Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B

  • Fang-Shin Nian
  • Lei-Li Li
  • Chih-Ya Cheng
  • Pei-Chun Wu
  • You-Tai Lin
  • Cheng-Yung Tang
  • Bo-Shiun Ren
  • Chin-Yin Tai
  • Ming-Ji Fann
  • Lung-Sen Kao
  • Chen-Jee Hong
  • Jin-Wu TsaiEmail author


Mutations in RAB18, a member of small G protein, cause Warburg micro syndrome (WARBM), whose clinical features include vision impairment, postnatal microcephaly, and lower limb spasticity. Previously, our Rab18−/− mice exhibited hind limb weakness and spasticity as well as signs of axonal degeneration in the spinal cord and lumbar spinal nerves. However, the cellular and molecular function of RAB18 and its roles in the pathogenesis of WARBM are still not fully understood. Using immunofluorescence staining and expression of Rab18 and organelle markers, we find that Rab18 associates with lysosomes and actively traffics along neurites in cultured neurons. Interestingly, Rab18−/− neurons exhibit impaired lysosomal transport. Using autophagosome marker LC3-II, we show that Rab18 dysfunction leads to aberrant autophagy activities in neurons. Electron microscopy further reveals accumulation of lipofuscin-like granules in the dorsal root ganglion of Rab18−/− mice. Surprisingly, Rab18 colocalizes, cofractionates, and coprecipitates with the lysosomal regulator Rab7, mutations of which cause Charcot-Marie-Tooth (CMT) neuropathy type 2B. Moreover, Rab7 is upregulated in Rab18-deficient neurons, suggesting a compensatory effect. Together, our results suggest that the functions of RAB18 and RAB7 in lysosomal and autophagic activities may constitute an overlapping mechanism underlying WARBM and CMT pathogenesis in the nervous system.


Rab18 Warburg micro syndrome Neuron Axonal degeneration Vesicle trafficking Lysosome Charcot-Marie-Tooth Rab7 Autophagy LC3 



We appreciate Dr. Mu-Ming Poo (University of California, Berkeley), Dr. Chih-Chiang Chan (National Taiwan University), and Ms. Elise Shen (University of Texas, Austin) for helpful comments and suggestions. The authors also wish to thank the Instrumentation Resource Center, National Yang-Ming University, and the National RNAi Core Facility at Academia Sinica, Taiwan for their technical support.

Authors’ Contributions

Study conception and design: JWT, CJH, LSK, MJF, and CYT. Project supervision: JWT. Data collection: FSN, LLL, CYC, PCW, YTL, BSR, and CYT. Data analysis and interpretation: FSN, LLL, JWT, MJF, and LSK. Drafting the article: FSN and JWT. Final approval of the version to be published: all authors.


This work was supported by the grants of Yen Tjing Ling Medical Foundation (CI-103-4), the Ministry of Science and Technology (NSC 101-2320-B-010-077-MY2, 102-2314-B-075-079, 103-2628-B-010-002-MY3, 104-2633-H-010-001, 104-2745-B-075-001, 105-2633-B-009-003, 106-2321-B-075-001, 106-2628-B-010-002-MY3, and 107-2321-B-075-001), Taipei Veterans General Hospital-University System of Taiwan (VGHUST106-G7-5-2), National Health Research Institutes (NHRI-EX103-10314NC), and Academia Sinica, Taiwan (AS-104-TP-B09 and 2396-105-0100) to JWT; and Taiwan National Science Council (NSC 102-2314-B-075-005-MY3), Taipei Veterans General Hospital (V103E9-004 and V102C-173), and the Ministry of Education Taiwan, Aim for the Top University Plan to CJH. This work is also supported by the Development and Construction Program of NYMU School of Medicine (107F-M01-0502) and the Brain Research Center, NYMU through the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan.

Compliance with Ethical Standards

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12035_2019_1471_Fig6_ESM.png (328 kb)
Figure S1

Rab18 expression in primary cortical neurons from from Rab18−/− mice. Primary cortical neurons was prepared from E16.5–18.5 embryos of Rab18+/+, Rab18+/- and Rab18−/− mice. Rab18 expression was determined using western blotting. Error bar represent mean ± SEM; n = 2. (PNG 328 kb)

12035_2019_1471_MOESM1_ESM.tif (506 kb)
High resolution image (TIF 505 kb)
12035_2019_1471_Fig7_ESM.png (2.2 mb)
Figure S2

Rab18-associated vesicles are actively transported in PC12 cells. (A) A NGF-differentiated PC12 cell expressing EGFP-Rab18. Rab18 was distributed in vesicle-like structures along the neurite. Scale bar: 10 μm. The dashed box indicated the region of (B) and (C). (B) Time-lapse imaging of vesicle transport. Arrow indicated a Rab18-associated vesicle moving in retrograde direction. Time was indicated in minute:second. (C) The kymograph constructed from individual time-lapse images of the region in (B) through time. Dashed line arrows indicated Rab18-associated vesicles moving in different directions. Scale bar: 5 μm. (PNG 2292 kb)

12035_2019_1471_MOESM2_ESM.tif (4.1 mb)
High resolution image (TIF 4227 kb)
12035_2019_1471_Fig8_ESM.png (648 kb)
Figure S3

Knockdown of Rab18 expression in primary cortical neurons using shRNA. Mouse cortical neuronal culture was infected with lentivirus encoding Rab18 shRNA or control sequence (shCtrl). Two Rab18 shRNA sequences (shRab18–1981, shRab18–7028) targeting different Rab18 mRNA regions effectively knocked down Rab18 expression 5 days after infection. Error bar represent mean ± SEM; n = 7. (PNG 647 kb)

12035_2019_1471_MOESM3_ESM.tif (914 kb)
High resolution image (TIF 914 kb)
12035_2019_1471_MOESM4_ESM.avi (2.4 mb)
Supplementary Video 1 Rab18-associated vesicles transported bi-directionally within the neurite of cultured neurons (AVI 2503 kb)
12035_2019_1471_MOESM5_ESM.avi (3.5 mb)
Supplementary Video 2 Rab18-associated vesicles transported bi-directionally within the neurite of PC12 cells (AVI 3590 kb)
12035_2019_1471_MOESM6_ESM.avi (3 mb)
Supplementary Video 3 Lysosomal trafficking in wild type neurons. (AVI 3088 kb)
12035_2019_1471_MOESM7_ESM.avi (2.6 mb)
Supplementary Video 4 Lysosomal trafficking in Rab18−/− neurons. (AVI 2697 kb)


  1. 1.
    Warburg M, Sjo O, Fledelius HC, Pedersen SA (1993) Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am J Dis Child 147(12):1309–1312CrossRefGoogle Scholar
  2. 2.
    Megarbane A, Choueiri R, Bleik J, Mezzina M, Caillaud C (1999) Microcephaly, microphthalmia, congenital cataract, optic atrophy, short stature, hypotonia, severe psychomotor retardation, and cerebral malformations: a second family with micro syndrome or a new syndrome? J Med Genet 36(8):637–640PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ainsworth JR, Morton JE, Good P, Woods CG, George ND, Shield JP, Bradbury J, Henderson MJ et al (2001) Micro syndrome in Muslim Pakistan children. Ophthalmology 108(3):491–497CrossRefGoogle Scholar
  4. 4.
    Graham JM Jr, Hennekam R, Dobyns WB, Roeder E, Busch D (2004) MICRO syndrome: an entity distinct from COFS syndrome. Am J Med Genet A 128a(3):235–245. CrossRefPubMedGoogle Scholar
  5. 5.
    Rodriguez Criado G, Rufo M, Gomez de Terreros I (1999) A second family with micro syndrome. Clin Dysmorphol 8(4):241–245PubMedGoogle Scholar
  6. 6.
    Bem D, Yoshimura S, Nunes-Bastos R, Bond FC, Kurian MA, Rahman F, Handley MT, Hadzhiev Y et al (2011) Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet 88(4):499–507. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Handley MT, Aligianis IA (2012) RAB3GAP1, RAB3GAP2 and RAB18: disease genes in micro and Martsolf syndromes. Biochem Soc Trans 40(6):1394–1397. CrossRefPubMedGoogle Scholar
  8. 8.
    Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, Carpanini SM, Borck G et al (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum Mutat 34(5):686–696. CrossRefPubMedGoogle Scholar
  9. 9.
    Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl DJ, Carpanini S, Posmyk R, Harthill V, Sheridan E, Abdel-Salam GMH, Terhal PA, Faravelli F, Accorsi P, Giordano L, Pinelli L, Hartmann B, Ebert AD, Barr FA, Aligianis IA, Sidjanin DJ (2013) Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J hum genet doi:, 93, 1001, 1014
  10. 10.
    Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bucci C, De Luca M (2012) Molecular basis of Charcot-Marie-Tooth type 2B disease. Biochem Soc Trans 40(6):1368–1372. CrossRefPubMedGoogle Scholar
  12. 12.
    Cogli L, Piro F, Bucci C (2009) Rab7 and the CMT2B disease. Biochem Soc Trans 37 (Pt 5):1027–1031. doi:
  13. 13.
    Hidestrand P, Vasconez H, Cottrill C (2009) Carpenter syndrome. J Craniofac Surg 20(1):254–256. CrossRefPubMedGoogle Scholar
  14. 14.
    Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412(6843):194–198. CrossRefPubMedGoogle Scholar
  15. 15.
    Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D et al (2007) RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 80(6):1162–1170. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hurvitz H, Gillis R, Klaus S, Klar A, Gross-Kieselstein F, Okon E (1993) A kindred with Griscelli disease: spectrum of neurological involvement. Eur J Pediatr 152(5):402–405CrossRefGoogle Scholar
  17. 17.
    Haraldsson A, Weemaes CM, Bakkeren JA, Happle R (1991) Griscelli disease with cerebral involvement. Eur J Pediatr 150(6):419–422CrossRefGoogle Scholar
  18. 18.
    Anikster Y, Huizing M, Anderson PD, Fitzpatrick DL, Klar A, Gross-Kieselstein E, Berkun Y, Shazberg G et al (2002) Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A. Am J Hum Genet 71(2):407–414. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA et al (2018) Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 9(1):2498. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Seixas E, Barros M, Seabra MC, Barral DC (2013) Rab and Arf proteins in genetic diseases. Traffic 14(8):871–885. CrossRefPubMedGoogle Scholar
  21. 21.
    Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D’Elia E, Vecellio M, Russo S et al (2010) Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet 86(2):185–195. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M (1994) Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci 107(Pt 12):3437–3448PubMedGoogle Scholar
  23. 23.
    Yu H, Leaf DS, Moore HP (1993) Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene 132(2):273–278CrossRefGoogle Scholar
  24. 24.
    Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280(51):42325–42335.
  25. 25.
    Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12):2601–2611. CrossRefPubMedGoogle Scholar
  26. 26.
    Martin S, Parton RG (2008) Characterization of Rab18, a lipid droplet-associated small GTPase. Methods Enzymol 438:109–129. CrossRefPubMedGoogle Scholar
  27. 27.
    Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, Lopez-Miranda J, Fruhbeck G et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6(7):e22931. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pulido MR, Rabanal-Ruiz Y, Almabouada F, Diaz-Ruiz A, Burrell MA, Vazquez MJ, Castano JP, Kineman RD et al (2013) Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. J Mol Endocrinol 50(1):19–29. CrossRefPubMedGoogle Scholar
  29. 29.
    Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279(45):46835–46842.
  30. 30.
    Makino A, Hullin-Matsuda F, Murate M, Abe M, Tomishige N, Fukuda M, Yamashita S, Fujimoto T et al (2016) Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Mol Biol Cell 27(21):3293–3304.
  31. 31.
    Li C, Luo X, Zhao S, Siu GK, Liang Y, Chan HC, Satoh A, Yu SS (2017) COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36(4):441–457. CrossRefPubMedGoogle Scholar
  32. 32.
    Dubiel D, Bintig W, Kahne T, Dubiel W, Naumann M (2017) Cul3 neddylation is crucial for gradual lipid droplet formation during adipogenesis. Biochim Biophys Acta 1864(8):1405–1412. CrossRefGoogle Scholar
  33. 33.
    Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA (2014) Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 205(5):707–720. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB et al (2008) Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 121(Pt 16):2768–2781. CrossRefPubMedGoogle Scholar
  35. 35.
    Handley MT, Carpanini SM, Mali GR, Sidjanin DJ, Aligianis IA, Jackson IJ, FitzPatrick DR (2015) Warburg micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol 5(6):150047. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 31(3):358–373. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Malagon MM, Cruz D, Vazquez-Martinez R, Peinado JR, Anouar Y, Tonon MC, Vaudry H, Gracia-Navarro F et al (2005) Analysis of Rab18 and a new golgin in the secretory pathway. Ann N Y Acad Sci 1040:137–139. CrossRefPubMedGoogle Scholar
  38. 38.
    Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castano JP, Malagon MM (2007) Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic 8(7):867–882. CrossRefPubMedGoogle Scholar
  39. 39.
    Salloum S, Wang H, Ferguson C, Parton RG, Tai AW (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9(8):e1003513. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tang WC, Lin RJ, Liao CL, Lin YL (2014) Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol 88(12):6793–6804. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chan SC, Lo SY, Liou JW, Lin MC, Syu CL, Lai MJ, Chen YC, Li HC (2011) Visualization of the structures of the hepatitis C virus replication complex. Biochem Biophys Res Commun 404(1):574–578. CrossRefPubMedGoogle Scholar
  42. 42.
    Hashim S, Mukherjee K, Raje M, Basu SK, Mukhopadhyay A (2000) Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J Biol Chem 275(21):16281–16288CrossRefGoogle Scholar
  43. 43.
    Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N (2014) Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology 462-463:166–174. CrossRefPubMedGoogle Scholar
  44. 44.
    Feldmann A, Bekbulat F, Huesmann H, Ulbrich S, Tatzelt J, Behl C, Kern A (2017) The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem Biophys Res Commun 486(3):738–743. CrossRefPubMedGoogle Scholar
  45. 45.
    Carpanini SM, McKie L, Thomson D, Wright AK, Gordon SL, Roche SL, Handley MT, Morrison H et al (2014) A novel mouse model of Warburg micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis Model Mech 7(6):711–722. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cheng CY, Wu JC, Tsai JW, Nian FS, Wu PC, Kao LS, Fann MJ, Tsai SJ et al (2015) ENU mutagenesis identifies mice modeling Warburg micro syndrome with sensory axon degeneration caused by a deletion in Rab18. Exp Neurol 267:143–151. CrossRefPubMedGoogle Scholar
  47. 47.
    Tai CY, Mysore SP, Chiu C, Schuman EM (2007) Activity-regulated N-cadherin endocytosis. Neuron 54(5):771–785. CrossRefPubMedGoogle Scholar
  48. 48.
    Liu YT, Nian FS, Chou WJ, Tai CY, Kwan SY, Chen C, Kuo PW, Lin PH et al (2016) PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget 7(26):39184–39196. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jheng GW, Hur SS, Chang CM, Wu CC, Cheng JS, Lee HH, Chung BC, Wang YK et al (2018) Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration. Biochem Biophys Res Commun 497(3):869–875. CrossRefPubMedGoogle Scholar
  50. 50.
    Chen JL, Chang CH, Tsai JW (2018) Gli2 rescues delays in brain development induced by Kif3a dysfunction. Cereb Cortex 29:751–764. CrossRefGoogle Scholar
  51. 51.
    Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300(4):C723–C742. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mitsumori K, Maita K, Shirasu Y (1981) An ultrastructural study of spinal nerve roots and dorsal root ganglia in aging rats with spontaneous radiculoneuropathy. Vet Pathol 18(6):714–726. CrossRefPubMedGoogle Scholar
  53. 53.
    Samorajski T, Ordy JM, Rady-Reimer P (1968) Lipofuscin pigment accumulation in the nervous system of aging mice. Anat Rec 160(3):555–574. CrossRefPubMedGoogle Scholar
  54. 54.
    Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480CrossRefGoogle Scholar
  55. 55.
    Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K (2013) Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta 1833(3):503–510. CrossRefPubMedGoogle Scholar
  56. 56.
    Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. CrossRefPubMedGoogle Scholar
  57. 57.
    Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nelson MP, Tse TE, O’Quinn DB, Percival SM, Jaimes EA, Warnock DG, Shacka JJ (2014) Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice. Acta Neuropathol Commun 2(1):20. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997. CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin Shanghai 41(6):437–445CrossRefGoogle Scholar
  61. 61.
    Li JK, Fei P, Li Y, Huang QJ, Zhang Q, Zhang X, Rao YQ, Li J et al (2016) Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis. Sci Rep 6:26564. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wu Q, Sun X, Yue W, Lu T, Ruan Y, Chen T, Zhang D (2016) RAB18, a protein associated with Warburg micro syndrome, controls neuronal migration in the developing cerebral cortex. Mol Brain 9:19. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Granger N (2011) Canine inherited motor and sensory neuropathies: an updated classification in 22 breeds and comparison to Charcot-Marie-tooth disease. Vet J 188(3):274–285. CrossRefPubMedGoogle Scholar
  64. 64.
    Mhlanga-Mutangadura T, Johnson GS, Schnabel RD, Taylor JF, Johnson GC, Katz ML, Shelton GD, Lever TE et al (2016) A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in black Russian terrier dogs. Neurobiol Dis 86:75–85. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fang-Shin Nian
    • 1
    • 2
  • Lei-Li Li
    • 1
  • Chih-Ya Cheng
    • 3
  • Pei-Chun Wu
    • 4
    • 5
  • You-Tai Lin
    • 4
  • Cheng-Yung Tang
    • 4
  • Bo-Shiun Ren
    • 1
  • Chin-Yin Tai
    • 6
  • Ming-Ji Fann
    • 4
    • 5
  • Lung-Sen Kao
    • 4
    • 5
  • Chen-Jee Hong
    • 5
    • 7
    • 8
  • Jin-Wu Tsai
    • 1
    • 5
    • 9
    Email author
  1. 1.Institute of Brain ScienceNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Program in Molecular MedicineNational Yang-Ming University and Academia SinicaTaipeiTaiwan
  3. 3.Department of PediatricsTaipei Veterans General HospitalTaipeiTaiwan
  4. 4.Department of Life Sciences and Institute of Genome SciencesNational Yang-Ming UniversityTaipeiTaiwan
  5. 5.Brain Research CenterNational Yang-Ming UniversityTaipeiTaiwan
  6. 6.Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
  7. 7.Division of Psychiatry, School of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  8. 8.Department of PsychiatryTaipei Veterans General HospitalTaipeiTaiwan
  9. 9.Biopotonics and Molecular Imaging Research CenterNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations