Skip to main content

Advertisement

Log in

Exploring Cerebrospinal Fluid IgG N-Glycosylation as Potential Biomarker for Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which the existing candidate biomarkers (neurofilaments) have low specificity. Changes in blood IgG N-glycosylation have been observed in several diseases, including ALS, whereas cerebrospinal fluid (CSF) IgG has been less studied. Here, we characterized N-glycans of CSF IgG from ALS patients in comparison with a control group of other neurological diseases. Cerebrospinal fluid was collected from patients with ALS (n = 26) and other neurological diseases (n = 10). N-Glycans were released from CSF purified IgG with peptide N-glycosidase F, labeled with 2-aminobenzamide and analyzed by NP-HPLC chromatography in combination with exoglycosidase digestion and MALDI-TOF mass spectrometry. The N-glycosylation profile of ALS CSF IgG consisted of diantennary N-glycans predominantly with proximal fucose and some bisecting GlcNAc; agalacto-, mono-, and digalactosylated as well as α2,6-sialylated structures were detected. Differences between ALS and control patients were observed; most relevant was the increase in ALS CSF IgG of the level of galactosylated structures defined here as Gal-index (median 46.87 and 40.50% for ALS and controls, respectively; p = 0.006). The predictive value of the Gal-index (AUC = 0.792, p = 0.007) considering ROC analysis had potential utility as a diagnostic test for ALS and was comparable to that of phosphoneurofilament heavy chain (AUC = 0.777, p = 0.011), which was used as benchmark marker for our group of patients. The results provide the basis to further explore the potential of IgG N-glycan galactosylation as biomarker for ALS by using larger cohorts of patients and controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hardiman O, Al-Chalabi A, Brayne C, Beghi E, van den Berg LH, Chio A, Martin S et al (2017) The changing picture of amyotrophic lateral sclerosis: lessons from European registers. J Neurol Neurosurg Psychiatry 88:557–563. https://doi.org/10.1136/jnnp-2016-314495

    Article  PubMed  Google Scholar 

  2. Gouveia LO, de Carvalho M (2007) Young-onset sporadic amyotrophic lateral sclerosis: a distinct nosological entity? Amyotroph Lateral Scler 8:323–327. https://doi.org/10.1080/17482960701553956

    Article  PubMed  Google Scholar 

  3. Costa J, Gomes C, de Carvalho M (2010) Diagnosis, pathogenesis and therapeutic targets in amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 9:764–778

    Article  CAS  PubMed  Google Scholar 

  4. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C et al (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322. https://doi.org/10.1016/S1474-4422(13)70036-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kruger T, Lautenschlager J, Grosskreutz J, Rhode H (2013) Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery. Proteomics Clin Appl 7:123–135. https://doi.org/10.1002/prca.201200067

    Article  CAS  PubMed  Google Scholar 

  6. Costa J, de Carvalho M (2016) Emerging molecular biomarker targets for amyotrophic lateral sclerosis. Clin Chim Acta 455:7–14. https://doi.org/10.1016/j.cca.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  7. Lehnert S, Costa J, de Carvalho M, Kirby J, Kuzma-Kozakiewicz M, Morelli C, Robberecht W, Shaw P et al (2014) Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:344–350. https://doi.org/10.3109/21678421.2014.884592

    Article  PubMed  Google Scholar 

  8. Goncalves M, Tillack L, de Carvalho M, Pinto S, Conradt HS, Costa J (2015) Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis. Clin Chim Acta 438:342–349. https://doi.org/10.1016/j.cca.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  9. Oeckl P, Jardel C, Salachas F, Lamari F, Andersen PM, Bowser R, de Carvalho M, Costa J et al (2016) Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 17:404–413. https://doi.org/10.3109/21678421.2016.1167913

    Article  CAS  PubMed  Google Scholar 

  10. Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA et al (2016) Neurofilaments in the diagnosis of motoneuron diseases: A prospective study on 455 patients. J Neurol Neurosurg Psychiatry 87:12–20. https://doi.org/10.1136/jnnp-2015-311387

    Article  PubMed  Google Scholar 

  11. Edri-Brami M, Rosental B, Hayoun D, Welt M, Rosen H, Wirguin I, Nefussy B, Drory VE et al (2012) Glycans in sera of amyotrophic lateral sclerosis patients and their role in killing neuronal cells. PLoS One 7:e35772. https://doi.org/10.1371/journal.pone.0035772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edri-Brami M, Sharoni H, Hayoun D, Skutelsky L, Nemirovsky A, Porgador A, Lichtenstein RG (2015) Development of stage-dependent glycans on the Fc domains of IgG antibodies of ALS animals. Exp Neurol 267:95–106. https://doi.org/10.1016/j.expneurol.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  13. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50. https://doi.org/10.1146/annurev.immunol.25.022106.141702

    Article  CAS  PubMed  Google Scholar 

  14. Thompson E J (2005) Proteins of the cerebrospinal fluid 2nd edition London: Elsevier :p.16.

  15. Plomp R, Bondt A, de Haan N, Rombouts Y, Wuhrer M (2016) Recent advances in clinical glycoproteomics of immunoglobulins (Igs). Mol Cell Proteomics 15:2217–2228. https://doi.org/10.1074/mcp.O116.058503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wuhrer M, Selman MH, McDonnell LA, Kumpfel T, Derfuss T, Khademi M, Olsson T et al (2015) Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid. J Neuroinflammation 12(235):235. https://doi.org/10.1186/s12974-015-0450-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knopf J, Magorivska I, Maler JM, Spitzer P, Bilyy R, Biermann MHC, Hychka K, Bondt A et al (2018) Low amounts of bisecting glycans characterize cerebrospinal fluid-borne IgG. J Neuroimmunol 320:19–24. https://doi.org/10.1016/j.jneuroim.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  18. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  19. Proudfoot M, Jones A, Talbot K, Al-Chalabi A, Turner MR (2016) The ALSFRS as an outcome measure in therapeutic trials and its relationship to symptom onset. Amyotroph Lateral Scler Frontotemporal Degener 17:414–425. https://doi.org/10.3109/21678421.2016.1140786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238. https://doi.org/10.1006/abio.1995.1468

    Article  CAS  PubMed  Google Scholar 

  21. Costa J, Gatermann M, Nimtz M, Kandzia S, Glatzel M, Conradt HS (2018) N-glycosylation of extracellular vesicles from HEK-293 and glioma cell lines. Anal Chem 90:7871–7879. https://doi.org/10.1021/acs.analchem.7b05455

    Article  CAS  PubMed  Google Scholar 

  22. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7:1650–1659. https://doi.org/10.1021/pr7008252

    Article  CAS  PubMed  Google Scholar 

  23. Goncalves M, De Carvalho M, Peixoto C, Alves P, Barreto C, Oliva A, Pinto S et al (2017) Phosphoneurofilament heavy chain and vascular endothelial growth factor as cerebrospinal fluid biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 18:134–136. https://doi.org/10.1080/21678421.2016.1212894

    Article  PubMed  Google Scholar 

  24. Dall'Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C (2013) N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 12:685–698. https://doi.org/10.1016/j.arr.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  25. Wong AH, Fukami Y, Sudo M, Kokubun N, Hamada S, Yuki N (2016) Sialylated IgG-Fc: A novel biomarker of chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 87:275–279. https://doi.org/10.1136/jnnp-2014-309964

    Article  PubMed  Google Scholar 

  26. Seeling M, Bruckner C, Nimmerjahn F (2017) Differential antibody glycosylation in autoimmunity: Sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 13:621–630. https://doi.org/10.1038/nrrheum.2017.146

    Article  CAS  PubMed  Google Scholar 

  27. Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25:1325–1334. https://doi.org/10.1093/glycob/cwv065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sussmuth SD, Sperfeld AD, Ludolph AC, Tumani H (2010) Hypercapnia is a possible determinant of the function of the blood-cerebrospinal fluid barrier in amyotrophic lateral sclerosis. Neurochem Res 35:1071–1074. https://doi.org/10.1007/s11064-010-0156-9

    Article  CAS  PubMed  Google Scholar 

  29. Ticozzi N, Tiloca C, Mencacci NE, Morelli C, Doretti A, Rusconi D, Colombrita C, Sangalli D et al (2013) Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. J Neurol 260:85–92. https://doi.org/10.1007/s00415-012-6589-0

    Article  CAS  PubMed  Google Scholar 

  30. Pagan JD, Kitaoka M, Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172(564–577):e513. https://doi.org/10.1016/j.cell.2017.11.041

    Article  CAS  Google Scholar 

  31. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, McDonald JU, Orr SJ et al (2012) Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med 18:1401–1406. https://doi.org/10.1038/nm.2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457

    Article  CAS  PubMed  Google Scholar 

  33. Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760:669–677. https://doi.org/10.1016/j.bbagen.2005.11.021

    Article  CAS  PubMed  Google Scholar 

  34. van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y (2016) The emerging importance of IgG Fab glycosylation in immunity. J Immunol 196:1435–1441. https://doi.org/10.4049/jimmunol.1502136

    Article  CAS  PubMed  Google Scholar 

  35. Selman MH, Niks EH, Titulaer MJ, Verschuuren JJ, Wuhrer M, Deelder AM (2011) IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. J Proteome Res 10:143–152. https://doi.org/10.1021/pr1004373

    Article  CAS  PubMed  Google Scholar 

  36. Decker Y, Schomburg R, Nemeth E, Vitkin A, Fousse M, Liu Y, Fassbender K (2016) Abnormal galactosylation of immunoglobulin G in cerebrospinal fluid of multiple sclerosis patients. Mult Scler 22:1794–1803. https://doi.org/10.1177/1352458516631036

    Article  CAS  PubMed  Google Scholar 

  37. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  38. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470. https://doi.org/10.1002/mus.10191

    Article  CAS  PubMed  Google Scholar 

  40. Lall D, Baloh RH (2017) Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 127:3250–3258. https://doi.org/10.1172/JCI90607

    Article  PubMed  PubMed Central  Google Scholar 

  41. Russell AC, Simurina M, Garcia MT, Novokmet M, Wang Y, Rudan I, Campbell H et al (2017) The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease. Glycobiology 27:501–510. https://doi.org/10.1093/glycob/cwx022

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the EU JPND project SOPHIA (JPND/0003/2011), Fundação para a Ciência e a Tecnologia (FCT); Portugal and Euronanomed 2 ERA-NET project GlioEx (ENMed/0001/2013), FCT, Portugal; iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is cofunded by FCT/Ministério da Ciência e do Ensino Superior, through national funds; and by FEDER under the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Costa.

Ethics declarations

Patients signed permission for biobank storage, and further studies were agreed by the local Ethic’s committee. The research was done in accordance with the Helsinki Declaration as revised in 2013 (www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J., Streich, L., Pinto, S. et al. Exploring Cerebrospinal Fluid IgG N-Glycosylation as Potential Biomarker for Amyotrophic Lateral Sclerosis. Mol Neurobiol 56, 5729–5739 (2019). https://doi.org/10.1007/s12035-019-1482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1482-9

Keywords

Navigation