Advertisement

Deregulated Local Protein Synthesis in the Brain Synaptosomes of a Mouse Model for Alzheimer’s Disease

  • Carolina Cefaliello
  • Eduardo Penna
  • Carmela Barbato
  • Giuseppina Di Ruberto
  • Maria Pina Mollica
  • Giovanna Trinchese
  • Luisa Cigliano
  • Tiziana Borsello
  • Jong Tai Chun
  • Antonio Giuditta
  • Carla Perrone-Capano
  • Maria Concetta MiniaciEmail author
  • Marianna CrispinoEmail author
Article

Abstract

While protein synthesis in neurons is largely attributed to cell body and dendrites, the capability of synaptic regions to synthesize new proteins independently of the cell body has been widely demonstrated as an advantageous mechanism subserving synaptic plasticity. Thus, the contribution that local protein synthesis at synapses makes to physiology and pathology of brain plasticity may be more prevalent than initially thought. In this study, we tested if local protein synthesis at synapses is deregulated in the brains of TgCRND8 mice, an animal model for Alzheimer’s disease (AD) overexpressing mutant human amyloid precursor protein (APP). To this end, we used synaptosomes as a model system to study the functionality of the synaptic regions in mouse brains. Our results showed that, while TgCRND8 mice exhibit early signs of brain inflammation and deficits in learning, the electrophoretic profile of newly synthesized proteins in their synaptosomes was subtly different from that of the control mice. Interestingly, APP itself was, in part, locally synthesized in the synaptosomes, underscoring the potential importance of local translation at synapses. More importantly, after the contextual fear conditioning, de novo synthesis of some individual proteins was significantly enhanced in the synaptosomes of control animals, but the TgCRND8 mice failed to display such synaptic modulation by training. Taken together, our results demonstrate that synaptic synthesis of proteins is impaired in the brain of a mouse model for AD, and raise the possibility that this deregulation may contribute to the early progression of the pathology.

Keywords

Local protein synthesis Synaptosomes Amyloid precursor protein Alzheimer’s disease Synaptic plasticity Learning 

Notes

Acknowledgments

The authors are grateful to Prof. Rita Santamaria from the Department of Pharmacy, University of Naples Federico II, for genotyping the mice and to Dr. Roberta Scognamiglio, Dr. Aurora Bracale, Dr. Fabiana Alfieri, and Dr. Ornella Smith from the Department of Biology, University of Naples Federico II, for technical assistance.

Funding Information

This work was supported by “Finanziamento Ricerca di Ateneo” from University of Naples Federico II and by POR Campania FESR 2014/2020 from Regione Campania (Project N. B61G18000470007).

Compliance with Ethical Standards

This research involves animals that were treated in strict accordance with the Institutional Guidelines complying with the Italian D.L. no. 116 of January 27, 1992 of Ministero della Salute and with the associated guidelines by the European Communities Council (2010/63/EU). The experimental protocols reported herein have been approved by the Institutional Animal Care and Use Committee (CSV) of University of Naples Federico II (377/2015-PR, 15/05/2015).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E (2002) Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 25:400–404CrossRefGoogle Scholar
  2. 2.
    Giuditta A, Chun JT, Eyman M, Cefaliello C, Bruno AP, Crispino M (2008) Local gene expression in axons and nerve endings: the glia-neuron unit. Physiol Rev 88:515–555.  https://doi.org/10.1152/physrev.00051.2006 CrossRefPubMedGoogle Scholar
  3. 3.
    Crispino M, Chun JT, Cefaliello C, Perrone Capano C, Giuditta A (2014) Local gene expression in nerve endings. Dev Neurobiol 74:279–291.  https://doi.org/10.1002/dneu.22109 CrossRefPubMedGoogle Scholar
  4. 4.
    Cioni JM, Koppers M, Holt CE (2018) Molecular control of local translation in axon development and maintenance. Curr Opin Neurobiol 51:86–94.  https://doi.org/10.1016/j.conb.2018.02.025 CrossRefPubMedGoogle Scholar
  5. 5.
    Costa CJ, Willis DE (2018) To the end of the line: axonal mRNA transport and local translation in health and neurodegenerative disease. Dev Neurobiol 78:209–220.  https://doi.org/10.1002/dneu.22555 CrossRefPubMedGoogle Scholar
  6. 6.
    Hafner AS, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM (2019) Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364. pii: eaau3644.  https://doi.org/10.1126/science.aau3644 CrossRefGoogle Scholar
  7. 7.
    Miniaci MC, Kim JH, Puthenveettil S, Si K, Zhu H, Kandel ER, Bailey CH (2008) Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 59:1024–1036.  https://doi.org/10.1016/j.neuron.2008.07.036 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131. pii: jcs196808. doi:  https://doi.org/10.1242/jcs.196808 CrossRefGoogle Scholar
  9. 9.
    Eyman M, Cefaliello C, Ferrara E, De Stefano R, Crispino M, Giuditta A (2007) Synaptosomal protein synthesis is selectively modulated by learning. Brain Res. 1132:148–157CrossRefGoogle Scholar
  10. 10.
    Eyman M, Cefaliello C, Mandile P, Piscopo S, Crispino M, Giuditta A (2013) Training old rats selectively modulates synaptosomal protein synthesis. J Neurosci Res 91:20–29.  https://doi.org/10.1002/jnr.23133 CrossRefPubMedGoogle Scholar
  11. 11.
    Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE (2016) Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92:479–492.  https://doi.org/10.1016/j.neuron.2016.09.040 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166:181–192.  https://doi.org/10.1016/j.cell.2016.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Akins MR, Berk-Rauch HE, Kwan KY, Mitchell ME, Shepard KA, Korsak LI, Stackpole EE, Warner-Schmidt JL et al (2017) Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Hum Mol Genet 26:192–209.  https://doi.org/10.1093/hmg/ddw381 CrossRefPubMedGoogle Scholar
  14. 14.
    Kar AN, Sun CY, Reichard K, Gervasi NM, Pickel J, Nakazawa K, Gioio AE, Kaplan BB (2014) Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol 74:333–350.  https://doi.org/10.1002/dneu.22141 CrossRefPubMedGoogle Scholar
  15. 15.
    Fallini C, Donlin-Asp PG, Rouanet JP, Bassell GJ, Rossoll W (2016) Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J Neurosci 36:3811–3820.  https://doi.org/10.1523/JNEUROSCI.2396-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rotem N, Magen I, Ionescu A, Gershoni-Emek N, Altman T, Costa CJ, Gradus T, Pasmanik-Chor M et al (2017) ALS along the axons - expression of coding and noncoding RNA differs in axons of ALS models. Sci Rep 7:44500.  https://doi.org/10.1038/srep44500 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baleriola J, Walker CA, Jean YY, Crary JF, Troy CM, Nagy PL, Hengst U (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158:1159–1172.  https://doi.org/10.1016/j.cell.2014.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403CrossRefGoogle Scholar
  19. 19.
    Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70.  https://doi.org/10.1111/ene.13439 CrossRefPubMedGoogle Scholar
  20. 20.
    Li K, Wei Q, Liu FF, Hu F, Xie AJ, Zhu LQ, Liu D (2018) Synaptic dysfunction in Alzheimer’s disease: Aβ, Tau, and epigenetic alterations. Mol Neurobiol 55:3021–3032.  https://doi.org/10.1007/s12035-017-0533-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N et al (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570CrossRefGoogle Scholar
  22. 22.
    Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22:735–742CrossRefGoogle Scholar
  23. 23.
    Cefaliello C, Eyman M, Melck D, De Stefano R, Ferrara E, Crispino M, Giuditta A (2014) Brain synaptosomes harbor more than one cytoplasmic system of protein synthesis. J Neurosci Res 92:1573–1580.  https://doi.org/10.1002/jnr.23435 CrossRefPubMedGoogle Scholar
  24. 24.
    Ferrara E, Cefaliello C, Eyman M, De Stefano R, Giuditta A, Crispino M (2009) Synaptic mRNAs are modulated by learning. J Neurosci Res 87:1960–1968.  https://doi.org/10.1002/jnr.22037 CrossRefPubMedGoogle Scholar
  25. 25.
    Russo R, Cattaneo F, Lippiello P, Cristiano C, Zurlo F, Castaldo M, Irace C, Borsello T et al (2018) Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer’s disease. Neurobiol Aging 68:123–133.  https://doi.org/10.1016/j.neurobiolaging.2018.02.025 CrossRefPubMedGoogle Scholar
  26. 26.
    Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30:188CrossRefGoogle Scholar
  27. 27.
    Wehner JM, Radcliffe RA (2004) Cued and contextual fear conditioning in mice. Curr Protoc Neurosci Chapter 8: Unit 8.5C.  https://doi.org/10.1002/0471142301.ns0805cs27
  28. 28.
    Rao A, Steward O (1991) Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J Neurosci 11:2881–2895CrossRefGoogle Scholar
  29. 29.
    Lu H, Zhang DM, Chen HL, Lin YX, Hang CH, Yin HX et al (2009) N-acetylcysteine suppresses oxidative stress in experimental rats with subarachnoid hemorrhage. J Clin Neurosci 16:684–868CrossRefGoogle Scholar
  30. 30.
    Cavaliere G, Viggiano E, Trinchese G, De Filippo C, Messina A, Monda V et al (2018) Long feeding high-fat diet induces hypothalamic oxidative stress and inflammation, and prolonged hypothalamic AMPK activation in rat animal model. Front Physiol 9:818.  https://doi.org/10.3389/fphys.2018.00818 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Viggiano E, Mollica MP, Lionetti L, Cavaliere G, Trinchese G, De Filippo C et al (2016) Effects of an high-fat diet enriched in lard or in fish oil on the hypothalamic amp-activated protein kinase and inflammatory mediators. Front Cell Neurosci 10:150CrossRefGoogle Scholar
  32. 32.
    Kar AN, MacGibeny MA, Gervasi NM, Gioio AE, Kaplan BB (2013) Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 33:7165–7174CrossRefGoogle Scholar
  33. 33.
    Landgraf P, Antileo ER, Schuman EM, Dieterich DC (2015) BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol Biol 1266:199–215.  https://doi.org/10.1007/978-1-4939-2272-7_14 CrossRefPubMedGoogle Scholar
  34. 34.
    Penna E, Cerciello A, Chambery A, Russo R, Cernilogar FM, Pedone EM, Perrone-Capano C, Cappello S et al (2019) Cystatin B involvement in synapse physiology of rodent brains and human cerebral organoids. Front Mol Neurosci 12:195.  https://doi.org/10.3389/fnmol.2019.00195 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chun JT, Crispino M, Tocco G (2004) The dual response of protein kinase Fyn to neural trauma: early induction in neurons and delayed induction in reactive astrocytes. Exp. Neurol 185:109–119CrossRefGoogle Scholar
  36. 36.
    Volpicelli F, Speranza L, Pulcrano S, De Gregorio R, Crispino M, De Sanctis C, di Porzio U, Leopoldo M et al (2019) The microRNA-29a modulates serotonin 5-HT7 receptor expression and its effects on hippocampal neuronal morphology. Mol Neurobiol 56:8617–8627.  https://doi.org/10.1007/s12035-019-01690-x CrossRefPubMedGoogle Scholar
  37. 37.
    Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121.  https://doi.org/10.3233/JAD-161088 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Spagnuolo MS, Maresca B, La Marca V, Carrizzo A, Veronesi C, Cupidi C, Piccoli T, Maletta RG et al (2014) Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci 5:837–847.  https://doi.org/10.1021/cn500099f CrossRefPubMedGoogle Scholar
  39. 39.
    Curzon P, Rustay NR, Browman KE (2009) Cued and contextual fear conditioning for rodents. In: Buccafusco JJ (ed) Methods of Behavior Analysis in Neuroscience, 2nd edn. CRC Press/Taylor & Francis, Boca Raton (FL)Google Scholar
  40. 40.
    Hamm V, Héraud C, Bott JB, Herbeaux K, Strittmatter C, Mathis C, Goutagny R (2017) Differential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer’s disease. Sci Adv 3:e1601068.  https://doi.org/10.1126/sciadv.1601068 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hoxha E, Lippiello P, Zurlo F, Balbo I, Santamaria R, Tempia F, Miniaci MC (2018) The emerging role of altered cerebellar synaptic processing in Alzheimer’s disease. Front Aging Neurosci 10:396.  https://doi.org/10.3389/fnagi.2018.00396 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Maione F, Piccolo M, De Vita S, Chini MG, Cristiano C, De Caro C, Lippiello P, Miniaci MC et al (2018) Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol Res 129:482–490.  https://doi.org/10.1016/j.phrs.2017.11.018 CrossRefPubMedGoogle Scholar
  43. 43.
    Cavanagh C, Wong TP (2018) Preventing synaptic deficits in Alzheimer’s disease by inhibiting tumor necrosis factor alpha signaling. IBRO Rep 4:18–21.  https://doi.org/10.1016/j.ibror.2018.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cristiano C, Volpicelli F, Lippiello P, Buono B, Raucci F, Piccolo M, Iqbal AJ, Irace C et al (2019) Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment. Br J Pharmacol.  https://doi.org/10.1111/bph.14586 CrossRefGoogle Scholar
  45. 45.
    Liang KJ, Carlson ES (2019) Resistance, vulnerability and resilience: a review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem pii: S1074-7427(19)30005-X.  https://doi.org/10.1016/j.nlm.2019.01.004
  46. 46.
    DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464CrossRefGoogle Scholar
  47. 47.
    Honer WG (2003) Pathology of presynaptic proteins in Alzheimer’s disease: more than simple loss of terminals. Neurobiol Aging 24:1047–1062CrossRefGoogle Scholar
  48. 48.
    Eggert S, Thomas C, Kins S, Hermey G (2018) Trafficking in Alzheimer’s disease: modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 55:5809–5829.  https://doi.org/10.1007/s12035-017-0806-x CrossRefPubMedGoogle Scholar
  49. 49.
    Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94–108.  https://doi.org/10.1038/s41583-018-0113-1 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615.  https://doi.org/10.1016/j.cell.2015.12.056 CrossRefPubMedGoogle Scholar
  51. 51.
    Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, Frankland PW (2017) Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model Alzheimer’s disease. Neuropsychopharmacology 42:2493–2503.  https://doi.org/10.1038/npp.2017.100 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carolina Cefaliello
    • 1
    • 2
  • Eduardo Penna
    • 1
  • Carmela Barbato
    • 1
  • Giuseppina Di Ruberto
    • 1
  • Maria Pina Mollica
    • 1
  • Giovanna Trinchese
    • 1
  • Luisa Cigliano
    • 1
  • Tiziana Borsello
    • 3
    • 4
  • Jong Tai Chun
    • 5
  • Antonio Giuditta
    • 1
  • Carla Perrone-Capano
    • 6
    • 7
  • Maria Concetta Miniaci
    • 6
    Email author
  • Marianna Crispino
    • 1
    Email author
  1. 1.Department of BiologyUniversity of Naples Federico IINaplesItaly
  2. 2.current address: Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Department of Pharmacological and Biomolecular SciencesMilan UniversityMilanItaly
  4. 4.Department of NeuroscienceMario Negri Institute for Pharmacological Research-IRCCSMilanItaly
  5. 5.Stazione Zoologica Anton DohrnNaplesItaly
  6. 6.Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
  7. 7.Institute of Genetics and Biophysics “Adriano Buzzati Traverso,” CNRNaplesItaly

Personalised recommendations