Inhibition of Semaphorin3A Promotes Ocular Dominance Plasticity in the Adult Rat Visual Cortex

  • Elena Maria Boggio
  • Erich M. Ehlert
  • Leonardo Lupori
  • Elizabeth B. Moloney
  • Fred De Winter
  • Craig W. Vander Kooi
  • Laura Baroncelli
  • Vasilis Mecollari
  • Bas Blits
  • James W. Fawcett
  • Joost Verhaagen
  • Tommaso PizzorussoEmail author


Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies revealed a parallel between PNN formation and the closure of the critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. However, the mechanisms through which perineuronal nets modulate plasticity are still poorly understood. Recent work indicated that perineuronal nets may convey molecular signals by binding and storing proteins with important roles in cellular communication. Here we report that semaphorin3A (Sema3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net components, is necessary to dampen ocular dominance plasticity in adult rats. First, we showed that the accumulation of Sema3A in PNNs in the visual cortex correlates with critical period closure, following the same time course of perineuronal nets maturation. Second, the accumulation of Sema3A in perineuronal nets was significantly reduced by rearing animals in the dark in the absence of any visual experience. Finally, we developed and characterized a tool to interfere with Sema3A signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed by the extracellular domain of the endogenous Sema3A receptor (neuropilin1) fused to a human IgG Fc fragment. By using this tool to antagonize Sema3A signaling in the adult rat visual cortex, we found that the specific inhibition of Sema3A promoted ocular dominance plasticity. Thus, Sema3A accumulates in perineuronal nets in an experience-dependent manner and its presence in the mature visual cortex inhibits plasticity.


Visual cortex Critical period Chondroitin sulfate Inhibition 



The first four authors (marked with an asterisk) equally contributed to this study.

Funding Information

This work was supported by the EU 7th Framework program (FP7) Marie Curie actions (AxRegen) 2008–2012 to JV.

Compliance with Ethical Standards

All experiments were carried out in accordance with the European Communities Council Directive of November 24, 1986 (86/609/EEC) and were approved by the Italian Ministry of Health (authorization number 1152/2016-PR).


  1. 1.
    Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251PubMedCrossRefGoogle Scholar
  2. 2.
    Härtig W, Brauer K, Brückner G (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport 3:869–872PubMedCrossRefGoogle Scholar
  3. 3.
    Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501:83–94PubMedCrossRefGoogle Scholar
  4. 4.
    Bukalo O, Schachner M, Dityatev A (2001) Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 104:359–369PubMedCrossRefGoogle Scholar
  5. 5.
    Ye Q, Miao Q-L (2013) Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex. Matrix Biol 32:352–363PubMedCrossRefGoogle Scholar
  6. 6.
    Beurdeley M, Spatazza J, Lee HHC, Sugiyama S, Bernard C, Di Nardo AA et al (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32:9429–9437PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gogolla N, Caroni P, Luthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325:1258–1261PubMedCrossRefGoogle Scholar
  8. 8.
    Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M (2017) Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci 37:1269–1283PubMedCrossRefGoogle Scholar
  9. 9.
    Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, Maffei L (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 103:8517–8522PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sur M, Frost DO, Hockfield S (1988) Expression of a surface-associated antigen on Y-cells in the cat lateral geniculate nucleus is regulated by visual experience. J Neurosci 8:874–882PubMedCrossRefGoogle Scholar
  11. 11.
    Guimarães A, Zaremba S, Hockfield S (1990) Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301. J Neurosci 10:3014–3024PubMedCrossRefGoogle Scholar
  12. 12.
    Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R et al (2007) Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 10:679–681PubMedCrossRefGoogle Scholar
  13. 13.
    de Winter F, Kwok JCF, Fawcett JW, Vo TT, Carulli D, Verhaagen J (2016) The chemorepulsive protein semaphorin 3A and perineuronal net-mediated plasticity. Neural Plast 2016:3679545PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lensjø KK, Christensen AC, Tennøe S, Fyhn M, Hafting T (2017) Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro 4:ENEURO.0379–ENEU16.2017. CrossRefGoogle Scholar
  15. 15.
    Gu Y, Tran T, Murase S, Borrell A, Kirkwood A, Quinlan EM (2016) Neuregulin-dependent regulation of fast-spiking interneuron excitability controls the timing of the critical period. J Neurosci 36:10285–10295PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Miao Q, Yao L, Rasch MJ, Ye Q, Li X, Zhang X (2016) Selective maturation of temporal dynamics of Intracortical excitatory transmission at the critical period onset. Cell Rep 16:1677–1689PubMedCrossRefGoogle Scholar
  17. 17.
    He L-J, Liu N, Cheng T-L, Chen X-J, Li Y-D, Shu Y-S, Qiu ZL, Zhang XH (2014) Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity. Nat Commun 5:5036PubMedCrossRefGoogle Scholar
  18. 18.
    Sun Y, Ikrar T, Davis MF, Gong N, Zheng X, Luo ZD, Lai C, Mei L et al (2016) Neuregulin-1/ErbB4 signaling regulates visual cortical plasticity. Neuron 92:160–173PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tang Y, Stryker MP, Alvarez-Buylla A, Espinosa JS (2014) Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons. Proc Natl Acad Sci U S A 111:18339–18344PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Morishita H, Cabungcal J-H, Chen Y, Do KQ, Hensch TK (2015) Prolonged period of cortical plasticity upon redox dysregulation in fast-spiking interneurons. Biol Psychiatry 78:396–402PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kobayashi Y, Ye Z, Hensch TK (2015) Clock genes control cortical critical period timing. Neuron 86:264–275PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888PubMedCrossRefGoogle Scholar
  23. 23.
    Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, Trachtenberg JT (2013) A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501:543–546PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wang D, Fawcett J (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349:147–160PubMedCrossRefGoogle Scholar
  25. 25.
    Despras G, Bernard C, Perrot A, Cattiaux L, Prochiantz A, Lortat-Jacob H, Mallet JM (2013) Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies. Chemistry 19:531–540PubMedCrossRefGoogle Scholar
  26. 26.
    Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32PubMedCrossRefGoogle Scholar
  27. 27.
    De Wit J, De Winter F, Klooster J, Verhaagen J (2005) Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol Cell Neurosci 29:40–55PubMedCrossRefGoogle Scholar
  28. 28.
    Dick G, Tan CL, Alves JN, Ehlert EME, Miller GM, Hsieh-Wilson LC, Sugahara K, Oosterhof A et al (2013) Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J Biol Chem 288:27384–27395PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vo T, Carulli D, Ehlert EME, Kwok JCF, Dick G, Mecollari V, Moloney EB, Neufeld G et al (2013) The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 56:186–200PubMedCrossRefGoogle Scholar
  30. 30.
    Conrad AH, Zhang Y, Tasheva ES, Conrad GW (2010) Proteomic analysis of potential keratan sulfate, chondroitin sulfate A, and hyaluronic acid molecular interactions. Invest Ophthalmol Vis Sci 51:4500–4515PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC (2011) VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell 22:2766–2776PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS, Ginty DD, Kolodkin AL (2002) Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem 277:18069–18076PubMedCrossRefGoogle Scholar
  33. 33.
    Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138:85–98PubMedCrossRefGoogle Scholar
  34. 34.
    Kapfhammer JP, Xu H, Raper JA (2007) The detection and quantification of growth cone collapsing activities. Nat Protoc 2:2005–2011PubMedCrossRefGoogle Scholar
  35. 35.
    Parker MW, Xu P, Li X, Vander Kooi CW (2012) Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem 287:11082–11089PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Parker MW, Hellman LM, Xu P, Fried MG, Vander Kooi CW (2010) Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry 49:4068–4075PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Parker MW, Vander Kooi CW (2017) Plate-based assay for measuring direct semaphorin-neuropilin interactions. Methods Mol Biol 1493:73–87PubMedCrossRefGoogle Scholar
  38. 38.
    Hermens WT, ter Brake O, Dijkhuizen PA, Sonnemans MA, Grimm D, Kleinschmidt JA et al (1999) Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 10:1885–1891PubMedCrossRefGoogle Scholar
  39. 39.
    Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6:973–985PubMedCrossRefGoogle Scholar
  40. 40.
    Verhaagen J, Hobo B, Ehlert EME, Eggers R, Korecka JA, Hoyng SA et al (2018) Small scale production of recombinant adeno-associated viral vectors for gene delivery to the nervous system. Methods Mol Biol 1715:3–17PubMedCrossRefGoogle Scholar
  41. 41.
    Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Gulf Professional PublishingGoogle Scholar
  42. 42.
    Nasarre C, Koncina E, Labourdette G, Cremel G, Roussel G, Aunis D, Bagnard D (2009) Neuropilin-2 acts as a modulator of Sema3A-dependent glioma cell migration. Cell Adhes Migr 3:383–389CrossRefGoogle Scholar
  43. 43.
    Cariboni A, Davidson K, Rakic S, Maggi R, Parnavelas JG, Ruhrberg C (2011) Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 20:336–344PubMedCrossRefGoogle Scholar
  44. 44.
    Carulli D, Pizzorusso T, Kwok JCF, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa SS et al (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133:2331–2347PubMedCrossRefGoogle Scholar
  45. 45.
    Rowlands D, Lensjø KK, Dinh T, Yang S, Andrews MR, Hafting T, Fyhn M, Fawcett JW et al (2018) Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci 38:10102–10113PubMedCrossRefGoogle Scholar
  46. 46.
    Carcea I, Ma’ayan A, Mesias R, Sepulveda B, Salton SR, Benson DL (2010) Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A. J Neurosci 30:15317–15329PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J et al (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R et al (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31:14051–14066PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG et al (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15:703–712PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Carulli D, Foscarin S, Faralli A, Pajaj E, Rossi F (2013) Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Mol Cell Neurosci 57:10–22PubMedCrossRefGoogle Scholar
  51. 51.
    Wang Q, Chiu S-L, Koropouli E, Hong I, Mitchell S, Easwaran TP, Hamilton NR, Gustina AS et al (2017) Neuropilin-2/PlexinA3 receptors associate with GluA1 and mediate Sema3F-dependent homeostatic scaling in cortical neurons. Neuron 96:1084–1098.e7PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Orr BO, Fetter RD, Davis GW (2017) Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity. Nature 550:109–113PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tran TS, Rubio ME, Clem RL, Johnson D, Case L, Tessier-Lavigne M, Huganir RL, Ginty DD et al (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:1065–1069PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H, Hirai H, Aiba A, Watanabe M et al (2014) Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344:1020–1023PubMedCrossRefGoogle Scholar
  55. 55.
    Sahay A, Kim C-H, Sepkuty JP, Cho E, Huganir RL, Ginty DD et al (2005) Secreted semaphorins modulate synaptic transmission in the adult hippocampus. J Neurosci 25:3613–3620PubMedCrossRefGoogle Scholar
  56. 56.
    Bouzioukh F, Daoudal G, Falk J, Debanne D, Rougon G, Castellani V (2006) Semaphorin3A regulates synaptic function of differentiated hippocampal neurons. Eur J Neurosci 23:2247–2254PubMedCrossRefGoogle Scholar
  57. 57.
    Chen H, Chédotal A, He Z, Goodman CS, Tessier-Lavigne M (1997) Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19:547–559PubMedCrossRefGoogle Scholar
  58. 58.
    Takahashi T, Nakamura F, Jin Z, Kalb RG, Strittmatter SM (1998) Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat Neurosci 1:487–493PubMedCrossRefGoogle Scholar
  59. 59.
    Chen H, He Z, Bagri A, Tessier-Lavigne M (1998) Semaphorin–neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21:1283–1290PubMedCrossRefGoogle Scholar
  60. 60.
    Corredor M, Bonet R, Moure A, Domingo C, Bujons J, Alfonso I, Pérez Y, Messeguer À (2016) Cationic peptides and peptidomimetics bind glycosaminoglycans as potential Sema3A pathway inhibitors. Biophys J 110:1291–1303PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elena Maria Boggio
    • 1
  • Erich M. Ehlert
    • 2
  • Leonardo Lupori
    • 3
  • Elizabeth B. Moloney
    • 2
  • Fred De Winter
    • 2
  • Craig W. Vander Kooi
    • 4
  • Laura Baroncelli
    • 1
    • 5
  • Vasilis Mecollari
    • 2
  • Bas Blits
    • 6
  • James W. Fawcett
    • 7
  • Joost Verhaagen
    • 2
    • 8
  • Tommaso Pizzorusso
    • 1
    • 3
    • 9
    Email author
  1. 1.Institute of NeuroscienceNational Research Council CNRPisaItaly
  2. 2.Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdamThe Netherlands
  3. 3.BIO@SNS labPisaItaly
  4. 4.Department of Molecular and Cellular Biochemistry and Center for Structural BiologyUniversity of KentuckyLexingtonUSA
  5. 5.Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
  6. 6.UniQureAmsterdamThe Netherlands
  7. 7.John van Geest Centre for Brain RepairCambridgeUK
  8. 8.Center for Neurogenomics and Cognitive ResearchVrije Universiteit AmsterdamAmsterdamThe Netherlands
  9. 9.Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA University of FlorenceFlorenceItaly

Personalised recommendations