-dimensional neural retinas. Neurosci Res 123:1–7. https://doi.org/10.1016/j.neures.2017.04.006 CrossRefPubMedGoogle Scholar
- 81.Hicks D, Barnstable CJ (1986) Lectin and antibody labelling of developing rat photoreceptor cells: An electron microscope immunocytochemical study. J Neurocytol 15:219–230. https://doi.org/10.1007/BF01611658 CrossRefPubMedGoogle Scholar
- 82.Sparrow JR, Hicks D, Barnstable CJ (1990) Cell commitment and differentiation in explants of embryonic rat neural retina. Comparison with the developmental potential of dissociated retina. Dev Brain Res 51:69–84. https://doi.org/10.1016/0165-3806(90)90259-2 CrossRefGoogle Scholar
- 83.Wang X, Nookala S, Narayanan C, Giorgianni F, Beranova-Giorgianni S, Mccollum G, Gerling I, Penn JS et al (2009) Proteomic analysis of the retina: Removal of RPE alters outer segment assembly and retinal protein expression. Glia 57:380–392. https://doi.org/10.1002/glia.20765 CrossRefPubMedPubMedCentralGoogle Scholar
- 84.Stiemke MM, Landers RA, Al-Ubaidi MR et al (1994) Photoreceptor outer segment development in Xenopus laevis: influence of the pigment epithelium. Dev Biol 162:169–180. https://doi.org/10.1006/dbio.1994.1076 CrossRefPubMedGoogle Scholar
- 85.Jablonski MM, Tombran-Tink J, Mrazek DA, Iannaccone A (2000) Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal. J Neurosci 20:7149–7157. https://doi.org/10.1523/JNEUROSCI.20-19-07149.2000 CrossRefPubMedGoogle Scholar
- 86.Lupo G, Novorol C, Smith JR, Vallier L, Miranda E, Alexander M, Biagioni S, Pedersen RA et al (2013) Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures. Open Biol 3:120167–120167. https://doi.org/10.1098/rsob.120167 CrossRefPubMedPubMedCentralGoogle Scholar
- 87.Bertacchi M, Lupo G, Pandolfini L, Casarosa S, D’Onofrio M, Pedersen RA, Harris WA, Cremisi F (2015) Activin/nodal signaling supports retinal progenitor specification in a narrow time window during pluripotent stem cell neuralization. Stem Cell Reports 5:532–545. https://doi.org/10.1016/j.stemcr.2015.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
- 88.La Torre A, Hoshino A, Cavanaugh C et al (2015) The GIPC1-Akt1 pathway is required for the specification of the eye field in mouse embryonic stem cells. Stem Cells 33:2674–2685. https://doi.org/10.1002/stem.2062 CrossRefPubMedPubMedCentralGoogle Scholar
- 89.Chang K-C, Hertz J, Zhang X, Jin XL, Shaw P, Derosa BA, Li JY, Venugopalan P et al (2017) Novel regulatory mechanisms for the SoxC transcriptional network required for visual pathway development. J Neurosci 37:4967–4981. https://doi.org/10.1523/JNEUROSCI.3430-13.2017 CrossRefPubMedPubMedCentralGoogle Scholar
- 90.Hendrickson A, Possin D, Vajzovic L, Toth CA (2012) Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol 154:767–778.e2. https://doi.org/10.1016/j.ajo.2012.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
- 91.Hendrickson A (2016) Development of retinal layers in prenatal human retina. Am J Ophthalmol 161:29–35.e1. https://doi.org/10.1016/j.ajo.2015.09.023 CrossRefPubMedGoogle Scholar
- 92.Mellough CB, Collin J, Khazim M et al (2015) IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells 33:2416–2430. https://doi.org/10.1002/stem.2023 CrossRefPubMedPubMedCentralGoogle Scholar
- 93.Jensen AM, Wallace VA (1997) Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124:363–371PubMedGoogle Scholar
- 94.de Almeida-Pereira L, Repossi MG, Magalhães CF, Azevedo RF, Corrêa-Velloso JC, Ulrich H, Ventura ALM, Fragel-Madeira L (2018) P2Y12 but not P2Y13 purinergic receptor controls postnatal rat Retinogenesis in vivo. Mol Neurobiol 55:8612–8624. https://doi.org/10.1007/s12035-018-1012-1 CrossRefPubMedGoogle Scholar
- 95.Popova EY, Pinzon-Guzman C, Salzberg AC, Zhang SSM, Barnstable CJ (2016) LSD1-mediated demethylation of H3K4me2 is required for the transition from late progenitor to differentiated mouse rod photoreceptor. Mol Neurobiol 53:4563–4581. https://doi.org/10.1007/s12035-015-9395-8 CrossRefPubMedGoogle Scholar
- 96.Sreekanth S, Rasheed VA, Soundararajan L, Antony J, Saikia M, Sivakumar KC, Das AV (2017) miR cluster 143/145 directly targets Nrl and regulates rod photoreceptor development. Mol Neurobiol 54:8033–8049. https://doi.org/10.1007/s12035-016-0237-0 CrossRefPubMedGoogle Scholar
- 97.Khalili S, Ballios BG, Belair-Hickey J, Donaldson L, Liu J, Coles BLK, Grisé KN, Baakdhah T et al (2018) Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells. Stem Cell Res 33:215–227. https://doi.org/10.1016/J.SCR.2018.11.005 CrossRefPubMedGoogle Scholar
- 98.Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K et al (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:12538–12543. https://doi.org/10.1073/pnas.1209979109 CrossRefPubMedPubMedCentralGoogle Scholar
- 99.Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA et al (2012) Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492:438–442. https://doi.org/10.1038/nature11629 CrossRefPubMedPubMedCentralGoogle Scholar
- 100.Koso H, Minami C, Tabata Y, Inoue M, Sasaki E, Satoh S, Watanabe S (2009) CD73, a novel cell surface antigen that characterizes retinal photoreceptor precursor cells. Invest Ophthalmol Vis Sci 50:5411. https://doi.org/10.1167/iovs.08-3246 CrossRefPubMedGoogle Scholar
- 101.Lakowski J, Gonzalez-Cordero A, West EL, Han YT, Welby E, Naeem A, Blackford SJI, Bainbridge JWB et al (2015) Transplantation of photoreceptor precursors isolated via a cell surface biomarker panel from embryonic stem cell-derived self-forming retina. Stem Cells 33:2469–2482. https://doi.org/10.1002/stem.2051 CrossRefPubMedPubMedCentralGoogle Scholar
- 102.Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. https://doi.org/10.1038/nrc3034 CrossRefPubMedGoogle Scholar
- 103.Chaudhry GR, Fecek C, Lai MM, Wu WC, Chang M, Vasquez A, Pasierb M, Trese MT (2009) Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev 18:247–258. https://doi.org/10.1089/scd.2008.0057 CrossRefPubMedGoogle Scholar
- 104.Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R (2009) Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27:2126–2135. https://doi.org/10.1002/stem.149 CrossRefPubMedGoogle Scholar
- 105.Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 385:509–516. https://doi.org/10.1016/S0140-6736(14)61376-3 CrossRefPubMedGoogle Scholar
- 106.Vugler A, Carr A-J, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M' et al (2008) Elucidating the phenomenon of HESC-derived RPE: Anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 214:347–361. https://doi.org/10.1016/j.expneurol.2008.09.007 CrossRefPubMedGoogle Scholar
- 107.Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J, Kaneko J, Sho J et al (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports 8:69–83. https://doi.org/10.1016/j.stemcr.2016.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
- 108.Hambright D, Park K-Y, Brooks M, McKay R, Swaroop A, Nasonkin IO (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936PubMedPubMedCentralGoogle Scholar
- 109.Tucker BA, Park I-H, Qi SD, Klassen HJ, Jiang C, Yao J, Redenti S, Daley GQ et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6:e18992. https://doi.org/10.1371/journal.pone.0018992 CrossRefPubMedPubMedCentralGoogle Scholar
- 110.Santos-Ferreira TF, Borsch O, Ader M (2016) Rebuilding the missing part—a review on photoreceptor transplantation. Front Syst Neurosci 10:105. https://doi.org/10.3389/fnsys.2016.00105 CrossRefPubMedGoogle Scholar
- 111.Canto-Soler V, Flores-Bellver M, Vergara MN (2016) Stem cell sources and their potential for the treatment of retinal degenerations. Invest Ophthalmol Vis Sci 57:ORSFd1–ORSFd9. https://doi.org/10.1167/iovs.16-19127 CrossRefPubMedGoogle Scholar
- 112.Pearson RA (2014) Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv 32:485–491. https://doi.org/10.1016/j.biotechadv.2014.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
- 113.Tang Z, Zhang Y, Wang Y, Zhang D, Shen B, Luo M, Gu P (2017) Progress of stem/progenitor cell-based therapy for retinal degeneration. J Transl Med 15(99). https://doi.org/10.1186/s12967-017-1183-y
- 114.Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA (2015) Stem cell treatment of degenerative eye disease. Stem Cell Res 14:243–257. https://doi.org/10.1016/j.scr.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
- 115.Wright LS, Phillips MJ, Pinilla I, Hei D, Gamm DM (2014) Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale. Exp Eye Res 123:161–172. https://doi.org/10.1016/j.exer.2013.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
- 116.Reynolds J, Lamba DA (2014) Human embryonic stem cell applications for retinal degenerations. Exp Eye Res 123:151–160. https://doi.org/10.1016/j.exer.2013.07.010 CrossRefPubMedGoogle Scholar
- 117.Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, Ali RR, Young M et al (2018) Regenerating eye tissues to preserve and restore vision. Cell Stem Cell 22:834–849. https://doi.org/10.1016/j.stem.2018.05.013 CrossRefPubMedGoogle Scholar
- 118.Markus A, Shamul A, Chemla Y, Farah N, Shaham L, Goldstein RS, Mandel Y (2018) An optimized protocol for generating labeled and transplantable photoreceptor precursors from human embryonic stem cells. Exp Eye Res 180:29–38. https://doi.org/10.1016/j.exer.2018.11.013 CrossRefPubMedGoogle Scholar
- 119.Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, Robinson M, Rosenthal AN et al (2018) Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125:1765–1775. https://doi.org/10.1016/j.ophtha.2018.04.037 CrossRefPubMedPubMedCentralGoogle Scholar
- 120.Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ et al (2012) Restoration of vision after transplantation of photoreceptors. Nature 485:99–103. https://doi.org/10.1038/nature10997 CrossRefPubMedPubMedCentralGoogle Scholar
- 121.Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y, Takahashi M (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2:662–674. https://doi.org/10.1016/j.stemcr.2014.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
- 122.Seiler MJ, Aramant RB (2012) Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 31:661–687. https://doi.org/10.1016/j.preteyeres.2012.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
- 123.Foik AT, Lean GA, Scholl LR, McLelland BT, Mathur A, Aramant RB, Seiler MJ, Lyon DC (2018) Detailed visual cortical responses generated by retinal sheet transplants in rats with severe retinal degeneration. J Neurosci 38:10709–10724. https://doi.org/10.1523/JNEUROSCI.1279-18.2018 CrossRefPubMedGoogle Scholar
- 124.McLelland BT, Lin B, Mathur A et al (2018) Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci 59:2586–2603. https://doi.org/10.1167/iovs.17-23646 CrossRefPubMedPubMedCentralGoogle Scholar
- 125.Iraha S, Tu H-Y, Yamasaki S, Kagawa T, Goto M, Takahashi R, Watanabe T, Sugita S et al (2018) Establishment of Immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Reports 10:1059–1074. https://doi.org/10.1016/j.stemcr.2018.01.032 CrossRefPubMedPubMedCentralGoogle Scholar
- 126.Gust J, Reh TA (2011) Adult donor rod photoreceptors integrate into the mature mouse retina. Invest Ophthalmol Vis Sci 52:5266–5272. https://doi.org/10.1167/iovs.10-6329 CrossRefPubMedPubMedCentralGoogle Scholar