Advertisement

JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy

  • Rubén D. Castro-Torres
  • Jon Landa
  • Marina Rabaza
  • Oriol Busquets
  • Jordi Olloquequi
  • Miren Ettcheto
  • Carlos Beas-Zarate
  • Jaume Folch
  • Antoni Camins
  • Carme AuladellEmail author
  • Ester Verdaguer
Article

Abstract

Neurogenesis in the adult dentate gyrus (DG) of the hippocampus allows the continuous generation of new neurons. This cellular process can be disturbed under specific environmental conditions, such as epileptic seizures; however, the underlying mechanisms responsible for their control remain largely unknown. Although different studies have linked the JNK (c-Jun-N-terminal-kinase) activity with the regulation of cell proliferation and differentiation, the specific function of JNK in controlling adult hippocampal neurogenesis is not well known. The purpose of this study was to analyze the role of JNK isoforms (JNK1/JNK2/JNK3) in adult-hippocampal neurogenesis. To achieve this goal, we used JNK-knockout mice (Jnk1−/−, Jnk2−/−, and Jnk3−/−), untreated and treated with intraperitoneal injections of kainic acid (KA), as an experimental model of epilepsy. In each condition, we identified cell subpopulations at different stages of neuronal maturation by immunohistochemical specific markers. In physiological conditions, we evidenced that JNK1 and JNK3 control the levels of one subtype of early progenitor cells (GFAP+/Sox2+) but not the GFAP+/Nestin+ cell subtype. Moreover, the absence of JNK1 induces an increase of immature neurons (Doublecortin+; PSA-NCAM+ cells) compared with wild-type (WT). On the other hand, Jnk1−/− and Jnk3−/− mice showed an increased capacity to maintain hippocampal homeostasis, since calbindin immunoreactivity is higher than in WT. An important fact is that, after KA injection, Jnk1−/− and Jnk3−/− mice show no increase in the different neurogenic cell subpopulation analyzed, in contrast to what occurs in WT and Jnk2−/− mice. All these data support that JNK isoforms are involved in the adult neurogenesis control.

Keywords

JNK isoforms Knockout mice Adult hippocampal neurogenesis Kainic acid 

Abbreviations

ABC

avidin-biotin-peroxidase complex

CB

calbindin

CR

calretinin

CT

control

CBP

Calcium-binding protein

DAB

diaminobenzidine

DCX

doublecortin

DG

dentate gyrus

FBS

fetal bovine serum

GCL

granular cell layer

GC

granule cells

GFAP

glial fibrillary acidic protein

i.p

intraperitoneal injection

IR

immunoreactive

JNKs

c-Jun N-terminal kinases

JNK1, JNK2, and JNK3

JNK isoforms

jnk1

Knockout mice for JNK1

jnk2−/−

knockout mice for JNK2

jnk3

knockout mice for JNK3

KA

kainic acid

KO

knockout

NSC

neural stem cells

O/N

overnight

PB

phosphate buffer

PBS

phosphate-buffered saline

PSA-NCAM

polysialic acid neural cell adhesion molecule

RT

room temperature

SD

standard deviation

SDA-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis.

SDS

sodium dodecyl sulfate

SEM

standard error of mean

SGZ

subgranular zone

TLE

temporal lobe epilepsy

WT

wild type

Notes

Acknowledgements

This work was supported by Ministerio Español de Ciencia e Innovación, SAF2017-84283-R; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) CB06/05/0024; Consejo Nacional de Ciéncia y Tecnologia, CONACYT, 177594; Generalitat de Catalunya, 2014SGR-525; Generalitat de Catalunya, 2017 SGR 625; Postdoctoral Fellowship CONACYT-MEXICO, 298337; Doctoral Program in Sciences in Molecular Biology in Medicine LGAC; and Molecular Bases of Chronic-Degenerative Diseases and its Applications 000091, PNPC, CONACYT-MEXICO.

Thanks to Kyra -Mae Leighton for her technical support.

Supplementary material

12035_2019_1476_Fig7_ESM.png (40 kb)
Figure S1

Supplement Quantification of the number of DCX/CR positive cells and the representative histogram. *P < 0.05, ****P < 0.0001, vs WT CT and; &P < 0.05 vs genotype control. (PNG 40 kb)

12035_2019_1476_MOESM1_ESM.tif (55 kb)
High resolution image (TIF 54 kb)
12035_2019_1476_Fig8_ESM.png (5.2 mb)
Figure S2

Supplement A. Representative DG hippocampal images of double immune-label NeuN (Green) and PSA-NCAM cells (Red), from control mice (A, C, E, G) and 24 h KA treated mice (B, D, F, H) of WT, jnk1−/, jnk2−/, jnk3−/. Arrows show the double immuno-positive cells against NeuN and PSA-NCAM. B. Quantification of the number of double NeuN/PSA-NCAM positive cells and the representative histogram is displayed. In all conditions the levels of double labeled cells is low. Only an icrease is observed after KA in WT. **P < 0.01, vs WT CT. ZSG: stratum granular; h: hilus. A-H: Scale bar 50 μm. (PNG 5361 kb)

12035_2019_1476_MOESM2_ESM.tif (18.4 mb)
High resolution image (TIF 18795 kb)

References

  1. 1.
    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252CrossRefGoogle Scholar
  2. 2.
    Gupta S, Barrett T, Whitmarsh a J et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770CrossRefGoogle Scholar
  3. 3.
    Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 10:205–219CrossRefGoogle Scholar
  4. 4.
    Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486.  https://doi.org/10.1098/rstb.1996.0008 CrossRefPubMedGoogle Scholar
  5. 5.
    Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095.  https://doi.org/10.1128/MMBR.00025-06 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gkouveris I, Nikitakis NG (2017) Role of JNK signaling in oral cancer: a mini review. Tumor Biol 39:101042831771165CrossRefGoogle Scholar
  7. 7.
    Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282:2092–2095.  https://doi.org/10.1126/science.282.5396.2092 CrossRefPubMedGoogle Scholar
  8. 8.
    Yang DD, Conze D, Whitmarsh AJ et al (1998) Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9:575–585CrossRefGoogle Scholar
  9. 9.
    Yang DD, Kuan CY, Whitmarsh a J et al (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–870.  https://doi.org/10.1038/39899 CrossRefPubMedGoogle Scholar
  10. 10.
    Zeke A, Misheva M, Reményi A, Bogoyevitch MA (2016) JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev 80:793–835.  https://doi.org/10.1128/MMBR.00043-14 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kuan CY, Yang DD, Samanta Roy DR et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676CrossRefGoogle Scholar
  12. 12.
    Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–169Google Scholar
  13. 13.
    Conze D, Krahl T, Kennedy N, Weiss L, Lumsden J, Hess P, Flavell RA, le Gros G et al (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8(+) T cell activation. J Exp Med 195:811–823.  https://doi.org/10.1084/JEM.20011508 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Myers AK, Meechan DW, Adney DR, Tucker ES (2014) Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex. J Neurosci 34:7787–7801.  https://doi.org/10.1523/JNEUROSCI.4695-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336.  https://doi.org/10.1038/nature01137 CrossRefPubMedGoogle Scholar
  16. 16.
    Mohammad H, Marchisella F, Ortega-Martinez S, Hollos P, Eerola K, Komulainen E, Kulesskaya N, Freemantle E et al (2018) JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry 23:487.  https://doi.org/10.1038/mp.2017.21 CrossRefPubMedGoogle Scholar
  17. 17.
    Kuan C-Y, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184–15189.  https://doi.org/10.1073/pnas.2336254100 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li QM, Tep C, Yune TY, Zhou XZ, Uchida T, Lu KP, Yoon SO (2007) Opposite regulation of oligodendrocyte apoptosis by JNK3 and Pin1 after spinal cord injury. J Neurosci 27:8395–8404.  https://doi.org/10.1523/JNEUROSCI.2478-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    de Lemos L, Junyent F, Camins A, Castro-Torres RD, Folch J, Olloquequi J, Beas-Zarate C, Verdaguer E et al (2017) Neuroprotective effects of the absence of JNK1 or JNK3 isoforms on kainic acid-induced temporal lobe epilepsy-like symptoms. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0669-1
  20. 20.
    De Lemos L, Junyent F, Verdaguer E et al (2010) Differences in activation of ERK1/2 and p38 kinase in Jnk3 null mice following KA treatment. J Neurochem 114:1315–1322.  https://doi.org/10.1111/j.1471-4159.2010.06853.x CrossRefPubMedGoogle Scholar
  21. 21.
    Raijmakers M, Clynen E, Smisdom N, Nelissen S, Brône B, Rigo JM, Hoogland G, Swijsen A (2016) Experimental febrile seizures increase dendritic complexity of newborn dentate granule cells. Epilepsia 57:717–726.  https://doi.org/10.1111/epi.13357 CrossRefPubMedGoogle Scholar
  22. 22.
    Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587.  https://doi.org/10.1016/S0166-2236(00)01659-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neurosci 9:261–272.  https://doi.org/10.1177/1073858403252680 CrossRefGoogle Scholar
  24. 24.
    Shetty AK, Hattiangady B, Rao MS, Shuai B (2012) Neurogenesis response of middle-aged hippocampus to acute seizure activity. PLoS One 7:e43286.  https://doi.org/10.1371/journal.pone.0043286 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sakurai M, Suzuki H, Tomita N, Sunden Y, Shimada A, Miyata H, Morita T (2017) Enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of adult rat following kainic acid-induced status epilepticus. Neuropathology 38:135–143.  https://doi.org/10.1111/neup.12445 CrossRefPubMedGoogle Scholar
  26. 26.
    Walton RM (2012) Postnatal neurogenesis. Vet Pathol 49:155–165.  https://doi.org/10.1177/0300985811414035 CrossRefPubMedGoogle Scholar
  27. 27.
    Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812.  https://doi.org/10.1101/cshperspect.a018812 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660.  https://doi.org/10.1016/j.cell.2008.01.033 CrossRefPubMedGoogle Scholar
  29. 29.
    Braun SMG, Jessberger S (2014) Review: adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol 40:3–12.  https://doi.org/10.1111/nan.12107 CrossRefPubMedGoogle Scholar
  30. 30.
    Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, Behrens W, Kempermann G (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 24:603–613.  https://doi.org/10.1016/S1044-7431(03)00207-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Junyent F, Utrera J, Romero R, Pallàs M, Camins A, Duque D, Auladell C (2009) Prevention of epilepsy by taurine treatments in mice experimental model. J Neurosci Res 87:1500–1508.  https://doi.org/10.1002/jnr.21950 CrossRefPubMedGoogle Scholar
  32. 32.
    Paxinos G, Franlin K (2012) The mouse brain in stereotaxic coordinates, 4th edn. Academic PressGoogle Scholar
  33. 33.
    Zhang J, Jiao J (2015) Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed Res Int 2015:727542–727514.  https://doi.org/10.1155/2015/727542 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Brazel CY, Limke TL, Osborne JK, Miura T, Cai J, Pevny L, Rao MS (2005) Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4:197–207.  https://doi.org/10.1111/j.1474-9726.2005.00158.x CrossRefPubMedGoogle Scholar
  35. 35.
    Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14.  https://doi.org/10.1111/j.1460-9568.2004.03813.x CrossRefPubMedGoogle Scholar
  36. 36.
    Gascon E, Vutskits L, Kiss JZ (2010) The role of PSA-NCAM in adult neurogenesis. Springer, New York, pp. 127–136Google Scholar
  37. 37.
    Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211PubMedGoogle Scholar
  38. 38.
    Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290CrossRefGoogle Scholar
  39. 39.
    Domínguez MI, Blasco-Ibáñez JM, Crespo C et al (2003) Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res 966:206–217.  https://doi.org/10.1016/S0006-8993(02)04164-1 CrossRefPubMedGoogle Scholar
  40. 40.
    Reiner O, Gdalyahu A, Ghosh I et al (2004) DCX’s phosphorylation by not just another kinase (JNK). Cell Cycle 3:747–751CrossRefGoogle Scholar
  41. 41.
    Pino A, Fumagalli G, Bifari F, Decimo I (2017) New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 141:4–22.  https://doi.org/10.1016/j.bcp.2017.07.003 CrossRefPubMedGoogle Scholar
  42. 42.
    Iyengar SS, LaFrancois JJ, Friedman D et al (2015) Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 264:135–149.  https://doi.org/10.1016/j.expneurol.2014.11.009 CrossRefPubMedGoogle Scholar
  43. 43.
    Cho K-O, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K et al (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6:6606.  https://doi.org/10.1038/ncomms7606 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23:823–832.  https://doi.org/10.1038/sj.emboj.7600079 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Todkar K, Scotti AL, Schwaller B (2012) Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis. Front Mol Neurosci 5(56).  https://doi.org/10.3389/fnmol.2012.00056
  46. 46.
    Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15:285–299.  https://doi.org/10.1038/nrn3729 CrossRefPubMedGoogle Scholar
  47. 47.
    Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9:943–954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rubén D. Castro-Torres
    • 1
    • 2
    • 3
  • Jon Landa
    • 1
  • Marina Rabaza
    • 1
  • Oriol Busquets
    • 2
    • 4
    • 5
    • 6
  • Jordi Olloquequi
    • 7
  • Miren Ettcheto
    • 2
    • 4
    • 5
    • 6
  • Carlos Beas-Zarate
    • 3
  • Jaume Folch
    • 4
    • 5
  • Antoni Camins
    • 2
    • 5
    • 6
  • Carme Auladell
    • 1
    • 5
    • 6
    Email author
  • Ester Verdaguer
    • 1
    • 5
    • 6
  1. 1.Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’AlimentacióUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departamento de Biología Celular y Molecular, Laboratorio de Regeneración Neural, C.U.C.B.AUniversidad de GuadalajaraJaliscoMexico
  4. 4.Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la SalutUniversitat Rovira i VirgiliTarragonaSpain
  5. 5.Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
  6. 6.Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
  7. 7.Facultad de Ciencias de la SaludUniversidad Autónoma de ChileTalcaChile

Personalised recommendations