Advertisement

Neuroendocrine Effects of Lactation and Hormone-Gene-Environment Interactions

  • Kirsten Gust
  • Christina Caccese
  • Amanda Larosa
  • Tuong-Vi NguyenEmail author
Article
  • 59 Downloads

Abstract

While correlational studies suggest that lactation may confer a certain level of protection from mental illness, this benefit is not uniformly expressed in all women who choose to breastfeed. We propose here that the neuroendocrine “resetting” induced by lactation may predispose toward positive affect states in a subset of hormone-sensitive mothers, with hormone-gene and hormone-environment interactions determining the ultimate psychological outcome. We find evidence to suggest that higher secretion of prolactin/oxytocin as well as lower secretion of vasopression/androgens in lactating mothers may protect against postpartum depression and anxiety, decrease levels of irritability, and optimize stress responses. On the other hand, while the abrupt withdrawal of estradiol/progesterone in the immediate postpartum period tends to be associated with adverse psychological outcomes, the chronic suppression of estrogens/progestogens induced by lactation may have antidepressant and anxiolytic effects over time. Finally, the hypo-cortisolemic state seen in lactating mothers appears to be associated with improved stress reactivity and circadian rhythms. We also discuss hormone-gene and hormone-environment interactions likely to modulate any potential psychological benefits related to lactation and focus on those factors that are either easy to screen for or known to be modifiable. In sum, neuroendocrine alterations induced by lactation may play a key role in determining reproductive psychiatric risk in a subset of hormone-sensitive women. Using these neuroendocrine factors as an individualized index of risk can help in devising targeted programs to support these women in pursuing lactation or, for those not able or willing, accessing psychological interventions in a timely manner.

Keywords

Breastfeeding Postpartum depression Estrogens Androgens Cortisol Prolactin 

Notes

Funding Information

TVN is funded by Fonds de la recherche en santé du Quebec (FRQS) and Canadian Institutes of Health Research (CIHR) as well as the Montreal General Hospital (MGH) and McGill University Health Center (MUHC) Foundations.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    de Greef WJ, Plotsky PM, Neill JD (1981) Dopamine levels in hypophysial stalk plasma and prolactin levels in peripheral plasma of the lactating rat: effects of a simulated suckling stimulus. Neuroendocrinology 32(4):229–233.  https://doi.org/10.1159/000123164 CrossRefPubMedGoogle Scholar
  2. 2.
    Uvnas-Moberg K, Eriksson M (1996) Breastfeeding: physiological, endocrine and behavioural adaptations caused by oxytocin and local neurogenic activity in the nipple and mammary gland. Acta paediatrica (Oslo, Norway : 1992) 85(5):525–530CrossRefGoogle Scholar
  3. 3.
    Amico JA, Johnston JM, Vagnucci AH (1994) Suckling-induced attenuation of plasma cortisol concentrations in postpartum lactating women. Endocr Res 20(1):79–87CrossRefGoogle Scholar
  4. 4.
    Thayer ZM, Agustin Bechayda S, Kuzawa CW (2018) Circadian cortisol dynamics across reproductive stages and in relation to breastfeeding in the Philippines. Am J Hum Biol.  https://doi.org/10.1002/ajhb.23115 CrossRefGoogle Scholar
  5. 5.
    Garfield CF, Simon CD, Rutsohn J, Lee YS (2016) Paternal and maternal testosterone in parents of NICU infants transitioning home. The Journal of perinatal & neonatal nursing 30(4):349–358.  https://doi.org/10.1097/jpn.0000000000000218 CrossRefGoogle Scholar
  6. 6.
    Jeppsson S, Rannevik G, Thorell JI, Wide L (1977) Influence of LH/FSH releasing hormone (LRH) on the basal secretion of gonadotrophins in relation to plasma levels of oestradiol, progesterone and prolactin during the post-partum period in lactating and in non-lactating women. Acta Endocrinol 84(4):713–728CrossRefGoogle Scholar
  7. 7.
    Shaaban MM, Sayed GH, Ghaneimah SA (1987) The recovery of ovarian function during breast-feeding. J Steroid Biochem 27(4–6):1043–1052CrossRefGoogle Scholar
  8. 8.
    Stuebe AM, Rich-Edwards JW (2009) The reset hypothesis: lactation and maternal metabolism. Am J Perinatol 26(1):81–88.  https://doi.org/10.1055/s-0028-1103034 CrossRefPubMedGoogle Scholar
  9. 9.
    Stern JE, Armstrong WE (1998) Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J Neurosci 18(3):841–853CrossRefGoogle Scholar
  10. 10.
    Stern JE, Armstrong WE (1996) Changes in the electrical properties of supraoptic nucleus oxytocin and vasopressin neurons during lactation. J Neurosci 16(16):4861–4871CrossRefGoogle Scholar
  11. 11.
    Smith MS, True C, Grove KL (2010) The neuroendocrine basis of lactation-induced suppression of GnRH: Role of kisspeptin and leptin. Brain Res 1364:139–152.  https://doi.org/10.1016/j.brainres.2010.08.038 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mezzacappa ES, Guethlein W, Katkin ES (2002) Breast-feeding and maternal health in online mothers. Ann Behav Med 24(4):299–309.  https://doi.org/10.1207/S15324796ABM2404_06 CrossRefPubMedGoogle Scholar
  13. 13.
    Maguire J (2019) Neuroactive steroids and GABAergic involvement in the neuroendocrine dysfunction associated with major depressive disorder and postpartum depression. Front Cell Neurosci 13:83.  https://doi.org/10.3389/fncel.2019.00083 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cox EQ, Stuebe A, Pearson B, Grewen K, Rubinow D, Meltzer-Brody S (2015) Oxytocin and HPA stress axis reactivity in postpartum women. Psychoneuroendocrinology 55:164–172.  https://doi.org/10.1016/j.psyneuen.2015.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kendell RE, Chalmers JC, Platz C (1987) Epidemiology of puerperal psychoses. Br J Psychiatry 150:662–673.  https://doi.org/10.1192/bjp.150.5.662 CrossRefPubMedGoogle Scholar
  16. 16.
    Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, Bahl R, Martines J (2015) Breastfeeding and maternal health outcomes: a systematic review and meta-analysis. Acta Paediatr 104(S467):96–113.  https://doi.org/10.1111/apa.13102 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dias CC, Figueiredo B (2015) Breastfeeding and depression: a systematic review of the literature. J Affect Disord 171:142–154.  https://doi.org/10.1016/j.jad.2014.09.022 CrossRefGoogle Scholar
  18. 18.
    Wouk K, Tucker C, Pence BW, Meltzer-Brody S, Zvara B, Grewen K, Stuebe AM (2019) Positive emotions during infant feeding and breastfeeding outcomes. J hum Lact:890334419845646.  https://doi.org/10.1177/0890334419845646
  19. 19.
    Acromite MT, Mantzoros CS, Leach RE, Hurwitz J, Dorey LG (1999) Androgens in preeclampsia. Am J Obstet Gynecol 180(1 Pt 1):60–63.  https://doi.org/10.1016/s0002-9378(99)70150-x CrossRefPubMedGoogle Scholar
  20. 20.
    Borra C, Iacovou M, Sevilla A (2015) New evidence on breastfeeding and postpartum depression: the importance of understanding women's intentions. Matern Child Health J 19(4):897–907.  https://doi.org/10.1007/s10995-014-1591-z CrossRefPubMedGoogle Scholar
  21. 21.
    Mezzacappa ES, Katlin ES (2002) Breast-feeding is associated with reduced perceived stress and negative mood in mothers. Health Psychol 21(2):187–193CrossRefGoogle Scholar
  22. 22.
    Kuhn NJ (1969) Specificity of progesterone inhibition of lactogenesis. J Endocrinol 45(4):615–616CrossRefGoogle Scholar
  23. 23.
    Erickson EN, Carter CS, Emeis CL (2019) Oxytocin, vasopressin and prolactin in new breastfeeding mothers: Relationship to clinical characteristics and infant weight loss. J hum Lact:890334419838225.  https://doi.org/10.1177/0890334419838225
  24. 24.
    Chiodera P, Salvarani C, Bacchi-Modena A, Spallanzani R, Cigarini C, Alboni A, Gardini E, Coiro V (1991) Relationship between plasma profiles of oxytocin and adrenocorticotropic hormone during suckling or breast stimulation in women. Horm Res 35(3–4):119–123.  https://doi.org/10.1159/000181886 CrossRefPubMedGoogle Scholar
  25. 25.
    Altemus M, Deuster PA, Galliven E, Carter CS, Gold PW (1995) Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. The Journal of Clinical Endocrinology & Metabolism 80(10):2954–2959.  https://doi.org/10.1210/jcem.80.10.7559880 CrossRefGoogle Scholar
  26. 26.
    Heinrichs M, Meinlschmidt G, Neumann I, Wagner S, Kirschbaum C, Ehlert U, Hellhammer DH (2001) Effects of suckling on hypothalamic-pituitary-adrenal Axis responses to psychosocial stress in postpartum lactating women. The Journal of Clinical Endocrinology & Metabolism 86(10):4798–4804.  https://doi.org/10.1210/jcem.86.10.7919 CrossRefGoogle Scholar
  27. 27.
    Simon CD, Adam EK, McKinney CO, Krohn JB, Shalowitz MU (2016) Breastfeeding, bed-sharing, and maternal cortisol. Clin Pediatr (Phila) 55(5):470–478.  https://doi.org/10.1177/0009922815601981 CrossRefGoogle Scholar
  28. 28.
    Said S, Johansson ED, Gemzell C (1973) Serum oestrogens and progesterone after normal delivery. J Obstet Gynaecol Br Commonw 80(6):542–545CrossRefGoogle Scholar
  29. 29.
    Fleming AS, Ruble D, Krieger H, Wong PY (1997) Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Horm Behav 31(2):145–158.  https://doi.org/10.1006/hbeh.1997.1376 CrossRefPubMedGoogle Scholar
  30. 30.
    Tagawa N, Hidaka Y, Takano T, Shimaoka Y, Kobayashi Y, Amino N (2004) Serum concentrations of dehydroepiandrosterone and dehydroepiandrosterone sulfate and their relation to cytokine production during and after normal pregnancy. Clin Chim Acta 340(1–2):187–193CrossRefGoogle Scholar
  31. 31.
    Kochenour NK (1980) Lactation suppression. Clin Obstet Gynecol 23(4):1045–1059CrossRefGoogle Scholar
  32. 32.
    Vanky E, Isaksen H, Moen MH, Carlsen SM (2008) Breastfeeding in polycystic ovary syndrome. Acta Obstet Gynecol Scand 87(5):531–535.  https://doi.org/10.1080/00016340802007676 CrossRefPubMedGoogle Scholar
  33. 33.
    Carlsen SM, Jacobsen G, Vanky E (2010) Mid-pregnancy androgen levels are negatively associated with breastfeeding. Acta Obstet Gynecol Scand 89(1):87–94.  https://doi.org/10.3109/00016340903318006 CrossRefPubMedGoogle Scholar
  34. 34.
    Woolhouse H, James J, Gartland D, McDonald E, Brown SJ (2016) Maternal depressive symptoms at three months postpartum and breastfeeding rates at six months postpartum: implications for primary care in a prospective cohort study of primiparous women in Australia. Women Birth 29(4):381–387.  https://doi.org/10.1016/j.wombi.2016.05.008 CrossRefPubMedGoogle Scholar
  35. 35.
    Dunn S, Davies B, McCleary L, Edwards N, Gaboury I (2006) The relationship between vulnerability factors and breastfeeding outcome. J Obstet Gynecol Neonatal Nurs 35(1):87–97.  https://doi.org/10.1111/j.1552-6909.2006.00005.x CrossRefPubMedGoogle Scholar
  36. 36.
    Galler JR, Harrison RH, Ramsey F, Chawla S, Taylor J (2006) Postpartum feeding attitudes, maternal depression, and breastfeeding in Barbados. Infant Behav Dev 29(2):189–203.  https://doi.org/10.1016/j.infbeh.2005.10.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Galler JR, Harrison RH, Biggs MA, Ramsey F, Forde V (1999) Maternal moods predict breastfeeding in Barbados. J Dev Behav Pediatr 20(2):80–87CrossRefGoogle Scholar
  38. 38.
    Henderson JJ, Evans SF, Straton JA, Priest SR, Hagan R (2003) Impact of postnatal depression on breastfeeding duration. Birth 30(3):175–180CrossRefGoogle Scholar
  39. 39.
    Dennis CL, McQueen K (2009) The relationship between infant-feeding outcomes and postpartum depression: a qualitative systematic review. Pediatrics 123(4):e736–e751.  https://doi.org/10.1542/peds.2008-1629 CrossRefPubMedGoogle Scholar
  40. 40.
    Watkins S, Meltzer-Brody S, Zolnoun D, Stuebe A (2011) Early breastfeeding experiences and postpartum depression. Obstet Gynecol 118(2 Pt 1):214–221.  https://doi.org/10.1097/AOG.0b013e3182260a2d CrossRefPubMedGoogle Scholar
  41. 41.
    Thome M, Alder EM, Ramel A (2006) A population-based study of exclusive breastfeeding in Icelandic women: is there a relationship with depressive symptoms and parenting stress? Int J Nurs Stud 43(1):11–20.  https://doi.org/10.1016/j.ijnurstu.2004.10.009 CrossRefPubMedGoogle Scholar
  42. 42.
    Papinczak TA, Turner CT (2000) An analysis of personal and social factors influencing initiation and duration of breastfeeding in a large Queensland maternity hospital. Breastfeed Rev 8(1):25–33PubMedGoogle Scholar
  43. 43.
    Ystrom E (2012) Breastfeeding cessation and symptoms of anxiety and depression: a longitudinal cohort study. BMC Pregnancy Childbirth 12:36.  https://doi.org/10.1186/1471-2393-12-36 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu F, Li Z, Binns C, Bonello M, Austin MP, Sullivan E (2014) Does infant feeding method impact on maternal mental health? Breastfeed Med 9(4):215–221.  https://doi.org/10.1089/bfm.2013.0142 CrossRefPubMedGoogle Scholar
  45. 45.
    Hughes O, Mohamad MM, Doyle P, Burke G (2018) The significance of breastfeeding on sleep patterns during the first 48 hours postpartum for first time mothers. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology 38(3):316–320.  https://doi.org/10.1080/01443615.2017.1353594 CrossRefGoogle Scholar
  46. 46.
    Doan T, Gay CL, Kennedy HP, Newman J, Lee KA (2014) Nighttime breastfeeding behavior is associated with more nocturnal sleep among first-time mothers at one month postpartum. J Clin Sleep Med 10(3):313–319.  https://doi.org/10.5664/jcsm.3538 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Doan T, Gardiner A, Gay CL, Lee KA (2007) Breast-feeding increases sleep duration of new parents. The Journal of perinatal & neonatal nursing 21(3):200–206.  https://doi.org/10.1097/01.JPN.0000285809.36398.1b CrossRefGoogle Scholar
  48. 48.
    Okun ML (2015) Sleep and postpartum depression. Current opinion in psychiatry 28(6):490–496.  https://doi.org/10.1097/yco.0000000000000206 CrossRefPubMedGoogle Scholar
  49. 49.
    Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15(8):1381–1389CrossRefGoogle Scholar
  50. 50.
    Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25(6):1804–1814.  https://doi.org/10.1111/j.1460-9568.2007.05416.x CrossRefPubMedGoogle Scholar
  51. 51.
    Grattan DR (2015) 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226(2):T101–T122.  https://doi.org/10.1530/JOE-15-0213 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Romano N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, Tronche F, Bonnefont X et al (2013) Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 33(10):4424–4433.  https://doi.org/10.1523/JNEUROSCI.4415-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Schmidt KA, Palmer BA, Frye MA (2016) Mixed mania associated with cessation of breastfeeding. International Journal of Bipolar Disorders 4(1):18.  https://doi.org/10.1186/s40345-016-0059-z CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Blyton DM, Sullivan CE, Edwards N (2002) Lactation is associated with an increase in slow-wave sleep in women. J Sleep Res 11(4):297–303CrossRefGoogle Scholar
  55. 55.
    Feldman R, Weller A, Zagoory-Sharon O, Levine A (2007) Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychol Sci 18(11):965–970.  https://doi.org/10.1111/j.1467-9280.2007.02010.x CrossRefPubMedGoogle Scholar
  56. 56.
    Martins C, Gaffan EA (2000) Effects of early maternal depression on patterns of infant-mother attachment: a meta-analytic investigation. J Child Psychol Psychiatry 41(6):737–746CrossRefGoogle Scholar
  57. 57.
    Uvnäs-Mobcrg K, Widström AM, Nissen E, Björvell H (1990) Personality traits in women 4 days postpartum and their correlation with plasma levels of oxytocin and prolactin. J Psychosom Obstet Gynecol 11(4):261–273.  https://doi.org/10.3109/01674829009084422 CrossRefGoogle Scholar
  58. 58.
    Arletti R, Bertolini A (1987) Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 41(14):1725–1730CrossRefGoogle Scholar
  59. 59.
    Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29(7):2259–2271.  https://doi.org/10.1523/JNEUROSCI.5593-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Uvnas-Moberg K, Bjokstrand E, Hillegaart V, Ahlenius S (1999) Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology 142(1):95–101CrossRefGoogle Scholar
  61. 61.
    Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 54(12):1389–1398CrossRefGoogle Scholar
  62. 62.
    Uvnas-Moberg K (1998) Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 23(8):819–835CrossRefGoogle Scholar
  63. 63.
    Labuschagne I, Phan KL, Wood A, Angstadt M, Chua P, Heinrichs M, Stout JC, Nathan PJ (2010) Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology 35(12):2403–2413.  https://doi.org/10.1038/npp.2010.123 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Legros JJ (2001) Inhibitory effect of oxytocin on corticotrope function in humans: are vasopressin and oxytocin ying-yang neurohormones? Psychoneuroendocrinology 26(7):649–655CrossRefGoogle Scholar
  65. 65.
    Quirin M, Kuhl J, Dusing R (2011) Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities. Psychoneuroendocrinology 36(6):898–904.  https://doi.org/10.1016/j.psyneuen.2010.12.005 CrossRefPubMedGoogle Scholar
  66. 66.
    Cardoso C, Ellenbogen MA, Orlando MA, Bacon SL, Joober R (2013) Intranasal oxytocin attenuates the cortisol response to physical stress: a dose-response study. Psychoneuroendocrinology 38(3):399–407.  https://doi.org/10.1016/j.psyneuen.2012.07.013 CrossRefPubMedGoogle Scholar
  67. 67.
    Niwayama R, Nishitani S, Takamura T, Shinohara K, Honda S, Miyamura T, Nakao Y, Oishi K et al (2017) Oxytocin mediates a calming effect on postpartum mood in primiparous mothers. Breastfeed Med 12:103–109.  https://doi.org/10.1089/bfm.2016.0052 CrossRefPubMedGoogle Scholar
  68. 68.
    Newton M, Newton NR (1948) The let-down reflex in human lactation. J Pediatr 33(6):698–704CrossRefGoogle Scholar
  69. 69.
    Stuebe AM, Grewen K, Pedersen CA, Propper C (2002) Meltzer-Brody S (2012) failed lactation and perinatal depression: common problems with shared neuroendocrine mechanisms? J Women's Health 21(3):264–272.  https://doi.org/10.1089/jwh.2011.3083 CrossRefGoogle Scholar
  70. 70.
    Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35(11):649–659.  https://doi.org/10.1016/j.tins.2012.08.004 CrossRefPubMedGoogle Scholar
  71. 71.
    Petrovic P, Kalisch R, Singer T, Dolan RJ (2008) Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci 28(26):6607–6615.  https://doi.org/10.1523/jneurosci.4572-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Thompson RR, George K, Walton JC, Orr SP, Benson J (2006) Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci U S A 103(20):7889–7894.  https://doi.org/10.1073/pnas.0600406103 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Schiller CE, Meltzer-Brody S, Rubinow DR (2015) The role of reproductive hormones in postpartum depression. CNS Spectr 20(1):48–59.  https://doi.org/10.1017/S1092852914000480 CrossRefPubMedGoogle Scholar
  74. 74.
    Wharton W, Gleason CE, Olson SR, Carlsson CM, Asthana S (2012) Neurobiological underpinnings of the estrogen - mood relationship. Curr Psychiatr Rev 8(3):247–256.  https://doi.org/10.2174/157340012800792957 CrossRefGoogle Scholar
  75. 75.
    Gordon JL, Girdler SS, Meltzer-Brody SE, Stika CS, Thurston RC, Clark CT, Prairie BA, Moses-Kolko E et al (2015) Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry 172(3):227–236.  https://doi.org/10.1176/appi.ajp.2014.14070918 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Vamvakopoulos NC, Chrousos GP (1993) Structural organization of the 5′ flanking region of the human corticotropin releasing hormone gene. DNA Seq 4(3):197–206CrossRefGoogle Scholar
  77. 77.
    Kinlein SA, Wilson CD, Karatsoreos IN (2015) Dysregulated hypothalamic–pituitary–adrenal axis function contributes to altered endocrine and neurobehavioral responses to acute stress. Frontiers in Psychiatry 6(31).  https://doi.org/10.3389/fpsyt.2015.00031
  78. 78.
    Sundström Poromaa I, Comasco E, Bäckström T, Bixo M, Jensen P, Frokjaer VG (2019) Negative association between allopregnanolone and cerebral serotonin transporter binding in healthy women of fertile age. Front Psychol 9(2767).  https://doi.org/10.3389/fpsyg.2018.02767
  79. 79.
    Parizek A, Mikesova M, Jirak R, Hill M, Koucky M, Paskova A, Velikova M, Adamcova K et al (2014) Steroid hormones in the development of postpartum depression. Physiol Res 63(Suppl 2):S277–S282PubMedGoogle Scholar
  80. 80.
    Aswathi A, Rajendiren S, Nimesh A, Philip RR, Kattimani S, Jayalakshmi D, Ananthanarayanan PH, Dhiman P (2015) High serum testosterone levels during postpartum period are associated with postpartum depression. Asian J Psychiatr 17:85–88.  https://doi.org/10.1016/j.ajp.2015.08.008 CrossRefPubMedGoogle Scholar
  81. 81.
    Hohlagschwandtner M, Husslein P, Klier C, Ulm B (2001) Correlation between serum testosterone levels and peripartal mood states. Acta Obstet Gynecol Scand 80(4):326–330CrossRefGoogle Scholar
  82. 82.
    Marrs CR, Ferraro DP, Cross CL, Rogers SL (2009) A potential role for adrenal androgens in postpartum psychiatric distress. Eur J Obstet Gynecol Reprod Biol 143(2):127–128.  https://doi.org/10.1016/j.ejogrb.2008.12.008 CrossRefPubMedGoogle Scholar
  83. 83.
    Fu M, Zhang L, Ahmed A, Plaut K, Haas DM, Szucs K, Casey TM (2015) Does circadian disruption play a role in the metabolic–hormonal link to delayed lactogenesis II? Frontiers in Nutrition 2(4).  https://doi.org/10.3389/fnut.2015.00004
  84. 84.
    Forty L, Jones L, Macgregor S, Caesar S, Cooper C, Hough A, Dean L, Dave S et al (2006) Familiarity of postpartum depression in unipolar disorder: results of a family study. Am J Psychiatry 163(9):1549–1553.  https://doi.org/10.1176/ajp.2006.163.9.1549 CrossRefPubMedGoogle Scholar
  85. 85.
    Kimmel M, Hess E, Roy PS, Palmer JT, Meltzer-Brody S, Meuchel JM, Bost-Baxter E, Payne JL (2015) Family history, not lack of medication use, is associated with the development of postpartum depression in a high-risk sample. Arch Womens Ment Health 18(1):113–121.  https://doi.org/10.1007/s00737-014-0432-9 CrossRefPubMedGoogle Scholar
  86. 86.
    Murphy-Eberenz K, Zandi PP, March D, Crowe RR, Scheftner WA, Alexander M, McInnis MG, Coryell W et al (2006) Is perinatal depression familial? J Affect Disord 90(1):49–55.  https://doi.org/10.1016/j.jad.2005.10.006 CrossRefPubMedGoogle Scholar
  87. 87.
    Payne JL, MacKinnon DF, Mondimore FM, McInnis MG, Schweizer B, Zamoiski RB, McMahon FJ, Nurnberger JI Jr et al (2008) Familial aggregation of postpartum mood symptoms in bipolar disorder pedigrees. Bipolar Disord 10(1):38–44.  https://doi.org/10.1111/j.1399-5618.2008.00455.x CrossRefPubMedGoogle Scholar
  88. 88.
    Bauer AE, Maegbaek ML, Liu X, Wray NR, Sullivan PF, Miller WC, Meltzer-Brody S, Munk-Olsen T (2018) Familiality of psychiatric disorders and risk of postpartum psychiatric episodes: a population-based cohort study. Am J Psychiatry 175(8):783–791.  https://doi.org/10.1176/appi.ajp.2018.17111184 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Perich TA, Roberts G, Frankland A, Sinbandhit C, Meade T, Austin MP, Mitchell PB (2017) Clinical characteristics of women with reproductive cycle-associated bipolar disorder symptoms. The Australian and New Zealand journal of psychiatry 51(2):161–167.  https://doi.org/10.1177/0004867416670015 CrossRefPubMedGoogle Scholar
  90. 90.
    Teatero ML, Mazmanian D, Sharma V (2014) Effects of the menstrual cycle on bipolar disorder. Bipolar Disord 16(1):22–36.  https://doi.org/10.1111/bdi.12138 CrossRefPubMedGoogle Scholar
  91. 91.
    Buttner MM, Mott SL, Pearlstein T, Stuart S, Zlotnick C, O'Hara MW (2013) Examination of premenstrual symptoms as a risk factor for depression in postpartum women. Arch Womens Ment Health 16(3):219–225.  https://doi.org/10.1007/s00737-012-0323-x CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lee YJ, Yi SW, Ju DH, Lee SS, Sohn WS, Kim IJ (2015) Correlation between postpartum depression and premenstrual dysphoric disorder: single center study. Obstetrics & gynecology science 58(5):353–358.  https://doi.org/10.5468/ogs.2015.58.5.353 CrossRefGoogle Scholar
  93. 93.
    Payne JL, Palmer JT, Joffe H (2009) A reproductive subtype of depression: Conceptualizing models and moving toward etiology. Harvard review of psychiatry 17(2):72–86.  https://doi.org/10.1080/10673220902899706 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Couto TC, Brancaglion MY, Alvim-Soares A, Moreira L, Garcia FD, Nicolato R, Aguiar RA, Leite HV et al (2015) Postpartum depression: a systematic review of the genetics involved. World journal of psychiatry 5(1):103–111.  https://doi.org/10.5498/wjp.v5.i1.103 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Peng Q, Yan H, Wen Y, Lai C, Shi L (2018) Association between NR3C1 rs41423247 polymorphism and depression: a PRISMA-compliant meta-analysis. Medicine 97(39):e12541.  https://doi.org/10.1097/md.0000000000012541 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Engineer N, Darwin L, Nishigandh D, Ngianga-Bakwin K, Smith SC, Grammatopoulos DK (2013) Association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants and risk for depression during pregnancy and post-partum. J Psychiatr Res 47(9):1166–1173.  https://doi.org/10.1016/j.jpsychires.2013.05.003 CrossRefPubMedGoogle Scholar
  97. 97.
    Skalkidou A, Poromaa IS, Iliadis SI, Huizink AC, Hellgren C, Freyhult E, Comasco E (2019) Stress-related genetic polymorphisms in association with peripartum depression symptoms and stress hormones: a longitudinal population-based study. Psychoneuroendocrinology 103:296–305.  https://doi.org/10.1016/j.psyneuen.2019.02.002 CrossRefPubMedGoogle Scholar
  98. 98.
    Murgatroyd CA, Taliefar M, Bradburn S, Carini LM, Babb JA, Nephew BC (2015) Social stress during lactation, depressed maternal care, and neuropeptidergic gene expression. Behavioural pharmacology 26 (7 spec no):642-653.  https://doi.org/10.1097/fbp.0000000000000147 CrossRefGoogle Scholar
  99. 99.
    Zelkowitz P, Gold I, Feeley N, Hayton B, Carter CS, Tulandi T, Abenhaim HA, Levin P (2014) Psychosocial stress moderates the relationships between oxytocin, perinatal depression, and maternal behavior. Horm Behav 66(2):351–360.  https://doi.org/10.1016/j.yhbeh.2014.06.014 CrossRefPubMedGoogle Scholar
  100. 100.
    Tu MT, Lupien SJ, Walker C-D (2006) Diurnal salivary cortisol levels in postpartum mothers as a function of infant feeding choice and parity. Psychoneuroendocrinology 31(7):812–824.  https://doi.org/10.1016/j.psyneuen.2006.03.006 CrossRefGoogle Scholar
  101. 101.
    Kuzawa CW, Gettler LT, Huang YY, McDade TW (2010) Mothers have lower testosterone than non-mothers: evidence from the Philippines. Horm Behav 57(4–5):441–447.  https://doi.org/10.1016/j.yhbeh.2010.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG (2017) The genetics of circadian rhythms, sleep and health. Hum Mol Genet 26(R2):R128–R138.  https://doi.org/10.1093/hmg/ddx240 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23(5):888–894.  https://doi.org/10.1016/j.conb.2013.03.008 CrossRefGoogle Scholar
  104. 104.
    Mosko S, Richard C, McKenna J (1997) Maternal sleep and arousals during bedsharing with infants. Sleep 20(2):142–150.  https://doi.org/10.1093/sleep/20.2.142 CrossRefPubMedGoogle Scholar
  105. 105.
    Marinelli KA, Ball HL, McKenna JJ, Blair PS (2019) An integrated analysis of maternal-infant sleep, breastfeeding, and sudden infant death syndrome research supporting a balanced discourse. J Hum Lact 35(3):510–520.  https://doi.org/10.1177/0890334419851797 CrossRefPubMedGoogle Scholar
  106. 106.
    Cohen Engler A, Hadash A, Shehadeh N, Pillar G (2012) Breastfeeding may improve nocturnal sleep and reduce infantile colic: potential role of breast milk melatonin. Eur J Pediatr 171(4):729–732.  https://doi.org/10.1007/s00431-011-1659-3 CrossRefPubMedGoogle Scholar
  107. 107.
    Parry BL, Meliska CJ, Sorenson DL, Lopez AM, Martinez LF, Nowakowski S, Elliott JA, Hauger RL et al (2008) Plasma melatonin circadian rhythm disturbances during pregnancy and postpartum in depressed women and women with personal or family histories of depression. Am J Psychiatry 165(12):1551–1558.  https://doi.org/10.1176/appi.ajp.2008.08050709 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Posadas ES, Meliska CJ, Martinez LF, Sorenson DL, Lopez AM, Nowakowski S, Hauger R (2002) Parry BL (2012) the relationship of nocturnal melatonin to estradiol and progesterone in depressed and healthy pregnant women. J Women's Health 21(6):649–655.  https://doi.org/10.1089/jwh.2011.3191 CrossRefGoogle Scholar
  109. 109.
    Allolio B, Hoffmann J, Linton EA, Winkelmann W, Kusche M, Schulte HM (1990) Diurnal salivary cortisol patterns during pregnancy and after delivery: relationship to plasma corticotrophin-releasing-hormone. Clin Endocrinol 33(2):279–289CrossRefGoogle Scholar
  110. 110.
    Skouteris H, Germano C, Wertheim EH, Paxton SJ, Milgrom J (2008) Sleep quality and depression during pregnancy: a prospective study. J Sleep Res 17(2):217–220.  https://doi.org/10.1111/j.1365-2869.2008.00655.x CrossRefPubMedGoogle Scholar
  111. 111.
    Clemens JW, Jarzynka MJ, Witt-Enderby PA (2001) Down-regulation of mt1 melatonin receptors in rat ovary following estrogen exposure. Life Sci 69(1):27–35.  https://doi.org/10.1016/S0024-3205(01)01097-9 CrossRefGoogle Scholar
  112. 112.
    Deurveilher S, Rusak B, Semba K (2009) Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats. Sleep 32(7):865–877PubMedPubMedCentralGoogle Scholar
  113. 113.
    Karatsoreos IN, Wang A, Sasanian J, Silver R (2007) A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus. Endocrinology 148(11):5487–5495.  https://doi.org/10.1210/en.2007-0775 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Lancel M, Faulhaber J, Holsboer F, Rupprecht R (1996) Progesterone induces changes in sleep comparable to those of agonistic GABAA receptor modulators. American Journal of Physiology-Endocrinology and Metabolism 271(4):E763–E772.  https://doi.org/10.1152/ajpendo.1996.271.4.E763 CrossRefGoogle Scholar
  115. 115.
    Okatani Y, Morioka N, Hayashi K (1999) Changes in nocturnal pineal melatonin synthesis during the perimenopausal period: relation to estrogen levels in female rats. J Pineal Res 27(2):65–72.  https://doi.org/10.1111/j.1600-079X.1999.tb00598.x CrossRefPubMedGoogle Scholar
  116. 116.
    Lord C, Sekerovic Z, Carrier J (2014) Sleep regulation and sex hormones exposure in men and women across adulthood. Pathol Biol (Paris) 62(5):302–310.  https://doi.org/10.1016/j.patbio.2014.07.005 CrossRefGoogle Scholar
  117. 117.
    Mong JA (1688) Cusmano DM (2016) sex differences in sleep: impact of biological sex and sex steroids. Philos Trans R Soc Lond Ser B Biol Sci 371:20150110.  https://doi.org/10.1098/rstb.2015.0110 CrossRefGoogle Scholar
  118. 118.
    Lawrence RA, Lawrence RM (2016) Breastfeeding : a guide for the medical profession. Eighth edition. edn, Elsevier, Philadelphia, PAGoogle Scholar
  119. 119.
    Gallaher KGH, Slyepchenko A, Frey BN, Urstad K, Dorheim SK (2018) The role of circadian rhythms in postpartum sleep and mood. Sleep Med Clin 13(3):359–374.  https://doi.org/10.1016/j.jsmc.2018.04.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Reproductive Psychiatry Program, Departments of Psychiatry and Obstetrics-GynecologyMcGill University Health CentreQCCanada
  2. 2.Department of PsychiatryMcGill UniversityQCCanada
  3. 3.Integrated Program in NeuroscienceMcGill UniversityQCCanada
  4. 4.Neuroscience DivisionDouglas Mental Health University InstituteQCCanada

Personalised recommendations