Recovery of Olfactory Function After Excitotoxic Lesion of the Olfactory Bulbs Is Associated with Increases in Bulbar SIRT1 and SIRT4 Expressions

  • Concepció MarinEmail author
  • Cristobal Langdon
  • Isam Alobid
  • Mireya Fuentes
  • Mercè Bonastre
  • Joaquim MullolEmail author


Excitotoxicity consists in a cascade of intracellular events initiated by an excessive release of glutamate and hyperactivation of glutamatergic receptors that is involved in several pathologies, including traumatic brain injury and neurodegenerative diseases such as Parkinson’s disease. Both disorders are a common cause of olfactory dysfunction. We previously reported a role for glutamate excitotoxicity in olfactory dysfunction showing an olfactory deficit 1 week after lesion and a spontaneous recovery 2 weeks after excitotoxicity lesion of the olfactory bulbs (OBs). The olfactory dysfunction recovery was associated with an increase in subventricular zone neurogenesis and an increase in the OB glomerular dopaminergic interneurons. However, the underlying molecular mechanisms involved in the OB dopaminergic differentiation and olfactory recovery are still unknown. To investigate the role of silent information regulator family proteins sirtuins (SIRTs), a family of NAD+-dependent histone deacetylases, on the olfactory function recovery, we examined the OB SIRT (SIRT1, SIRT2, and SIRT4) expressions after OB excitotoxic lesions in rodents. N-methyl-d-aspartate (NMDA) OB administration induced a decrease in the number of correct choices in the discrimination tests 1 week after lesions (p < 0.01) and a spontaneous recovery of the olfactory deficit 2 weeks after lesions (p < 0.01) associated with an increase in OB SIRT1 and SIRT4 expression. Our results point out for the first time the association between recovery of olfactory function and the increase in bulbar SIRT1 and SIRT4 expression suggesting a role for these SIRTs in the pathophysiology of recovery of loss of smell.


Excitotoxicity Olfaction Dopamine Sirtuins Parkinson’s disease Traumatic brain injury Neurogenesis 


Funding Information

This work was supported by a research grant (110610) from Fundació La Marató TV3.

Compliance with Ethical Standards

All experiments were carried out following the European (2010/63/UE) and Spanish (RD 53/2013) regulation for the care and use of laboratory animals and approved by the local government (Generalitat de Catalunya). The Ethics Committee of our institution approved this study.


  1. 1.
    Faden AI, Dememdiuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800PubMedCrossRefGoogle Scholar
  2. 2.
    Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur Pharmacol 698:6–18CrossRefGoogle Scholar
  4. 4.
    Vergun O, Keelan J, Khodorov BJ, Duchen MR (1999) Glutamate-induced mitochondrial depolarization and perturbation of calcium homeostasis in cultured rat hippocampal neurons. J Physiol 519:451–466PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Abramov AY, Duchen MR (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 1777:953–964PubMedCrossRefGoogle Scholar
  6. 6.
    Jia N, Sun Q, Su Q, Chen G (2016) SIRT1-mediated deacetylation of PGC1α attributes to the protection of curcumin against glutamate excitotoxicity in cortical neurons. Biochem Biophys Res Commun 478:1376–1381PubMedCrossRefGoogle Scholar
  7. 7.
    Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruption in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29:1197–1208PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hinzman JM, Wilson JA, Mazeo AT, Bullock MR, Hartings JA (2016) Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma 33:1775–1783PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    DeLong MR, Wichmann T (2015) Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 72:1354–1360PubMedCrossRefGoogle Scholar
  10. 10.
    Dorsett CR, McGuire JL, Niedzielko TL, DePasquale EA, Meller J, Floyd CL, McCullumsmith RE (2017a) Traumatic brain injury induces alterations in cortical glutamate uptake without a reduction in glutamate transporter-1 protein expression. J Neurotrauma 34:220–234PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullusmith RE (2017b) Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 34:263–272PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Litim N, Morissette M, Di Paolo T (2017) Metabotropic glutamate receptors as therapeutic targets in Parkinson’s disease: an update from the last 5 years of research. Neuropharmacology 115:166–179PubMedCrossRefGoogle Scholar
  13. 13.
    Stefani MA, Modkovski R, Hansel G, Zimmer ER, Kopczynski A, Muller AP, Strogulski NR, Rodolphi MS et al (2017) Elevated glutamate and lactate predict brain death after severe trauma. Ann Clin Transl Neurol 4:392–402PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sebastianutto I, Cenci MA (2018) mGlu receptors in the treatment of Parkinson’s disease and L-Dopa-induced dyskinesia. Curr Opin Pharmacol 38:81–89PubMedCrossRefGoogle Scholar
  15. 15.
    Wu AP, Davidson T (2008) Posttraumatic anosmia secondary to central nervous system injury. Am J Rhinol 22:606–607PubMedCrossRefGoogle Scholar
  16. 16.
    Mullol J, Alobid I, Mariño-Sánchez F, Ll Q, de Haro J, Bernal-Sprekelsen M, Valero A, Picado C et al (2012) Furthering the understanding of olfaction, prevalence of loss of smell and risk factors: a population based survey (OLFACAT study). BMJ Open 2:e001256PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wang Y, Song JH, Denisova JV, Park WM, Fontes JD, Belousov AB (2012) Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury. Neurobiol Dis 32:713–725Google Scholar
  18. 18.
    Frasnelli J, Laguë-Beauvais M, LeBlanc J, Alturki AY, Champoux MC, Couturier C, Anderson K, Lamoureux J et al (2016) Olfactory function in acute traumatic brain injury. Clin Neurol Neurosurg 140:68–72PubMedCrossRefGoogle Scholar
  19. 19.
    Proskynitopoulos PJ, Stippler M, Kasper EM (2016) Post-traumatic anosmia in patients with mild traumatic brain injury (mTBI): a systematic and illustrated review. Surg Neurol Int 7(Suppl 10):S263–S275PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Langdon C, Lehrer E, Berenguer J, Laxe S, Alobid I, Quintó L, Mariño-Sánchez F, Bernabeu M et al (2018) Olfactory training in post-traumatic smell impairment: mild improvement in threshold performances-results from a randomized controlled trial. J Neurotrauma (in press) 35:2641–2652PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Marin C, Vilas D, Langdon C, Alobid I, López-Chacón M, Haehner A, Hummel T, Mullol J (2018) Olfactory dysfunction in neurodegeneration diseases. Curr Allergy Asthma Rep 18:42PubMedCrossRefGoogle Scholar
  22. 22.
    Lee JH, Wei L, Deveau TC, Gu X, Yu SP (2016) Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Brain Struct Funct 221:3259–3273PubMedCrossRefGoogle Scholar
  23. 23.
    Tatti R, Bhaukaurally K, Gschwend O, Seal RP, Edwards RH, Rodriguez I, Carleton A (2014) A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 5:3791PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ghatpande AS, Gelperin A (2009) Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb. J Neurophysiol 101:2052–2061PubMedCrossRefGoogle Scholar
  25. 25.
    Zak JD, Whitessel JD, Schoppa NE (2015) Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength. J Neurophysiol 113:1907–1920PubMedCrossRefGoogle Scholar
  26. 26.
    Lethbridge R, Hou Q, Harley CW, Yuan Q (2012) Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One 7:e35024PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Marin C, Laxe S, Langdon C, Berenguer J, Lehrer E, Mariño-Sánchez F, Alobid I, Bernabeu M et al (2017) Olfactory function in an excitotoxic model for secondary neuronal degeneration: role of dopaminergic interneurons. Neuroscience 364:28–44PubMedCrossRefGoogle Scholar
  28. 28.
    Hwang JW, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61:95–110PubMedCrossRefGoogle Scholar
  29. 29.
    Min SW, Sohn PD, Cho SH, Swanson RA, Gan L (2013) Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci 5:53PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Díaz-Ruiz C, Rodríguez-Pérez AI, Beiroa D, Rodígues-Pallares J, Labandeira-Garcia JL (2015) Reciprocal regulation between sirtuin-1 and angiotensin- II in the substantia nigra: implications for aging and neurodegeneration. Oncotarget 6:26675–26689PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Liu L, Peritore C, Ginsberg J, Shih J, Arun S, Donmez G (2015) Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s diseases. Behav Brain Res 281:215–221PubMedCrossRefGoogle Scholar
  32. 32.
    Jesko H, Wencel P, Strosznajder RP, Strosznajder JB (2017) Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 42:876–890PubMedCrossRefGoogle Scholar
  33. 33.
    Yang X, Si P, Qin H, Yin L, Yan LJ, Zhang C (2017) The neuroprotective effects of SIRT1 on NMDA-induced excitotoxicity. Oxidative Med Cell Longev 2017:2823454Google Scholar
  34. 34.
    Wang F, Nguyen M, Qin FX, Tong Q (2007) Sirt2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514PubMedCrossRefGoogle Scholar
  35. 35.
    Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rajendran E, Garva R, Krstic-Demonacos M, Demonacos C (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodelling, and transcription. J Biomed Biotechnol 2011:1–17CrossRefGoogle Scholar
  38. 38.
    Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798PubMedCrossRefGoogle Scholar
  39. 39.
    Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444PubMedCrossRefGoogle Scholar
  41. 41.
    North BJ, Verdin E (2007) Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2:e784PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832PubMedCrossRefGoogle Scholar
  43. 43.
    Singh P, Hanson PS, Morris Ch M (2017a) SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neursci 18:46CrossRefGoogle Scholar
  44. 44.
    Jesko H, Strosznajder RP (2016) Sirtuins and their interactions with transcription factor and poly (ADP-ribose) polymerases. Folia Neuropathol 54:212–233PubMedCrossRefGoogle Scholar
  45. 45.
    Kupis W, Palyga J, Tomal E, Niewiadomska E (2016) The role of sirtuins in cellular homeostasis. J Physiol Biochem 72:371–380PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Berdichevsky A, Guarente L (2006) A stress response pathway involving sirtuins, forkheads and 14-3-3 proteins. Cell Cycle 5:2588–2591PubMedCrossRefGoogle Scholar
  47. 47.
    Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9:285–290PubMedCrossRefGoogle Scholar
  48. 48.
    Donmez G (2012) The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 33:494–501PubMedCrossRefGoogle Scholar
  49. 49.
    Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5:344–352PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Watroba M, Szukiewicz D (2016) The role of sirtuins in aging and age-related diseases. Adv Med Sci 61:52–62PubMedCrossRefGoogle Scholar
  51. 51.
    Wong SY, Tang BL (2016) SIRT1 as a therapeutic target for Alzheimer’s disease. Rev Neurosci 27:813–825PubMedCrossRefGoogle Scholar
  52. 52.
    Tang BL (2017) Sirtuins as modifiers of Parkinson’s disease pathology. J Neurosci Res 95:930–942PubMedCrossRefGoogle Scholar
  53. 53.
    Neo SH, Tang BL (2018) Sirtuins as modifiers of Huntington’s disease (HD) pathology. Prog Mol Biol Transl Sci 154:105–145PubMedCrossRefGoogle Scholar
  54. 54.
    Ardiles Y, de la Puente R, Toledo R, Isgor C, Guthrie K (2007) Response of olfactory axons to loss of synaptic targets in the adult mouse. Exp Neurol 207:275–288PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liu H, Guthrie KM (2011) Neuronal replacement in the injured olfactory bulb. Exp Neurol 228:270–282PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  57. 57.
    Mandairon N, Peace S, Karnow A, Kim J, Ennis M, Linster C (2008) Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur J Neurosci 27:1210–1219PubMedCrossRefGoogle Scholar
  58. 58.
    Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci 123:828–833PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C (2010) Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 32:458–468PubMedCrossRefGoogle Scholar
  60. 60.
    Mandairon N, Sacquet J, Garcia S, Ravel N, Jourdan F, Didier A (2006) Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur J Neurosci 24:3578–3588PubMedCrossRefGoogle Scholar
  61. 61.
    Brushdfield AM, Luu T, Callahan B, Giblert PE (2008) A comparison of discrimination and reversal learning for olfactory and visual stimuli in aged rats. Behav Neurosci 122:54–62CrossRefGoogle Scholar
  62. 62.
    Pan YW, Kuo CT, Storm DR, Xia Z (2012) Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behaviour. PLoS One 7:e49622PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zou J, Pan YW, Wang Z, Chang SY, Wang W, Wang X, Tournier C, Storm DR et al (2012) Targeted deletion of ERK5 MAP kinase in the developing nervous system impairs development of GABAergic interneurons in the main olfactory bulb and behavioural discrimination between structurally similar odorants. J Neurosci 32:4118–4132PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wang W, Lu S, Li T, Pan YW, Zou J, Abel GM, Xu L, Storm DR et al (2015) Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J Neurosci 35:7833–7849PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kesner RP, Gilbert PE, Barua LA (2002) The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav Neurosci 116:286–290PubMedCrossRefGoogle Scholar
  66. 66.
    Pavlis M, Feretti C, Levy A, Gupta N, Linster C (2006) L-Dopa improves odor discrimination learning in rats. Physiol Behav 87:109–113PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang X-S, Wu Q, Wu L-Y, Ye ZN, Jiang TW, Li W, Zhuang Z, Zhou ML et al (2016) Sirtuin1 activation protects against early brain injury after experimental subarachnoid haemorrhage in rats. Cell Death Dis 7:e2416PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sohrabji F, Peeples KW, Marroquin OA (2000) Local and cortical effects of olfactory bulb lesion on trophic support and cholinergic function and their modulation by estrogen. J Neurobiol 45:61–74PubMedCrossRefGoogle Scholar
  69. 69.
    Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, Elmquist JK, Coppari R (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28:9989–9996PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A 105:15599–15604PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Pantazi E, Zaouali M, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Rosello-Catafau J (2013) Role of sirtuins in ischemia-reperfusion injury. World J Gastroenterol 19:7594–7602PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signalling. J Biol Chem 280:40364–40374PubMedCrossRefGoogle Scholar
  74. 74.
    Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, Siegert E, Bendix I et al (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385–394PubMedCrossRefGoogle Scholar
  75. 75.
    Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR134. Nature 466:1105–1109PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhang F, Wang S, Gan K, Volster PS, Gao Y, Zigmond MJ, Chen J (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 95:373–395PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y et al (2012) Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 237:489–496PubMedCrossRefGoogle Scholar
  78. 78.
    Koronowski KB, Perez-Pinzon MA (2015) Sirt1 in cerebral ischemia. Brain Circ 1:69–78PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jiang M, Wang J, Fu J, du L, Jeong H, West T, Xiang L, Peng Q et al (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Corpas R, Sevilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V, Giménez-Llort L, Sarkis C et al (2017) SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol Neurobiol 54:5604–5619PubMedCrossRefGoogle Scholar
  81. 81.
    Satoh A, Imai S, Guarente L (2017) The brain, sirtuins, and ageing. Nat Rev Neurosci 18:362–374PubMedCrossRefGoogle Scholar
  82. 82.
    She DT, Jo D-G, Arumugan TV (2017) Emerging roles of sirtuins in ischemic stroke. Transl Stroke Res 8:405–523CrossRefGoogle Scholar
  83. 83.
    Hernandez-Jimenez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I et al (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44:2333–2337PubMedCrossRefGoogle Scholar
  84. 84.
    Kakefuda K, Fujita Y, Oyagi A, Hyakkoku K, Kojima T, Umemura K, Tsuruma K, Shimazawa M et al (2009) Sirtuin1 overexpression mice show a reference memory deficit but not neuroprotection. Biochem Biophys Res Commun 387:784–788PubMedCrossRefGoogle Scholar
  85. 85.
    Dong W, Li N, Gao D, Zhen H, Zhang X, Li F (2008) Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg 48:709–714PubMedCrossRefGoogle Scholar
  86. 86.
    Della-Morte D, Dave KR, De Fazio RA, Bai YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hattori Y, Okamoto T, Nagatsuka K et al (2015) Sirt1 attenuates severe ischemic damage by preserving cerebral blood flow. Neuroreport 26:113–117PubMedCrossRefGoogle Scholar
  88. 88.
    Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560PubMedCrossRefGoogle Scholar
  89. 89.
    Porquet D, Griñán-Ferré C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallás M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimer Dis 42:1209–1220CrossRefGoogle Scholar
  90. 90.
    Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017) Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signalling in a mouse model of Alzheimer’s disease. Exp Neurol 288:142–152PubMedCrossRefGoogle Scholar
  91. 91.
    Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR III, Bordone L et al (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165PubMedCrossRefGoogle Scholar
  92. 92.
    Watanabe S, Ageta-Ishihara N, Nagatsu S, Takao K, Komine O, Endo F, Miyakawa T, Misawa H et al (2014) SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system. Mol Brain 7:62PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chen D, Steele AD, Hutter G, Bruno J, Govindarajan A, Easlon E, Lin SJ, Aguzzi A et al (2008) The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Exp Gerontol 43:1086–1093PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Seo JS, Moon MH, Jeong JK, Seol JW, Lee YJ, Park BH, Park SY (2012) SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death. Neurobiol Aging 33:1110–1120PubMedCrossRefGoogle Scholar
  95. 95.
    Albani D, Polito L, Batelli S, de Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C et al (2009) The SIRT1 activator resveratrol protects SK-N-BE cells form oxidative stress and against toxicity caused by α-synuclein or amyloid-β(1-42) peptide. J Neurochem 110:1445–1456PubMedCrossRefGoogle Scholar
  96. 96.
    Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686PubMedCrossRefGoogle Scholar
  97. 97.
    Butti E, Bacigaluppi M, Rossi S, Cambiaghi M, Bari M, Cebrian Silla A, Brambilla E, Musella A et al (2012) Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. Brain 135:3320–3335PubMedCrossRefGoogle Scholar
  98. 98.
    Gengatharan A, Bammann RR, Saghatelyan A (2016) The role of astrocytes in the generation, migration, and integration of new neurons in the adult olfactory bulb. Front Neurosci 10:149PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kaneko N, Sawada M, Sawamoto K (2017) Mechanisms of neuronal migration in the adult brain. J Neurochem 141:835–847PubMedCrossRefGoogle Scholar
  100. 100.
    Saharan S, Jhaveri DJ, Bartlett PF (2013) SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J Neurosci Res 91:642–659PubMedCrossRefGoogle Scholar
  101. 101.
    Libert S, Cohen D, Guarente L (2008) Neurogenesis directed by Sirt1. Nat Cell Biol 10:373–374PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kim M-J, Ahn K, Park S-H, Kang HJ, Jang BG, Oh SJ, Oh SM, Jeong YJ et al (2009) SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett 583:1183–1188PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lee JY, Ahn K, Jang BG, Park SH, Kng HJ, Heo JI, Ko YJ, Won MH et al (2009) Nicotinamide reduces dopamine in postnatal hypothalamus and causes dopamine-deficient phenotype. Neurosci Lett 461:163–166PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Logan RW, Parekh PK, Kaplan GN et al (2018) NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward. Mol Psych (in press).
  105. 105.
    Holloway KR, Calhoun TN, Saxena M, Metoyer CF, Kandler EF, Rivera CA, Pruitt K (2010) SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signalling. Proc Natl Acad Sci U S A 107:9216–9221PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Szego EM, Gerhardt E, Outeiro TF (2017) Sirtuin 2 enhances dopaminergic differentiation via AKT/GSK-3b/b-catenin pathway. Neurobiol Aging 56:7–16PubMedCrossRefGoogle Scholar
  107. 107.
    Burton SD, LaRocca G, Liu A, Cheetham CEJ, Urban NN (2017) Olfactory bulb deep short-axon cells mediate widespread inhibition of tufted cell apical dendrites. J Neurosci 37:1117–1138PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bobrowska A, Donmez G, Weiss A, Guarente L, Bates G (2012) SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington’s disease phenotypes in vivo. PLoS One 7:e34805PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shih J, Liu L, Mason A, Higashimori H, Donmez G (2014) Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem 131:573–581PubMedCrossRefGoogle Scholar
  110. 110.
    Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954PubMedCrossRefGoogle Scholar
  111. 111.
    Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY-C, Firestein BL (2013) Glutamate dehydrogenase 1 and SIRT 4 regulate glial development. Glia 61:394–408PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INGENIO, IRCEInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEXBarcelonaSpain
  2. 2.Centre for Biomedical Investigation in Respiratory Diseases (CIBERES)BarcelonaSpain
  3. 3.Rhinology Unit and Smell Clinic, ENT Department, Hospital ClinicBarcelonaSpain

Personalised recommendations