Advertisement

Targeting CB1 and GPR55 Endocannabinoid Receptors as a Potential Neuroprotective Approach for Parkinson’s Disease

  • Eva Martínez-PinillaEmail author
  • David Aguinaga
  • Gemma Navarro
  • Alberto J. Rico
  • Julen Oyarzábal
  • Juan A. Sánchez-Arias
  • José Luis LanciegoEmail author
  • Rafael FrancoEmail author
Article

Abstract

Cannabinoid CB1 receptors (CB1R) and the GPR55 receptor are expressed in striatum and are potential targets in the therapy of Parkinson’s disease (PD), one of the most prevalent neurodegenerative diseases in developed countries. The aim of this paper was to address the potential of ligands acting on those receptors to prevent the action of a neurotoxic agent, MPP+, that specifically affects neurons of the substantia nigra due to uptake via the dopamine DAT transporter. The SH-SY5Y cell line model was used as it expresses DAT and, therefore, is able to uptake MPP+ that inhibits complex I of the respiratory mitochondrial chain and leads to cell death. Cells were transfected with cDNAs coding for either or both receptors. Receptors in cotransfected cells formed heteromers as indicated by the in situ proximity ligation assays. Cell viability was assayed by oxygen rate consumption and by the bromide-based MTT method. Assays of neuroprotection using two concentrations of MPP+ showed that cells expressing receptor heteromers were more resistant to the toxic effect. After correction by effects on cell proliferation, the CB1R antagonist, SR141716, afforded an almost full neuroprotection in CB1R-expressing cells even when a selective agonist, ACEA, was present. In contrast, SR141716 was not effective in cells expressing CB1/GPR55 heteromeric complexes. In addition, an agonist of GPR55, CID1792197, did not enhance neuroprotection in GPR55-expressing cells. These results show that neurons expressing heteromers are more resistant to cell death but question the real usefulness of CB1R, GPR55, and their heteromers as targets to afford PD-related neuroprotection.

Keywords

Cannabinoid receptors GPCRs Neurodegenerative diseases Neuroprotection MPP+ 

Notes

Funding

This study was funded by Fundació La Marató de TV3 (Grant Numbers 20141330 and 20141331).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

Supplementary material

12035_2019_1495_Fig9_ESM.png (333 kb)
Supplementary Fig. 1

MTT reduction assay in SH-SY5Y (a), SH-SY5Y-CB1R (b) and SH-SY5Y-GPR55 (c) cells treated with MPP+ (1-2 mM) for 48 h. Cell damage is represented as the percentage of MTT reduction versus control. Data are the mean ± SEM of five independent experiments. Significant differences were analyzed by a one-way ANOVA followed by post-hoc Tukey’s test. ***p < 0.001 compared with control. (PNG 332 kb)

12035_2019_1495_MOESM1_ESM.tif (68 kb)
High resolution image (TIF 68 kb)
12035_2019_1495_Fig10_ESM.png (243 kb)
Supplementary Fig. 2

MTT reduction assay in SH-SY5Y (a) and SH-SY5Y-CB1R/GPR55 (b) cells treated with MPP+ (1-2 mM) for 48 h. Cell damage is represented as the percentage of MTT reduction versus control. Data are the mean ± SEM of five independent experiments. Significant differences were analyzed by a one-way ANOVA followed by post-hoc Tukey’s test. ***p < 0.001 compared with control. (PNG 243 kb)

12035_2019_1495_MOESM2_ESM.tif (57 kb)
High resolution image (TIF 57 kb)

References

  1. 1.
    Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2:a009621.  https://doi.org/10.1101/cshperspect.a009621 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Winkler C, Kirik D, Björklund A, Cenci MA (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186.  https://doi.org/10.1006/nbdi.2002.0499 CrossRefPubMedGoogle Scholar
  3. 3.
    Hornykiewicz O (2006) The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transm Suppl 70:9–15.  https://doi.org/10.1007/978-3-211-45295-0_3 CrossRefGoogle Scholar
  4. 4.
    Olanow CW, Agid Y, Mizuno Y, Albanese A, Bonucelli U, Damier P, de Yebenes J, Gershanik O et al (2004) Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord 19:997–1005.  https://doi.org/10.1002/mds.20243
  5. 5.
    Guridi J, Rodriguez-Rojas R, Carmona-Abellan M et al (2018) History and the future challenges of the subthalamic nucleus as surgical target. Mov Disord In the Pre 33:1540–1550CrossRefGoogle Scholar
  6. 6.
    Goldman JG, Vernaleo BA, Camicioli R, Dahodwala N, Dobkin RD, Ellis T, Galvin JE, Marras C et al (2018) Cognitive impairment in Parkinson’s disease: A report from a multidisciplinary symposium on unmet needs and future directions to maintain cognitive health. NPJ Park Dis 4:1–11.  https://doi.org/10.1038/s41531-018-0055-3
  7. 7.
    Le W, Sayana P, Jankovic J (2014) Animal models of Parkinson’s disease: a gateway to therapeutics? Neurotherapeutics 11:92–110.  https://doi.org/10.1007/s13311-013-0234-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Gubellini P, Kachidian P (2015) Animal models of Parkinson’s disease: an updated overview. Rev Neurol (Paris) 171:750–761.  https://doi.org/10.1016/j.neurol.2015.07.011 CrossRefGoogle Scholar
  9. 9.
    Cardoso SM, Esteves AR, Arduíno DM (2012) Mitochondrial metabolic control of microtubule dynamics impairs the autophagic pathway in Parkinson’s disease. Neurodegener Dis 10:38–40.  https://doi.org/10.1159/000332601 CrossRefPubMedGoogle Scholar
  10. 10.
    Chaturvedi RK, Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29.  https://doi.org/10.1016/j.freeradbiomed.2013.03.018 CrossRefPubMedGoogle Scholar
  11. 11.
    Do JH (2014) Neurotoxin-induced pathway perturbation in human neuroblastoma SH-EP cells. Mol Cells 37:672–684.  https://doi.org/10.14348/molcells.2014.0173 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J 123:1086–1092.  https://doi.org/10.3760/cma.j.issn.0366-6999.2010.08.021 CrossRefPubMedGoogle Scholar
  13. 13.
    Fernández-Ruiz J, Romero J, Ramos JA (2015) Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, and others. Handb Exp Pharmacol 231:233–259.  https://doi.org/10.1007/978-3-319-20825-1_8 CrossRefPubMedGoogle Scholar
  14. 14.
    Fernández-Ruiz J, Gómez-Ruiz M, García C, et al (2017) Modeling neurodegenerative disorders for developing cannabinoid-based neuroprotective therapies. Methods Enzymol 175–198.  https://doi.org/10.1016/bs.mie.2017.06.021
  15. 15.
    Barrero FJ, Ampuero I, Morales B, Vives F, de Dios Luna del Castillo J, Hoenicka J, García Yébenes J (2005) Depression in Parkinson’s disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). Pharmacogenomics J 5:135–141.  https://doi.org/10.1038/sj.tpj.6500301 CrossRefPubMedGoogle Scholar
  16. 16.
    Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540:602–606.  https://doi.org/10.1038/nature20613 CrossRefGoogle Scholar
  17. 17.
    Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A et al (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468–471.  https://doi.org/10.1038/nature23272
  18. 18.
    Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167:750–762.e14.  https://doi.org/10.1016/j.cell.2016.10.004
  19. 19.
    Pertwee RG (2008) The diverse CB 1 and CB 2 receptor pharmacology of three plant cannabinoids: Δ 9-tetrahydrocannabinol, cannabidiol and Δ 9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215.  https://doi.org/10.1038/sj.bjp.0707442 CrossRefPubMedGoogle Scholar
  20. 20.
    Sam AH, Salem V, Ghatei MA (2011) Rimonabant: from RIO to ban. J Obes 2011:432607.  https://doi.org/10.1155/2011/432607 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kotsikorou E, Madrigal KE, Hurst DP, Sharir H, Lynch DL, Heynen-Genel S, Milan LB, Chung TDY et al (2011) Identification of the GPR55 agonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry 50:5633–5647.  https://doi.org/10.1021/bi200010k
  22. 22.
    Andradas C, Caffarel MM, Pérez-Gómez E, Salazar M, Lorente M, Velasco G, Guzmán M, Sánchez C (2011) The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene 30:245–252.  https://doi.org/10.1038/onc.2010.402 CrossRefPubMedGoogle Scholar
  23. 23.
    Drzazga A, Sowinska A, Krzeminska A, Rytczak P, Koziolkiewicz M, Gendaszewska-Darmach E (2017) Lysophosphatidylcholine elicits intracellular calcium signaling in a GPR55-dependent manner. Biochem Biophys Res Commun 489:242–247.  https://doi.org/10.1016/j.bbrc.2017.05.145 CrossRefPubMedGoogle Scholar
  24. 24.
    Anavi-Goffer S, Baillie G, Irving AJ, Gertsch J, Greig IR, Pertwee RG, Ross RA (2012) Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem 287:91–104.  https://doi.org/10.1074/jbc.M111.296020
  25. 25.
    Falasca M, Ferro R (2016) Role of the lysophosphatidylinositol/GPR55 axis in cancer. Adv Biol Regul 60:88–93.  https://doi.org/10.1016/j.jbior.2015.10.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Gómez-Cañas M, Morales P, García-Toscano L, Navarrete C, Muñoz E, Jagerovic N, Fernández-Ruiz J, García-Arencibia M et al (2016) Biological characterization of PM226, a chromenoisoxazole, as a selective CB2 receptor agonist with neuroprotective profile. Pharmacol Res 110:205–215.  https://doi.org/10.1016/j.phrs.2016.03.021
  27. 27.
    Celorrio M, Rojo-Bustamante E, Fernández-Suárez D, Sáez E, Estella-Hermoso de Mendoza A, Müller CE, Ramírez MJ, Oyarzábal J et al (2017) GPR55: a therapeutic target for Parkinson’s disease? Neuropharmacology 125:319–332.  https://doi.org/10.1016/j.neuropharm.2017.08.017 CrossRefPubMedGoogle Scholar
  28. 28.
    García-Gutiérrez MS, Navarrete F, Navarro G, Reyes-Resina I, Franco R, Lanciego JL, Giner S, Manzanares J (2018) Alterations in gene and protein expression of cannabinoid CB2 and GPR55 receptors in the dorsolateral prefrontal cortex of suicide victims. Neurotherapeutics 15:796–806.  https://doi.org/10.1007/s13311-018-0610-y CrossRefPubMedGoogle Scholar
  29. 29.
    Martínez-Pinilla E, Reyes-Resina I, Oñatibia-Astibia A, Zamarbide M, Ricobaraza A, Navarro G, Moreno E, Dopeso-Reyes IG et al (2014) CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol 261:44–52.  https://doi.org/10.1016/j.expneurol.2014.06.017
  30. 30.
    Henstridge CM, Balenga NA, Schröder R et al (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160:604–614.  https://doi.org/10.1111/j.1476-5381.2009.00625.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kargl J, Balenga N, Parzmair GP, Brown AJ, Heinemann A, Waldhoer M (2012) The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem 287:44234–44248.  https://doi.org/10.1074/jbc.M112.364109
  32. 32.
    Hynes J, Floyd S, Soini AE, O'Connor R, Papkovsky DB (2003) Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J Biomol Screen 8:264–272.  https://doi.org/10.1177/1087057103008003004 CrossRefPubMedGoogle Scholar
  33. 33.
    Hebert-Chatelain E, Reguero L, Puente N, Lutz B, Chaouloff F, Rossignol R, Piazza PV, Benard G et al (2014) Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor. Mol Metab 3:495–504.  https://doi.org/10.1016/j.molmet.2014.03.007
  34. 34.
    Gutiérrez-Rodríguez A, Bonilla-Del Río I, Puente N et al (2018) Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia 66:1417–1431.  https://doi.org/10.1002/glia.23314 CrossRefPubMedGoogle Scholar
  35. 35.
    Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930.  https://doi.org/10.1038/nm.f.1869 CrossRefPubMedGoogle Scholar
  36. 36.
    H-CC L, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525.  https://doi.org/10.1016/j.biopsych.2015.07.028 CrossRefGoogle Scholar
  37. 37.
    Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 299–325.  https://doi.org/10.1007/978-3-319-20825-1_3
  38. 38.
    Sierra S, Luquin N, Rico AJ, Gómez-Bautista V, Roda E, Dopeso-Reyes IG, Vázquez A, Martínez-Pinilla E et al (2015) Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct 220:2721–2738.  https://doi.org/10.1007/s00429-014-0823-8
  39. 39.
    Navarro G, Morales P, Rodríguez-Cueto C, Fernández-Ruiz J, Jagerovic N, Franco R (2016) Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front Neurosci 10:406.  https://doi.org/10.3389/fnins.2016.00406
  40. 40.
    Hurst K, Badgley C, Ellsworth T, Bell S, Friend L, Prince B, Welch J, Cowan Z et al (2017) A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus 27:985–998.  https://doi.org/10.1002/hipo.22747
  41. 41.
    Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110:5193–5198.  https://doi.org/10.1073/pnas.1211204110 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Marichal-Cancino B, Fajardo-Valdéz A, Ruiz-Contreras A et al (2016) Advances in the physiology of GPR55 in the central nervous system. Curr Neuropharmacol 14:1–1.  https://doi.org/10.2174/1570159X14666160729155441 CrossRefGoogle Scholar
  43. 43.
    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805.  https://doi.org/10.1111/bph.13250 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    van der Stelt M, Veldhuis WB, Maccarrone M, Bär PR, Nicolay K, Veldink GA, di Marzo V, Vliegenthart JFG (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26:317–346.  https://doi.org/10.1385/MN:26:2-3:317 CrossRefPubMedGoogle Scholar
  45. 45.
    Molina-Holgado E, Vela JM, Arévalo-Martín A et al (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22:9742–9753CrossRefGoogle Scholar
  46. 46.
    Subbanna S, Shivakumar M, Psychoyos D, Xie S, Basavarajappa BS (2013) Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. J Neurosci 33:6350–6366.  https://doi.org/10.1523/JNEUROSCI.3786-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S (2017) Endocannabinoid system in neurodegenerative disorders. J Neurochem 142:624–648.  https://doi.org/10.1111/jnc.14098 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Solimini R, Rotolo MC, Pichini S, Pacifici R (2017) Neurological disorders in medical use of cannabis: an update. CNS Neurol Disord - Drug Targets 16:527–533.  https://doi.org/10.2174/1871527316666170413105421 CrossRefPubMedGoogle Scholar
  49. 49.
    Peres FF, Lima AC, Hallak JEC, Crippa JA, Silva RH, Abílio VC (2018) Cannabidiol as a promising strategy to treat and prevent movement disorders? Front Pharmacol 9:482.  https://doi.org/10.3389/fphar.2018.00482 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hill JD, Zuluaga-Ramirez V, Gajghate S, Winfield M, Persidsky Y (2018) Activation of GPR55 increases neural stem cell proliferation and promotes early adult hippocampal neurogenesis. Br J Pharmacol 175:3407–3421.  https://doi.org/10.1111/bph.14387 CrossRefGoogle Scholar
  51. 51.
    Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I, Delamarre A et al (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci 15:558–564.  https://doi.org/10.1038/nn.3053
  52. 52.
    Valenzuela R, Costa-Besada MAMA, Iglesias-Gonzalez J et al (2016) Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis 7:e2427.  https://doi.org/10.1038/cddis.2016.327 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Walsh SK, Hepburn CY, Keown O, Åstrand A, Lindblom A, Ryberg E, Hjorth S, Leslie SJ et al (2015) Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach. Pharmacol Res Perspect 3:e00143.  https://doi.org/10.1002/prp2.143

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Morfología y Biología Celular, Facultad de MedicinaUniversidad de OviedoOviedoSpain
  2. 2.Instituto de Neurociencias del Principado de Asturias (INEUROPA)OviedoSpain
  3. 3.Instituto de Salud del Principado de Asturias (ISPA)OviedoSpain
  4. 4.Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  5. 5.Institut de Biomedicina de la Universitat de Barcelona. IBUBBarcelonaSpain
  6. 6.Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
  7. 7.Department of Biochemistry and Physiology, Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain
  8. 8.Neurosciences Division, Centre for Applied Medical Research, CIMAUniversity of NavarraPamplonaSpain
  9. 9.Instituto de Investigaciones Sanitarias de Navarra (IdiSNA)PamplonaSpain
  10. 10.Small Molecule Discovery Platform, Molecular Therapeutics Program, Centre for Applied Medical Research (CIMA)University of NavarraPamplonaSpain

Personalised recommendations