Advertisement

Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology

  • Men Su
  • Kambiz Naderi
  • Nathalie Samson
  • Ihsen Youssef
  • Livia Fülöp
  • Zsolt Bozso
  • Serge Laroche
  • Benoit Delatour
  • Sabrina DavisEmail author
Article

Abstract

Current evidence suggests dementia and pathology in Alzheimer’s Disease (AD) are both dependent and independent of amyloid processing and can be induced by multiple ‘hits’ on vital neuronal functions. Type 2 diabetes (T2D) poses the most important risk factor for developing AD after ageing and dysfunctional IR/PI3K/Akt signalling is a major contributor in both diseases. We developed a model of T2D, coupling subdiabetogenic doses of streptozotocin (STZ) with a human junk food (HJF) diet to more closely mimic the human condition. Over 35 weeks, this induced classic signs of T2D (hyperglycemia and insulin dysfunction) and a modest, but stable deficit in spatial recognition memory, with very little long-term modification of proteins in or associated with IR/PI3K/Akt signalling in CA1 of the hippocampus. Intracerebroventricular infusion of soluble amyloid beta 42 (Aβ42) to mimic the early preclinical rise in Aβ alone induced a more severe, but short-lasting deficits in memory and deregulation of proteins. Infusion of Aβ on the T2D phenotype exacerbated and prolonged the memory deficits over approximately 4 months, and induced more severe aberrant regulation of proteins associated with autophagy, inflammation and glucose uptake from the periphery. A mild form of environmental enrichment transiently rescued memory deficits and could reverse the regulation of some, but not all protein changes. Together, these data identify mechanisms by which T2D could create a modest dysfunctional neuronal milieu via multiple and parallel inputs that permits the development of pathological events identified in AD and memory deficits when Aβ levels are transiently effective in the brain.

Keywords

Type 2 diabetes Alzheimer’s disease Amyloid beta PI3K-Akt signalling Insulin Human junk food CA1 Object recognition Environment enrichment 

Notes

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique (CNRS, France); LECMA Vaincre Alzheimer, France (12702) to SD; the Hungarian Brain Research Programme 2.0 (2017-1.2.1-NKP-2017-00002) and Economy Development and Innovation Operative Programme (GINOP 2.3.2_15_2016_00038) to LF and ZB. KN was supported by LECMA funding and MS by the China Scholarship Council.

Author Contribution

SD conceived and designed the research. MS, KN, NS and IY conducted the experiments. SD, BD, MS, KN and IY analysed data. IY and BD conducted all immunohistochemistry; LF and ZB produced and tested Aβ1-42 peptide. SD drafted the paper with contributions from MS and SL, and all authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest

Supplementary material

12035_2019_1475_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)

References

  1. 1.
    Ono K (2018) Alzheimer’s disease as oligomeropathy. Neurochem Int 119:57–70.  https://doi.org/10.1016/j.neuint.2017.08.010 CrossRefPubMedGoogle Scholar
  2. 2.
    Skaper SD (2012) Alzheimer’s disease and amyloid: culprit or coincidence? Int Rev Neurobiol 102:277–316.  https://doi.org/10.1016/B978-0-12-386986-9.00011-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R et al (2008) Long-term effects of Aβ 42 immunisation in Alzheimer’s disease : follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223.  https://doi.org/10.1016/S0140-6736(08)61075-2
  4. 4.
    Driscoll I, Zhou Y, An Y, Sojkova J, Davatzikos C, Kraut MA, Ye W, Ferrucci L et al (2011) Lack of association between 11C-PiB and longitudinal brain atrophy in non-demented older individuals. Neurobiol Aging 32(12):2123–2130.  https://doi.org/10.1016/j.neurobiolaging.2009.12.008
  5. 5.
    Maarouf CL, Daugs ID, Kokjohn TA, Walker DG, Hunter JM, Kruchowsky JC, Woltjer R, Kaye J et al (2011) Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS One 6(11):e27291.  https://doi.org/10.1371/journal.pone.0027291
  6. 6.
    Atwood CS, Bowen RL (2015) A unified hypothesis of early-and late-onset Alzheimer’s disease pathogenesis. J Alzheimers Dis 47(1):33–47.  https://doi.org/10.3233/JAD-143210 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    De Felice FG, Lourenco ML, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10(1 suppl):S26–S32.  https://doi.org/10.1016/j.jalz.2013.12.004 CrossRefPubMedGoogle Scholar
  8. 8.
    de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW (2017) Lower brain and blood nutrient status in Alzheimer’s disease: results from meta-analyses. Alzheimers Dement 3(3):416–431.  https://doi.org/10.1016/j.trci.2017.06.002 CrossRefGoogle Scholar
  9. 9.
    Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33(10):1500–1513.  https://doi.org/10.1038/jcbfm.2013.135 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Galvan V, Hart MJ (2016) Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer’s disease. Biochim Biophys Acta 1862:992–1007.  https://doi.org/10.1016/j.bbadis.2015.11.010 CrossRefPubMedGoogle Scholar
  11. 11.
    Gerakis Y, Hetz C (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J 285(6):995–1011.  https://doi.org/10.1111/febs.14332 CrossRefPubMedGoogle Scholar
  12. 12.
    Gibas KJ (2017) The starving brain: Overfed meets undernourished in the pathology of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Neurochem Int 110:57–68.  https://doi.org/10.1016/j.neuint.2017.09.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Uddin S, Stachowiak A, Al Mamun A, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM et al (2018) Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci.  https://doi.org/10.3389/fnagi.2018.00004
  14. 14.
    Yin F, Sancheti H, Patil I, Cadenas E (2016) Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med 100:108–122.  https://doi.org/10.1016/j.freeradbiomed.2012.04.200
  15. 15.
    Paul KC, Jerrett M, Ritz B (2018) Type 2 diabetes mellitus and Alzheimer’s disease: overlapping biologic mechanisms and environmental risk factors. Curr Environ Health Rep 5(1):1–15.  https://doi.org/10.1007/s40572-018-0176-1 CrossRefGoogle Scholar
  16. 16.
    Gorska-Ciebiada M, Saryusz-Wolska M, Ciebiada M, Loba J (2014) Mild cognitive impairment and depressive symptoms in elderly patients with diabetes: prevalence, risk factors, and comorbidity. J Diabetes Res 2014:1–7.  https://doi.org/10.1155/2014/179648 CrossRefGoogle Scholar
  17. 17.
    Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128.  https://doi.org/10.1016/S1474-4422(09)70299-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Leitner DR, Frühbeck G, Yumuk V, Schindler K, Micic D, Woodward E, Toplak H (2017) Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies - EASO can lead the way. Obes Facts 10(5):483–492.  https://doi.org/10.1159/000480525 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Templeman NM, Skovso S, Page MM, Lim GE, Johnson JD (2017) A causal role for hyperinsulinemia in obesity. J Endocrinol 232(3):R173–R183.  https://doi.org/10.1530/JOE-16-0449 CrossRefPubMedGoogle Scholar
  20. 20.
    Daulatzai MA (2017) Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 95(4):943–972.  https://doi.org/10.1002/jnr.23777 CrossRefPubMedGoogle Scholar
  21. 21.
    Vieira MNN, Lima-Filho RAS, De Felice FG (2018) Connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacol 136(Pt B):160–171.  https://doi.org/10.1016/2017.11.014 CrossRefGoogle Scholar
  22. 22.
    Verdile G, Fuller SJ, Martins RN (2015) The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 84:22–38.  https://doi.org/10.1016/j.nbd.2015.04.008 CrossRefPubMedGoogle Scholar
  23. 23.
    Pruzin JJ, Nelson PT, Abner EL, Arvanitakis Z (2018) Relationship of type 2 diabetes to human brain pathology. Neuropathol Appl Neurobiol 44(4):347–362.  https://doi.org/10.1111/nan.12476 CrossRefPubMedGoogle Scholar
  24. 24.
    Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci 101(7):2173–2178.  https://doi.org/10.1073/pnas.0308512100 CrossRefPubMedGoogle Scholar
  25. 25.
    Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80.  https://doi.org/10.3233/JAD-2005-7107
  26. 26.
    Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O'Connor R, O'Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93(1):105–117.  https://doi.org/10.1111/j.1471-4159.2004.02949.x CrossRefPubMedGoogle Scholar
  27. 27.
    Busquets O, Ettcheto M, Pallàs M, Beas-Zarate C, Verdaguer E, Auladell C, Folch J, Camins A (2017) Long-term exposition to a high fat diet favors the appearance of β-amyloid depositions in the brain of C57BL/6J mice. A potential model of sporadic Alzheimer’s disease. Mech Ageing Dev 162:38–45.  https://doi.org/10.1016/j.mad.2016.11.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Salas IH, Weerasekera A, Ahmed T, Callaerts-Vegh Z, Himmelreich U, D’Hooge R, Balschun D, Saido TC et al (2018) High fat diet treatment impairs hippocampal long term potentiation without alterations of the core neuropathological features of Alzheimer’s disease. Neurobiol Dis 113:82–96.  https://doi.org/10.1016/j.nbd.2018.02.001
  29. 29.
    Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promotes similar brain mitochondrial abnormalities. Diabetes 61(5):1234–1242.  https://doi.org/10.1016/j.nbd.2018.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hiltunen M, Khandelwal VKM, Yaluri N, Tiilikainen T, Tusa M, Koivisto H, Krzisch M, Vepsäläinen S et al (2012) Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice. J Cell Mol Med 16(6):1206–1222.  https://doi.org/10.1111/j.1582-4934.2011.01384.x
  31. 31.
    Ramos-Rodriguez JJ, Spires-Jones T, Pooler AM, Lechuga-Sancho AM, Bacskai BJ, Garcia-Alloza M (2017) Progressive neuronal pathology and synaptic loss induced by prediabetes and type 2 diabetes in a mouse model of Alzheimer’s disease. Mol Neurobiol 54(5):3428–3438.  https://doi.org/10.1007/s12035-016-9921-3 CrossRefPubMedGoogle Scholar
  32. 32.
    Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16(90):277–286PubMedGoogle Scholar
  33. 33.
    Holscher C (2018) Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s diease models. Neuropharmacol 136(PtB):251–259.  https://doi.org/10.1016/j.neuropham.2018.01.040 CrossRefGoogle Scholar
  34. 34.
    Grieb P (2016) Intracerebroventricular Streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752.  https://doi.org/10.1007/s12035-015-9132-3 CrossRefPubMedGoogle Scholar
  35. 35.
    Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS (2016) Streptozotocin Intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Mol Neurobiol 53(7):4548–4562.  https://doi.org/10.1007/s12035-015-9384-y CrossRefPubMedGoogle Scholar
  36. 36.
    Chami B, Steel AJ, De La Monte SM, Sutherland GT (2016) The rise and fall of insulin signaling in Alzheimer’s disease. Metab Brain Dis 31(3):497–515.  https://doi.org/10.1007/s11011-016-9806-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang M, Lv X-Y, Xu Z-G, Chen L (2008) The characterization of highfat diet and multiple low-dow Streptozotocin induced type 2 diabetes rat model. Exp Diabet Res 704045.  https://doi.org/10.1155/2008/704045.
  38. 38.
    Skovso S (2014) Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5(4):349–358.  https://doi.org/10.1111/jdi.12235 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ohline SM, Abraham WC (2018) Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacol.  https://doi.org/10.1016/j.neuropharm.2018.04.007
  40. 40.
    Costa DA, Cracchiolo JR, Bachstetter AD, Hughes TF, Bales KR, Paul SM, Mervis RF, Arendash GW et al (2007) Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol Aging 28(6):831–844.  https://doi.org/10.1016/j.neurobiolaging.2006.04.009
  41. 41.
    Bozso Z, Penke B, Simon D, Laczkó I, Juhász G, Szegedi V, Kasza A, Soós K et al (2010) Controlled in situ preparation of a beta(1-42) oligomers from the isopeptide “iso-A beta(1-42)”, physicochemical and biological characterization. Peptides 31(2):248–256.  https://doi.org/10.1016/j.peptides.2009.12.001
  42. 42.
    Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21(2):513–521.  https://doi.org/10.1111/j.1460-9568.2005.03875.x CrossRefPubMedGoogle Scholar
  43. 43.
    Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20(12):4563–4572.  https://doi.org/10.1523/JNEUROSCI.20-12-04563.2000 CrossRefPubMedGoogle Scholar
  44. 44.
    Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J et al (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 26:2–18.  https://doi.org/10.1186/1750-1326-2-18
  45. 45.
    Holder MK, Chassaing B (2018) Impact of food additives on the gut-brain axis. Physiol Behav 192:173–176.  https://doi.org/10.1016/j.physbeh.2018.02.025 CrossRefPubMedGoogle Scholar
  46. 46.
    Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36(2):148–153PubMedGoogle Scholar
  47. 47.
    Harishankar N, Vajreswari A, Giridharan NV (2011) WNIN/GR-Ob an insulin-resistant obese rat model from inbred WNIN strain. Indian J Med Res 134:320–329PubMedPubMedCentralGoogle Scholar
  48. 48.
    Shafat A, Murray B, Rumsey D (2009) Energy density in cafeteria diet induced hyperphagia in the rat. Appetite 52(1):34–38.  https://doi.org/10.1016/j.appet.2008.07.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Levin BE, Dunn-Meynell AA (2002) Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Phys Regul Integr Comp Phys 283(5):R941–R948.  https://doi.org/10.1152/ajpregu.00245.2002 CrossRefGoogle Scholar
  50. 50.
    Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133(4):1081–1087.  https://doi.org/10.1093/jn/133.4.1081 CrossRefPubMedGoogle Scholar
  51. 51.
    Leahy JL (2005) Pathogenesis of type 2 diabetes mellitus. Arch Med Res 36(3):197–209.  https://doi.org/10.1016/j.arcmed.2005.01.003 CrossRefPubMedGoogle Scholar
  52. 52.
    Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E (2014) Natural history of beta-cell adaptation and failure in type 2 diabetes. Mol Asp Med 42:19–41.  https://doi.org/10.1016/j.mam.2014.12.002 CrossRefGoogle Scholar
  53. 53.
    Wong RS, Cechetto DF, Whitehead SN (2016) Assessing the effects of acute amyloid β oligomer exposure in the rat. Int J Mol Sci 17(9):1390–1403.  https://doi.org/10.3390/ijms17091390 CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ma YQ, Wu DK, Liu JK (2013) mTOR and tau phosphorylated proteins in the hippocampal tissue of rats with type 2 diabetes and Alzheimer’s disease. Mol Med Rep 7(2):623–627.  https://doi.org/10.3892/mmr.2012.1186 CrossRefPubMedGoogle Scholar
  55. 55.
    Knight EM, Martins IVA, Gümüsgöz S, Allan SM, Lawrence CB (2014) High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging 35(8):1821–1832.  https://doi.org/10.1016/j.neurobiolaging.2014.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G et al (2004) Diet induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18(7):902–924.  https://doi.org/10.1096/fj.03-0978fje
  57. 57.
    Cao D, Lu H, Lewis TL, Li L (2007) Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 282(50):36275–36282.  https://doi.org/10.1074/jbc.M703561200 CrossRefPubMedGoogle Scholar
  58. 58.
    Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrancois D, Virgili J et al (2014) Insulin reverses the high-fat diet-induced brain Aβ and improves memory in an animal model of Alzheimer’s disease. Diabetes 63(12):4291–4301.  https://doi.org/10.2337/db14-0375
  59. 59.
    Fitz NF, Cronican A, Pham T, Fogg A, Fauq AH, Chapman R, Lefterov I, Koldamova R (2010) Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J Neurosci 30(20):6862–6872.  https://doi.org/10.1523/JNEUROSCI.1051-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Herculano B, Tamura M, Ohba A, Shimatani M, Kutsuna N, Hisatsune T (2013) β-Alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 33(4):983–997.  https://doi.org/10.3233/JAD-2012-121324 CrossRefPubMedGoogle Scholar
  61. 61.
    Maesako M, Uemura K, Kubota M, Kuzuya A, Sasaki K, Asada M, Watanabe K, Hayashida N et al (2012) Environmental enrichment ameliorated high-fat diet-induced Aβ deposition and memory deficit in APP transgenic mice. Neurobiol Aging 33(5):1011.e11–1011.e23.  https://doi.org/10.1016/j.neurobiolaging.2011.10.028
  62. 62.
    Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30(50):16755–16762.  https://doi.org/10.1523/JNEUROSCI.4521-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Herrup K, Carrillo MC, Schenk D, Cacace A, DeSanti S, Fremeau RF, Bhat R, Glicksman M et al (2013) Beyond amyloid: getting real about nonamyloid targets in Alzheimer’s disease. Alzheimers Dement 9(4):452–458.  https://doi.org/10.1016/j.jalz.2013.01.017
  64. 64.
    Redolat R, Mesa-Gresa P (2012) Potential benefits and limitations of enriched environments and cognitive activity on age-related behavioural decline. Curr Top Behav Neurosci 10:293–316.  https://doi.org/10.1007/7854_2011_134 CrossRefPubMedGoogle Scholar
  65. 65.
    Prado Lima MG, Schimidt HL, Garcia A, Daré LR, Carpes FP, Izquierdo I, Mello-Carpes PB (2018) Environmental enrichment and expercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci 115(10):E2403–E2409.  https://doi.org/10.1073/pnas.1718435115 CrossRefPubMedGoogle Scholar
  66. 66.
    La Joie R, Perrotin A, de la Sayette V, Egret S, Doeuvre L; Belliard S, Eustache F, Desgranges B, Chételat G (2013) Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage Clin 3:155–162.  https://doi.org/10.1016/j.nicl.2013.08.007
  67. 67.
    Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ (2013) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79:172–179.  https://doi.org/10.1016/j.neuropharm.2013.10.018 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Masurkar AV (2018) Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer’s disease across anatomical axes. J Alzheimers Dis Parkinsonism 8(1).Google Scholar
  69. 69.
    Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C et al (2011) Age-dependent accumulation of soluble amyloid beta (Aβ) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-α (sAPPα) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3β pathway in Alzheimer mouse model. J Biol Chem 286:18414–18425Google Scholar
  70. 70.
    Qutub AA, Hunt CA (2005) Glucose transport to the brain: a systems model. Brain Res Brain Res Rev 49(3):595–617.  https://doi.org/10.1016/j.brainresrev.2005.03.002 CrossRefPubMedGoogle Scholar
  71. 71.
    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin A-L, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s Disease. Ageing Res Rev 12(1):289–309.  https://doi.org/10.1016/j.arr.2012.06.003 CrossRefPubMedGoogle Scholar
  72. 72.
    Jaeger PA, Wyss-Coray T (2010) Beclin 1 complex in autophagy and Alzheimer disease. Arch Neurol 67(10):1181–1184.  https://doi.org/10.1001/archneurol.2010.258 CrossRefPubMedGoogle Scholar
  73. 73.
    Caccamo A, Magr A, Medina DX, Silva AJ, Wisely EV, Manuel FL, Oddo S (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12(3):370–380.  https://doi.org/10.1111/acel.12057 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, Murphy MP, Morely JE et al (2014) Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 67:387–395.  https://doi.org/10.1016/j.freeradbiomed.2013.11.014
  75. 75.
    Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, Perluigi M, Butterfield DA (2015) Alteration of mTOR signalling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133(5):739–749.  https://doi.org/10.1111/jnc.13037 CrossRefPubMedGoogle Scholar
  76. 76.
    Liu Y, Grundke-Iqbal FLI, Gong KI, Gong C-X (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62.  https://doi.org/10.1002/path.2912 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Maqbool M, Mobashir M, Hoda N (2016) Pivital role of glycogen synthase kinase-3: a therapeutic target for Alzheimer’s disease. Eur J Med Chem 107:63–81.  https://doi.org/10.1016/j.emech.2015.10.018 CrossRefPubMedGoogle Scholar
  78. 78.
    Lee YS, Chow WNV, Lau K-F (2017) Phosphorylation of FE65 at threonine 579 by GSK3β stimulates amyloid precursor protein processing. Sci Rep 7(1):12456.  https://doi.org/10.1038/s41598-017-12334-2 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging 27(2):190–198CrossRefGoogle Scholar
  80. 80.
    Vepsäläinen S, Hiltunen M, Helisalmi S, Wang J, van Groen T, Tanila H, Soininen H (2008) Increased expression of Abeta degrading enzyme IDE in the cortex of transgenic mice with Alzheimer’s disease-like neuropathology. Neurosci Lett 438(2):216–220.  https://doi.org/10.1016/j.neulet.2008.04.025 CrossRefPubMedGoogle Scholar
  81. 81.
    Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104(6):1433–1439.  https://doi.org/10.1111/j.1471-4159.2007.05194.x CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Huang K, Fingar DC (2014) Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 36:79–90.  https://doi.org/10.1016/j.semcdb.2014.09.011 CrossRefPubMedGoogle Scholar
  83. 83.
    Sun YX, Ji X, Mao X, Xie L, Jia J, Galvan V, Greenberg DA, Jin K (2014) Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. J Alzheimers Dis 38(2):437–444.  https://doi.org/10.3233/JAD-131124 CrossRefPubMedGoogle Scholar
  84. 84.
    Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredensen D, Richardson A, Strong R et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5(4):e9979.  https://doi.org/10.1371/journal.pone.0009979
  85. 85.
    Caccamo A, Belfiore R, Oddo S (2018) Genetically reducing mTOR signaling rescues central insulin dysregulation in a mouse model of Alzheimer's disease. Neurobiol Aging 68:59–67.  https://doi.org/10.1016/j.neurobiolaging.2018.03.032 CrossRefPubMedGoogle Scholar
  86. 86.
    Caccamo A, De Pinto V, Messina A, Branca C, Oddo S (2014) Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 34(23):7988–7998.  https://doi.org/10.1523/JNEUROSCI.0777-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Holz MK, Blenis J (2005) Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem 280(28):26089–26093.  https://doi.org/10.1074/jbc.M504045200 CrossRefPubMedGoogle Scholar
  88. 88.
    François A, Rioux-Bilan A, Quellard N, Fernandez B, Janet T, Chassaing D, Paccalin M, Terro F et al (2014) Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J Neuroinflammation 11:139.  https://doi.org/10.1186/s12974-014-0139
  89. 89.
    Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14(6):356–376.  https://doi.org/10.1038/s41574-018-0009-1 CrossRefPubMedGoogle Scholar
  90. 90.
    Kim J, Lim YM, Lee MS (2018) The role of autophagy in systemic metabolism and human-type diabetes. Mol Cells 41(1):11–17.  https://doi.org/10.14348/molcells.2018.2228 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Skaper SD, Facci L, Zusso M, Giusti P (2018) An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 12:72.  https://doi.org/10.3389/fncel.2018.00072 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Pompl PN, Yemul S, Xiang Z, Ho L, Haroutunian V, Purohit D, Mohs R, Pasinetti GM (2003) Caspase gene expression in the brain as a function of the clinical progression of Alzheimer disease. Arch Neurol 60(3):369–376.  https://doi.org/10.1001/archneur.60.3.369 CrossRefPubMedGoogle Scholar
  93. 93.
    Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39(12):2301–2312.  https://doi.org/10.1007/s11064-014-1454-4 CrossRefPubMedGoogle Scholar
  94. 94.
    Maiese K (2008) Triple play: promoting neurovascular longevity with nicotinamide, wnt and erythropoietin in diabetes mellitus. Biomed Pharmacother 62(4):218–232.  https://doi.org/10.1016/j.biopha.2008.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    van Dijk G, van Heijningen S, Reijne AC, Nyakas C, van der Zee EA, Eisel UL (2015) Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci 9:173.  https://doi.org/10.3389/fnins.2015.00173 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ljubicic S, Polak K, Fu A, Wiwczar J, Szlyk B, Chang Y, Alvez-Perez JC, Bird GH et al (2015) Phospho-BAD BH3 mimicry protects β cell and restores functional β cell mass in diabetes. Cell Rep 10(4):497–504.  https://doi.org/10.1016/j.celrep.2014.12.056
  97. 97.
    van Greevenbroek MMJ, Schalkwijk CG, Stehouwer CDA (2013) Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 71(4):174–187PubMedGoogle Scholar
  98. 98.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples signals to the cell-intrinsic death machinery. Cell 91:231–241CrossRefGoogle Scholar
  99. 99.
    Leong ML, Maiyar AC, Kim B, O'Keeffe BA, Firestone GL (2003) Expression of the serum- and glucocorticoid-inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J Biol Chem 278(8):5871–5882.  https://doi.org/10.1074/jbc.M211649200 CrossRefPubMedGoogle Scholar
  100. 100.
    Shi C, Viccaro K, Lee H-G, Sha K (2016) Cdk5-Foxo3 axis: initially neuroprotective, eventually neurodegenerative in Alzheimer’s disease models. J Cell Sci 129:1815–1830.  https://doi.org/10.1242/jcs.185009 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, Pasinetti GM (2009) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer's disease-type amyloid neuropathology and spatial memory deterioration. Ann N Y Acad Sci 1147:335–347.  https://doi.org/10.1196/annals.1427.024 CrossRefGoogle Scholar
  102. 102.
    Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, Pasinetti GM (2008) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann N Y Acad Sci 1147:335–347.  https://doi.org/10.1196/annals.1427.024 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Nuzzo D, Picone P, Baldassano S, Caruana L, Messina E, Marino Gammazza A, Cappello F, Mulè F et al (2015) Insulin resistance as common molecular denominator linking obesity to Alzheimer’s disease. Curr Alzheimer Res 12(8):723–35.94Google Scholar
  104. 104.
    Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unravelling the role of FOXO proteins in ageing and longevity. Aging Cell 15(2):196–207.  https://doi.org/10.1111/acel.12427 CrossRefPubMedGoogle Scholar
  105. 105.
    Shah K, DeSilva S, Abbruscato T (2012) The role of glucose transporters in brain disease: diabetes and Alzheimer’s disease. Int J Mol Sci 13(10):12629–12655.  https://doi.org/10.3390/ijms131012629 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Meneilly GS, Tessier DM (2016) Diabetes, dementia and hypoglycemia. Can J Diabetes 40(1):73–76.  https://doi.org/10.1016/j.jcjd.2015.09.006 CrossRefPubMedGoogle Scholar
  107. 107.
    Sato N, Morishita R (2013) Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer’s disease: short-and long-term modification by non-genetic risk factors. Front Aging Neurosci 5(64).  https://doi.org/10.3389/fnagi.2013.00064
  108. 108.
    Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer’s disease: a matter of blood-brain barrier dysfunction? J Exp Med 214(11):3151–3169.  https://doi.org/10.1084/jem.20171406 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S, Hsiao-Ashe K, Carlson GA et al (2000) Aβ-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci USA 97(17):9735–9740.  https://doi.org/10.1073/pnas.97.17.9735
  110. 110.
    Ly PTT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y et al (2013) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235.  https://doi.org/10.1172/JCI64516
  111. 111.
    Decourt B, Lahiri DK, Sabbagh MN (2017) Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res 14(4):412–425.  https://doi.org/10.2174/1567205013666160930110551 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017) Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/RNS generation. J Biomed Sci 24(1):76.  https://doi.org/10.1186/s12929-017-0379-z CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118(4):460–474.  https://doi.org/10.1111/j.1471-4159.2011.07331.x CrossRefPubMedGoogle Scholar
  114. 114.
    Cai Z, Yan LJ, Li K, Quazi SH, Zhao B (2012) Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol Med 14(1):1–14.  https://doi.org/10.1007/s12017-012-8173-2 CrossRefGoogle Scholar
  115. 115.
    Metaxakis A, Ploumi C, Tavernarakis N (2018) Autophagy in age-associated neurodegeneration. Cells 7(5):E37.  https://doi.org/10.1186/s12929-017-0379-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département Cognition & Comportement, Institut de Neurosciences Paris-Saclay (Neuro-PSI) CNRS UMR 9197Université Paris SudOrsayFrance
  2. 2.Division of Episomal Persistent DNA in Cancer and Chronic diseaseGerman Cancer Research Centre (DKFZ)HeidelbergGermany
  3. 3.Institut du Cerveau et de la Moelle épinièreINSERM, CNRS, Sorbonne Universites, ICMParisFrance
  4. 4.Department of Medical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations