Wide Profiling of Circulating MicroRNAs in Spinocerebellar Ataxia Type 7

  • Verónica M. Borgonio-Cuadra
  • Claudia Valdez-Vargas
  • Sandra Romero-Córdoba
  • Alfredo Hidalgo-Miranda
  • Yessica Tapia-Guerrero
  • César M. Cerecedo-Zapata
  • Oscar Hernández-Hernández
  • Bulmaro CisnerosEmail author
  • Jonathan J. MagañaEmail author


Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by a CAG repeat expansion in the ATXN7 gene coding region. Disease onset and progression are highly variable between patients, thus identification of specific/sensitive biomarkers that can improve the monitoring of disease progression is an immediate need. Because altered expression of circulating microRNAs (miRNAs) has been shown in various neurological diseases, they could be useful biomarkers for SCA7. In this study, we showed, to our knowledge for the first time, the expression profile of circulating miRNAs in SCA7. Using the TaqMan profiling low density array (TLDA), we found 71 differentially expressed miRNAs in the plasma of SCA7 patients, compared with healthy controls. The reliability of TLDA data was validated independently by quantitative real-time polymerase chain reaction in an independent cohort of patients and controls. We identified four validated miRNAs that possesses the diagnostic value to discriminate between healthy controls and patients (hsa-let-7a-5p, hsa-let7e-5p, hsa-miR-18a-5p, and hsa-miR-30b-5p). The target genes of these four miRNAs were significantly enriched in cellular processes that are relevant to central nervous system function, including Fas-mediated cell-death, heparansulfate biosynthesis, and soluble-N-ethylmaleimide-sensitive factor activating protein receptor pathways. Finally, we identify a signature of four miRNAs associated with disease severity that discriminate between early onset and adult onset, highlighting their potential utility to surveillance disease progression. In summary, circulating miRNAs might provide accessible biomarkers for disease stage and progression and help to identify novel cellular processes involved in SCA7.


miRNAs Spinocerebellar ataxia type 7 Plasma biomarker PolyQ disease 



The authors thank Emilio Martínez and Nelson Pérez for their contribution to this study. Our paper is dedicated to the patients and the members of SCA-affected families.

Author Contributions

The reported work was performed with collaboration between all co-authors:

Conceptual design: JJM and BC.

Experimental execution: VBC and CVV.

Data acquisition: VBC and CVV.

Data analysis: SRC, AHM, VBC, CVV, JJM, and BC.

Molecular diagnosis of patients: YTG.

Technical Support: YTG, SRC, CCZ, and OHH.

Management and clinical evaluation of patients: CCZ and OHH.

Manuscript preparation and approval: JJM, BC, VBC, and SRC.

Funding Information

This work was supported by the CONACyT grant (grant number 258043) to JJM. CV-V was a recipient of Doctoral fellowship under CONACyT grant (263396).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplementary material

12035_2019_1480_MOESM1_ESM.tif (2.4 mb)
ESM 1 (TIF 2411 kb)
12035_2019_1480_Fig4_ESM.png (554 kb)

High-resolution image (PNG 554 kb)

12035_2019_1480_MOESM2_ESM.tif (341 kb)
ESM 2 (TIF 340 kb)
12035_2019_1480_Fig5_ESM.png (253 kb)

High-resolution image (PNG 252 kb)

12035_2019_1480_MOESM3_ESM.xlsx (13 kb)
ESM 3 (XLSX 13 kb)
12035_2019_1480_MOESM4_ESM.xlsx (13 kb)
ESM 4 (XLSX 13 kb)
12035_2019_1480_MOESM5_ESM.xlsx (14 kb)
ESM 5 (XLSX 14 kb)
12035_2019_1480_MOESM6_ESM.docx (23 kb)
ESM 6 (DOCX 23 kb)
12035_2019_1480_MOESM7_ESM.xlsx (12 kb)
ESM 7 (XLSX 11 kb)
12035_2019_1480_MOESM8_ESM.docx (18 kb)
ESM 8 (DOCX 17 kb)
12035_2019_1480_MOESM9_ESM.docx (27 kb)
ESM 9 (DOCX 26 kb)
12035_2019_1480_MOESM10_ESM.xlsx (11 kb)
ESM 10 (XLSX 10 kb)
12035_2019_1480_MOESM11_ESM.xlsx (10 kb)
ESM 11 (XLSX 10 kb)
12035_2019_1480_MOESM12_ESM.xlsx (11 kb)
ESM 12 (XLSX 10 kb)
12035_2019_1480_MOESM13_ESM.xlsx (11 kb)
ESM 13 (XLSX 10 kb)


  1. 1.
    David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17(1):65–70. CrossRefPubMedGoogle Scholar
  2. 2.
    David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, Belal S, Lebre AS et al (1998) Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 7(2):165–170CrossRefGoogle Scholar
  3. 3.
    Horton LC, Frosch MP, Vangel MG, Weigel-DiFranco C, Berson EL, Schmahmann JD (2013) Spinocerebellar ataxia type 7: clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum 12(2):176–193. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Velazquez-Perez L, Cerecedo-Zapata CM, Hernandez-Hernandez O, Martinez-Cruz E, Tapia-Guerrero YS, Gonzalez-Pina R, Salas-Vargas J, Rodriguez-Labrada R et al (2015) A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics 16(1):11–21. CrossRefPubMedGoogle Scholar
  5. 5.
    van de Warrenburg BP, Frenken CW, Ausems MG, Kleefstra T, Sinke RJ, Knoers NV, Kremer HP (2001) Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol 248(10):911–914CrossRefGoogle Scholar
  6. 6.
    Garden GA, La Spada AR (2008) Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 7(2):138–149. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Michalik A, Martin JJ, Van Broeckhoven C (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12(1):2–15. CrossRefPubMedGoogle Scholar
  8. 8.
    Chou AH, Chen CY, Chen SY, Chen WJ, Chen YL, Weng YS, Wang HL (2010) Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int 56(2):329–339. CrossRefPubMedGoogle Scholar
  9. 9.
    Alves S, Cormier-Dequaire F, Marinello M, Marais T, Muriel MP, Beaumatin F, Charbonnier-Beaupel F, Tahiri K et al (2014) The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 128(5):705–722. CrossRefPubMedGoogle Scholar
  10. 10.
    Ajayi A, Yu X, Lindberg S, Langel U, Strom AL (2012) Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci 13:86. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, Guyenet SJ, Deller T et al (2006) Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci 9(10):1302–1311. CrossRefPubMedGoogle Scholar
  12. 12.
    Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N et al (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13(12):1257–1265. CrossRefPubMedGoogle Scholar
  13. 13.
    Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR et al (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci U S A 102(24):8472–8477. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tezenas du Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, Forlani S, Rakowicz M et al (2014) Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137(Pt 9):2444–2455. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38(20):7219–7235. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11(2):189–200. CrossRefPubMedGoogle Scholar
  17. 17.
    Roshan R, Ghosh T, Gadgil M, Pillai B (2012) Regulation of BACE1 by miR-29a/b in a cellular model of spinocerebellar ataxia 17. RNA Biol 9(6):891–899. CrossRefPubMedGoogle Scholar
  18. 18.
    Rodriguez-Lebron E, Liu G, Keiser M, Behlke MA, Davidson BL (2013) Altered Purkinje cell miRNA expression and SCA1 pathogenesis. Neurobiol Dis 54:456–463. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Muller S (2014) In silico analysis of regulatory networks underlines the role of miR-10b-5p and its target BDNF in Huntington’s disease. Transl Neurodegener 3:17. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shi Y, Huang F, Tang B, Li J, Wang J, Shen L, Xia K, Jiang H (2014) MicroRNA profiling in the serums of SCA3/MJD patients. Int J Neurosci 124(2):97–101. CrossRefPubMedGoogle Scholar
  21. 21.
    Huang F, Zhang L, Long Z, Chen Z, Hou X, Wang C, Peng H, Wang J et al (2014) miR-25 alleviates polyQ-mediated cytotoxicity by silencing ATXN3. FEBS Lett 588(24):4791–4798. CrossRefPubMedGoogle Scholar
  22. 22.
    Koscianska E, Krzyzosiak WJ (2014) Current understanding of the role of microRNAs in spinocerebellar ataxias. Cerebellum Ataxias 1:7. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hoss AG, Lagomarsino VN, Frank S, Hadzi TC, Myers RH, Latourelle JC (2015) Study of plasma-derived miRNAs mimic differences in Huntington’s disease brain. Mov Disord 30(14):1961–1964. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J, Tong Y, Pan B (2016) Dysregulation and diagnostic potential of microRNA in Alzheimer’s disease. Am J Alzheimers Dis 49(1):1–12. CrossRefGoogle Scholar
  25. 25.
    Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Danborg PB, Simonsen AH, Waldemar G, Heegaard NH (2014) The potential of microRNAs as biofluid markers of neurodegenerative diseases—a systematic review. Biomarkers 19(4):259–268. CrossRefPubMedGoogle Scholar
  27. 27.
    Muller M, Kuiperij HB, Versleijen AA, Chiasserini D, Farotti L, Baschieri F, Parnetti L, Struyfs H et al (2016) Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. Am J Alzheimers Dis 52(4):1321–1333. CrossRefGoogle Scholar
  28. 28.
    Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A et al (2017) Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimers Res Ther 9(1):89. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lusardi TA, Phillips JI, Wiedrick JT, Harrington CA, Lind B, Lapidus JA, Quinn JF, Saugstad JA (2017) MicroRNAs in human cerebrospinal fluid as biomarkers for Alzheimer’s disease. Am J Alzheimers Dis 55(3):1223–1233. CrossRefGoogle Scholar
  30. 30.
    Chen L, Yang J, Lu J, Cao S, Zhao Q, Yu Z (2018) Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain Behav 8(4):e00941. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zi Y, Yin Z, Xiao W, Liu X, Gao Z, Jiao L, Deng L (2015) Circulating MicroRNA as potential source for neurodegenerative diseases biomarkers. Mol Neurobiol 52(3):1494–1503. CrossRefPubMedGoogle Scholar
  32. 32.
    Denny-Brown D, Dawson DM, Tyler HR (1982) Handbook of neurological examination and case recording, 3rd edn. Harvard University Press, CambridgeGoogle Scholar
  33. 33.
    Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720. CrossRefPubMedGoogle Scholar
  34. 34.
    Schmitz-Hubsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, Filla A, Mariotti C et al (2008) Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 71(13):982–989. CrossRefPubMedGoogle Scholar
  35. 35.
    Dorschner MO, Barden D, Stephens K (2002) Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J Mol Diagn 4(2):108–113. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Magana JJ, Tapia-Guerrero YS, Velazquez-Perez L, Cerecedo-Zapata CM, Maldonado-Rodriguez M, Jano-Ito JS, Leyva-Garcia N, Gonzalez-Pina R et al (2014) Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet 85(2):159–165. CrossRefPubMedGoogle Scholar
  37. 37.
    Magana JJ, Gomez R, Maldonado-Rodriguez M, Velazquez-Perez L, Tapia-Guerrero YS, Cortes H, Leyva-Garcia N, Hernandez-Hernandez O et al (2013) Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population. Cerebellum 12(6):902–905. CrossRefPubMedGoogle Scholar
  38. 38.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50(4):298–301. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefGoogle Scholar
  40. 40.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Diaz-Uriarte R, Alvarez de Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinf 7:3. CrossRefGoogle Scholar
  42. 42.
    Diaz-Uriarte R (2007) GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinf 8:328. CrossRefGoogle Scholar
  43. 43.
    Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:265. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pereira P, Queiroz JA, Figueiras A, Sousa F (2017) Current progress on microRNAs-based therapeutics in neurodegenerative diseases. Wiley Interdiscip Rev RNA 8(3). doi:
  45. 45.
    Ameling S, Kacprowski T, Chilukoti RK, Malsch C, Liebscher V, Suhre K, Pietzner M, Friedrich N et al (2015) Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med Genet 8:61. CrossRefGoogle Scholar
  46. 46.
    Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94. CrossRefPubMedGoogle Scholar
  47. 47.
    Reinhardt A, Feuillette S, Cassar M, Callens C, Thomassin H, Birman S, Lecourtois M, Antoniewski C et al (2012) Lack of miRNA misregulation at early pathological stages in Drosophila neurodegenerative disease models. Front Genet 30(3):226. eCollection 2012.CrossRefGoogle Scholar
  48. 48.
    Andras IE, Toborek M (2016) Extracellular vesicles of the blood-brain barrier. Tissue Barriers 4(1):e1131804. CrossRefPubMedGoogle Scholar
  49. 49.
    Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB (2013) Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 10(1):4. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cichon C, Sabharwal H, Ruter C, Schmidt MA (2014) MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers 2(4):e944446. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M (2013) Analysis of microRNA and protein transfer by exosomes during an immune synapse. Methods Mol Biol 1024:41–51. CrossRefPubMedGoogle Scholar
  52. 52.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9(8):1066–1075. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, Zeiher AM, Landmesser U et al (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33(6):1392–1400. CrossRefPubMedGoogle Scholar
  55. 55.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10(12):837–841. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Su W, Aloi MS, Garden GA (2016) MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun 52:1–8. CrossRefPubMedGoogle Scholar
  58. 58.
    Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P, Galgani M, De Rosa V et al (2016) Role of metabolism in neurodegenerative disorders. Metab Clin Exp 65(9):1376–1390. CrossRefPubMedGoogle Scholar
  59. 59.
    Yoo SY, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, Armstrong DL, Wu SM et al (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37(3):383–401CrossRefGoogle Scholar
  60. 60.
    Wang S, Tang Y, Cui H, Zhao X, Luo X, Pan W, Huang X, Shen N (2011) Let-7/miR-98 regulate Fas and Fas-mediated apoptosis. Genes Immun 12(2):149–154. CrossRefPubMedGoogle Scholar
  61. 61.
    Jin J, Kim SN, Liu X, Zhang H, Zhang C, Seo JS, Kim Y, Sun T (2016) miR-17-92 cluster regulates adult hippocampal neurogenesis, anxiety, and depression. Cell Rep 16(6):1653–1663. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516. CrossRefPubMedGoogle Scholar
  63. 63.
    Su JH, Anderson AJ, Cribbs DH, Tu C, Tong L, Kesslack P, Cotman CW (2003) Fas and Fas ligand are associated with neuritic degeneration in the AD brain and participate in beta-amyloid-induced neuronal death. Neurobiol Dis 12(3):182–193CrossRefGoogle Scholar
  64. 64.
    Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Rev 44(1):65–81CrossRefGoogle Scholar
  65. 65.
    Kragh CL, Fillon G, Gysbers A, Hansen HD, Neumann M, Richter-Landsberg C, Haass C, Zalc B et al (2013) FAS-dependent cell death in alpha-synuclein transgenic oligodendrocyte models of multiple system atrophy. PLoS One 8(1):e55243. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mikami T, Kitagawa H (2016) Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj J 34:725–735. CrossRefPubMedGoogle Scholar
  67. 67.
    Properzi F, Lin R, Kwok J, Naidu M, van Kuppevelt TH, Ten Dam GB, Camargo LM, Raha-Chowdhury R et al (2008) Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur J Neurosci 27(3):593–604. CrossRefPubMedGoogle Scholar
  68. 68.
    Maeda N (2015) Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front Neurosci 9:98. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744(3):493–517PubMedGoogle Scholar
  70. 70.
    Wei C, Thatcher EJ, Olena AF, Cha DJ, Perdigoto AL, Marshall AF, Carter BD, Broadie K et al (2013) miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PLoS One 8(2):e57080. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Noor A, Zahid S (2017) A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 127(9):805–811. CrossRefPubMedGoogle Scholar
  72. 72.
    Saraiva C, Esteves M, Bernardino L (2017) MicroRNA: basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 141:118–131. CrossRefPubMedGoogle Scholar
  73. 73.
    Tan JY, Vance KW, Varela MA, Sirey T, Watson LM, Curtis HJ, Marinello M, Alves S et al (2015) Corrigendum: cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol 22(3):272. CrossRefPubMedGoogle Scholar
  74. 74.
    Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone 56(2):383–389. CrossRefPubMedGoogle Scholar
  75. 75.
    Kang K, Peng X, Zhang X, Wang Y, Zhang L, Gao L, Weng T, Zhang H et al (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 288(35):25414–25427. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Serafin A, Foco L, Zanigni S, Blankenburg H, Picard A, Zanon A, Giannini G, Pichler I et al (2015) Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology 84(7):645–653. CrossRefPubMedGoogle Scholar
  77. 77.
    Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32(12):2316 e2317–2316 e2327. CrossRefGoogle Scholar
  78. 78.
    Derkow K, Rossling R, Schipke C, Kruger C, Bauer J, Fahling M, Stroux A, Schott E et al (2018) Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. PLoS One 13(7):e0200602. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG et al (2012) Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 123(4):477–490. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sinha M, Ghose J, Das E, Bhattarcharyya NP (2010) Altered microRNAs in STHdh(Q111)/Hdh(Q111) cells: miR-146a targets TBP. Biochem Biophys Res Commun 396(3):742–747. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Verónica M. Borgonio-Cuadra
    • 1
  • Claudia Valdez-Vargas
    • 1
    • 2
  • Sandra Romero-Córdoba
    • 3
    • 4
  • Alfredo Hidalgo-Miranda
    • 3
  • Yessica Tapia-Guerrero
    • 1
  • César M. Cerecedo-Zapata
    • 5
  • Oscar Hernández-Hernández
    • 1
  • Bulmaro Cisneros
    • 2
    Email author
  • Jonathan J. Magaña
    • 1
    Email author
  1. 1.Laboratory of Genomic Medicine, Department of GeneticsNational Rehabilitation Institute (INR-LGII)Ciudad de México (CDMX)Mexico
  2. 2.Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN)Ciudad de México (CDMX)Mexico
  3. 3.Laboratory of Cancer Genomics, National Genomics Medicine Institute (INMEGEN)Mexico CityMexico
  4. 4.Molecular Targeting Unit, Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  5. 5.Rehabilitation and Special Education Center of Veracruz (CRIS-DIF)XalapaMexico

Personalised recommendations