Advertisement

The Role of Xenobiotics and Trace Metals in Parkinson’s Disease

  • Geir BjørklundEmail author
  • Maryam Dadar
  • Salvatore Chirumbolo
  • Jan Aaseth
Article

Abstract

Research on the etiopathogenesis of Parkinson’s disease (PD) has in the very recent years earned many insightful cues about the involvement of xenobiotics and metal pollutants in the onset and exacerbation of this neurodegenerative disorder. Furthermore, particularly for metal pollutants, the hypothesis about the role exerted by impaired mitochondrial function is gaining a leading causative role. In this review, we outline the role of environmental pollution in the pathogenesis of PD, as the prolonged exposure to xenobiotics may account for the majority of PD reported cases, expanding the debate also about some suggested therapeutic approaches.

Keywords

Substantia nigra Dopamine Alpha-synuclein Iron Manganese Oxidative stress Chelating agents 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nature reviews Disease primers 3:17013PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mou L, Ding W, Fernandez-Funez P (2019) Open questions on the nature of Parkinson’s disease: from triggers to spreading pathology. J Med GenetGoogle Scholar
  3. 3.
    Wong YC, Luk K, Purtell K, Burke Nanni S, Stoessl AJ, Trudeau LE, Yue Z, Krainc D, Oertel W, Obeso JA (2019) Neuronal vulnerability in Parkinson disease: should the focus be on axons and synaptic terminals? Mov DisordGoogle Scholar
  4. 4.
    Masato A, Plotegher N, Boassa D, Bubacco L (2019) Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener 14(1):1–21CrossRefGoogle Scholar
  5. 5.
    Guenther M, Bartsch RP, Shahar YM, Hassin-Baer S, Inzelberg R, Kurths J, Plotnik MP, Kantelhardt JW (2019) Coupling between leg muscle activation and EEG during normal walking, intentional stops, and freezing of gait. Front Physiol 10:870CrossRefGoogle Scholar
  6. 6.
    Lee H, Chang M (2017) Degeneration of the corticofugal tract from the secondary motor area in a Parkinson’s disease patient with limb-kinetic apraxia: a case report. Medicine 96(50)PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Parkinson J (1817) An essay on the shaking palsy. (Printed by Whittingham and Rowland for Sherwood, Neely, and Jones). London,Google Scholar
  8. 8.
    Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139:318–324PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kalia LV, Lang AE (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol 12(2):65–66PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sasannezhad P, Juibary AG, Sadri K, Sadeghi R, Sabour M, Kakhki VRD, Alizadeh H (2017) 99mTc-TRODAT-1 SPECT imaging in early and late onset Parkinson’s disease. Asia Oceania J Nucl Med Biol 5(2):114Google Scholar
  12. 12.
    Lan A, Chen J, Chai Z, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29(4):665–678PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lee A, Gilbert RM (2016) Epidemiology of Parkinson disease. Neurol Clin 34(4):955–965PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909CrossRefGoogle Scholar
  15. 15.
    Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388(6645):839PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Uéda K et al (2009) α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett 454(3):187–192PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Beyer K (2007) Mechanistic aspects of Parkinson’s disease: α-synuclein and the biomembrane. Cell Biochem Biophys 47(2):285–299PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Galvagnion C (2017) The role of lipids interacting with α-synuclein in the pathogenesis of Parkinson’s disease. J Park Dis 7(3):433–450Google Scholar
  20. 20.
    Schulz-Schaeffer WJ (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120(2):131–143PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Volpicelli-Daley LA, Abdelmotilib H, Liu Z, Stoyka L, Daher JPL, Milnerwood AJ, Unni VK, Hirst WD et al (2016) G2019S-LRRK2 expression augments α-synuclein sequestration into inclusions in neurons. J Neurosci 36(28):7415–7427PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Marella M, Seo BB, Yagi T, Matsuno-Yagi A (2009) Parkinson’s disease and mitochondrial complex I: a perspective on the Ndi1 therapy. J Bioenerg Biomembr 41(6):493–497PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG (2014) Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta 1842(8):1282–1294PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Keeney PM, Xie J, Capaldi RA, Bennett JP (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26(19):5256–5264PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37(6):714–722PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Khan SZ (2006) Mitochondrial complex-1 in Parkinson’s disease. Neurol India 54:351PubMedPubMedCentralGoogle Scholar
  28. 28.
    Schapira A, Cooper J, Dexter D, Clark J, Jenner P, Marsden C (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ramsay RR, Salach JI, Dadgar J, Singer TP (1986) Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem Biophys Res Commun 135(1):269–275PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20(24):9207–9214PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91PubMedPubMedCentralGoogle Scholar
  33. 33.
    Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129(6):898–915PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Brieger K, Schiavone S, Miller FJ Jr, Krause K-H (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nikam S, Nikam P, Ahaley S, Sontakke AV (2009) Oxidative stress in Parkinson’s disease. Indian J Clin Biochem 24(1):98–101PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jenner P (2007) Oxidative stress and Parkinson’s disease. Handb Clin Neurol 83:507–520PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tamano H, Nishio R, Morioka H, Takeda A (2019) Extracellular Zn 2+ influx into nigral dopaminergic neurons plays a key role for pathogenesis of 6-hydroxydopamine-induced Parkinson’s disease in rats. Mol Neurobiol 56(1):435–443PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cruces-Sande A, Rodríguez-Pérez AI, Herbello-Hermelo P, Bermejo-Barrera P, Méndez-Álvarez E, Labandeira-García JL, Soto-Otero R (2019) Copper increases brain oxidative stress and enhances the ability of 6-hydroxydopamine to cause dopaminergic degeneration in a rat model of Parkinson’s disease. Mol Neurobiol 56(4):2845–2854PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dézsi L, Vécsei L (2017) Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol Disord Drug Targets 16(4):425–439PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schaffroth C, Bogacz M, Dirdjaja N, Nißen A, Krauth-Siegel RL (2016) The cytosolic or the mitochondrial glutathione peroxidase-type tryparedoxin peroxidase is sufficient to protect procyclic T rypanosoma brucei from iron-mediated mitochondrial damage and lysis. Mol Microbiol 99(1):172–187PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Xu J, Kao S-Y, Lee FJ, Song W, Jin L-W, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8(6):600PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90(4):675–691PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Shaban NZ, Masoud MS, Awad D, Mawlawi MA, Sadek OM (2014) Effect of Cd, Zn and Hg complexes of barbituric acid and thiouracil on rat brain monoamine oxidase-B (in vitro). Chem Biol Interact 208:37–46PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Youdim MB, Bakhle Y (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(S1)CrossRefGoogle Scholar
  45. 45.
    Basu N, Scheuhammer A, Evans R, O'Brien M, Chan H (2007) Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters. Hum Exp Toxicol 26(3):213–220PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Basu N, Stamler CJ, Loua KM, Chan HM (2005) An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum. Toxicol Appl Pharmacol 205(1):71–76PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Daré E, Fetissov S, Hökfelt T, Hall H, Ögren SO, Ceccatelli S (2003) Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D 2 receptor binding. Naunyn Schmiedebergs Arch Pharmacol 367(5):500–508PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Coccini T, Roda E, Castoldi AF, Poli D, Goldoni M, Vettori MV, Mutti A, Manzo L (2011) Developmental exposure to methylmercury and 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl (PCB153) affects cerebral dopamine D1-like and D2-like receptors of weanling and pubertal rats. Arch Toxicol 85(10):1281–1294PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Faro L, Do Nascimento J, Alfonso M, Duran R (2002) Mechanism of action of methylmercury on in vivo striatal dopamine release: possible involvement of dopamine transporter. Neurochem Int 40(5):455–465PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dreiem A, Shan M, Okoniewski RJ, Sanchez-Morrissey S, Seegal RF (2009) Methylmercury inhibits dopaminergic function in rat pup synaptosomes in an age-dependent manner. Neurotoxicol Teratol 31(5):312–317PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Faro L, Duran R, Do Nascimento J, Perez-Vences D, Alfonso M (2003) Effects of successive intrastriatal methylmercury administrations on dopaminergic system. Ecotoxicol Environ Saf 55(2):173–177PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Vidal L, Alfonso M, Faro LF, Campos F, Cervantes R, Durán R (2007) Evaluation of the effects and mechanisms of action of mercuric chloride on striatal dopamine release by using in vivo microdialysis in freely moving rats. Toxicology 236(1-2):42–49PubMedCrossRefGoogle Scholar
  53. 53.
    Zimmer B, Schildknecht S, Kuegler PB, Tanavde V, Kadereit S, Leist M (2011) Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure. Toxicol Sci 121(2):357–367PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    VanDuyn N, Settivari R, Wong G, Nass R (2010) SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci 118(2):613–624PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Götz M, Koutsilieri E, Riederer P, Ceccatelli S, Dare E (2002) Methylmercury induces neurite degeneration in primary culture of mouse dopaminergic mesencephalic cells. J Neural Transm 109(5-6):597–605PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bjørklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J (2018) Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem 25(19):2198–2214PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hsu Y-C, Chang C-W, Lee H-L, Chuang C-C, Chiu H-C, Li W-Y, Horng J-T, Fu E (2016) Association between history of dental amalgam fillings and risk of Parkinson’s disease: a population-based retrospective cohort study in Taiwan. PLoS One 11(12):e0166552PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lafuente A, González-Carracedo A, Romero A, Cabaleiro T, Esquifino A (2005) Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett 155(1):87–96PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Savica R (2019) Livin’on the edge: risky behaviors and Parkinson disease: genes, environment, or both? AAN EnterprisesGoogle Scholar
  60. 60.
    Marras C, Canning CG, Goldman SM (2019) Environment, lifestyle, and Parkinson’s disease: implications for prevention in the next decade. Mov DisordGoogle Scholar
  61. 61.
    Jiang H, Song N, Jiao Q, Shi L, Du X (2019) Iron pathophysiology in Parkinson diseases. In: Brain iron metabolism and CNS diseases. Springer, pp. 45–66Google Scholar
  62. 62.
    Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J (2015) The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol 31:193–203PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bjørklund G, Dadar M, Mutter J, Aaseth J (2017) The toxicology of mercury: current research and emerging trends. Environ Res 159:545–554PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Langston JW, Ballard P (1984) Parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson’s disease. Can J Neurol Sci 11(S1):160–165PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Liou H, Tsai M, Chen C, Jeng J, Chang Y, Chen S, Chen R (1997) Environmental risk factors and Parkinson’s disease a case-control study in Taiwan. Neurology 48(6):1583–1588PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Pezzoli G, Cereda E (2013) Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80(22):2035–2041PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Qi Z, Miller GW, Voit EO (2014) Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity. Toxicology 315:92–101PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ossowska K, Śmiałowska M, Kuter K, Wierońska J, Zięba B, Wardas J, Nowak P, Dąbrowska J et al (2006) Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson’s disease. Neuroscience 141(4):2155–2165PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK (2007) Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. J Neurosci 27(26):6914–6922PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356(6344):eaag2770PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Steventon GB, Sturman S, Waring RH, Williams AC (2001) A review of xenobiotic metabolism enzymes in Parkinson’s disease and motor neuron disease. Drug Metabol Drug Interact 18(2):79–98PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Dmitriev A, Rudik A, Filimonov D, Lagunin A, Pogodin P, Dubovskaja V, Bezhentsev V, Ivanov S et al (2017) Integral estimation of xenobiotics’ toxicity with regard to their metabolism in human organism. Pure Appl Chem 89(10):1449–1458CrossRefGoogle Scholar
  74. 74.
    Saravanan KS, Sindhu KM, Mohanakumar KP (2005) Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson’s disease. Brain Res 1049(2):147–155PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Gao H-M, Liu B, Hong J-S (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181–6187PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Mol Brain Res 134(1):57–66PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Doktór B, Damulewicz M, Pyza E (2019) Overexpression of mitochondrial ligases reverses rotenone-induced effects in a Drosophila model of Parkinson’s disease Front Neurosci:13Google Scholar
  78. 78.
    Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Venkatesh VG, Rajasankar S, Swaminathan WJ, Prabu K, Ramkumar M (2019) Antiapoptotic role of Agaricus blazei extract in rodent model of Parkinson’s disease. Frontiers in bioscience (Elite edition) 11:12–19Google Scholar
  80. 80.
    Hongo H, Kihara T, Kume T, Izumi Y, Niidome T, Sugimoto H, Akaike A (2012) Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization. Biochem Biophys Res Commun 426(1):94–99PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Höglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Féger J, Champy P, Prigent A et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95(4):930–939PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S (2008) Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine 13(1):37–48PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Furlong M, Tanner CM, Goldman SM, Bhudhikanok GS, Blair A, Chade A, Comyns K, Hoppin JA et al (2015) Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson’s disease. Environ Int 75:144–150PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Javed H, Azimullah S, Meeran M, Ansari SA, Ojha S (2019) Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of parkinson’s disease. Int J Mol Sci 20(7):1538PubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kavuri S, Sivanesan S (2019) Evaluation of haematological alterations in intraperitoneal and oral rotenone induced parkinson’s disease wistar rats. Int J Pharm Res Allied Sci 8(2)Google Scholar
  86. 86.
    Hwang D-J, Kwon K-C, Song H-K, Kim K-S, Jung Y-S, Hwang D-Y, Cho J-Y (2019) Comparative analysis of dose-dependent neurotoxic response to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in C57BL/6 N mice derived from three different sources. Lab Anim Res 35(1):10CrossRefGoogle Scholar
  87. 87.
    Langston JW (1985) MPTP and Parkinson’s disease. Trends Neurosci 8:79–83CrossRefGoogle Scholar
  88. 88.
    Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76(5):1265–1274PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nicklas W, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. Life Sci 36(26):2503–2508PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T et al (2016) Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J NeuroImmune Pharmacol 11(2):259–278PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kamel F, Tanner C, Umbach D, Hoppin J, Alavanja M, Blair A, Comyns K, Goldman S et al (2006) Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol 165(4):364–374PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169(8):919–926PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B (2011) Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol 26(7):547–555PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Filograna R, Godena VK, Sanchez-Martinez A, Ferrari E, Casella L, Beltramini M, Bubacco L, Whitworth AJ et al (2016) Superoxide dismutase (SOD)-mimetic M40403 is protective in cell and fly models of paraquat toxicity implications for parkinson disease. J Biol Chem 291(17):9257–9267PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976(2):243–252PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice paraquat and α-synuclein. J Biol Chem 277(3):1641–1644PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE (2005) Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 20(2):360–371PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Saint-Pierre M, Tremblay MÈ, Sik A, Gross RE, Cicchetti F (2006) Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats. J Neurochem 98(3):760–772PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10(2):119–127PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Goldman SM, Kamel F, Ross GW, Bhudhikanok GS, Hoppin JA, Korell M, Marras C, Meng C et al (2012) Genetic modification of the association of paraquat and Parkinson’s disease. Mov Disord 27(13):1652–1658PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ritz BR, Manthripragada AD, Costello S, Lincoln SJ, Farrer MJ, Cockburn M, Bronstein J (2009) Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ Health Perspect 117(6):964–969PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hou L, Huang R, Sun F, Zhang L, Wang Q (2019) NADPH oxidase regulates paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis. Toxicology 417:64–73PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Tamano H, Nishio R, Morioka H, Furuhata R, Komata Y, Takeda A (2019) Paraquat as an environmental risk factor in Parkinson’s disease accelerates age-related degeneration via rapid influx of extracellular Zn 2+ into Nigral dopaminergic neurons. Mol Neurobiol:1–11Google Scholar
  104. 104.
    Cruz-Aguado R, Winkler D, Shaw CA (2006) Lack of behavioral and neuropathological effects of dietary β-methylamino-L-alanine (BMAA) in mice. Pharmacol Biochem Behav 84(2):294–299PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Chiu AS, Gehringer MM, Braidy N, Guillemin GJ, Welch JH, Neilan BA (2013) Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA). Sci Rep 3:1482PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Waidyanatha S, Ryan K, Sanders JM, McDonald JD, Wegerski CJ, Doyle-Eisle M, Garner CE (2018) Disposition of β-N-methylamino-l-alanine (L-BMAA), a neurotoxin, in rodents following a single or repeated oral exposure. Toxicol Appl Pharmacol 339:151–160PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Montgomery EB Jr (1995) Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology 97(1-3):3–9PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Falup-Pecurariu C, Ferreira J, Martinez-Martin P, Chaudhuri KR (2017) Movement disorders curricula. SpringerGoogle Scholar
  109. 109.
    Zayed J, Ducic S, Campanella G, Panisset J, Andre P, Masson H, Roy M (1990) Environmental factors in the etiology of Parkinson’s disease. Can J Neurol Sci 17(3):286–291PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Miller K, Ochudło S, Opala G, Smolicha W, Siuda J (2003) Parkinsonism in chronic occupational metallic mercury intoxication. Neurol Neurochir Pol 37:31–38PubMedPubMedCentralGoogle Scholar
  111. 111.
    Hegde ML, Shanmugavelu P, Vengamma B, Rao TS, Menon RB, Rao RV, Rao KJ (2004) Serum trace element levels and the complexity of inter-element relations in patients with Parkinson’s disease. J Trace Elem Med Biol 18(2):163–171PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Winkel R, Kuhn W, Przuntek H (1995) Chronic intoxication with lead-and sulfur compounds may produce Parkinson’s disease. J Neural Transm Suppl 46:183–187PubMedPubMedCentralGoogle Scholar
  113. 113.
    Gorell J, Johnson C, Rybicki B, Peterson E, Kortsha G, Brown G, Richardson R (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48(3):650–658PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein a possible molecular link between parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–44296PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Uversky VN (2017) Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Research 6Google Scholar
  116. 116.
    de Bie RM, Gladstone RM, Strafella AP, Ko J-H, Lang AE (2007) Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Arch Neurol 64(6):886–889PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Sanotsky Y, Lesyk R, Fedoryshyn L, Komnatska I, Matviyenko Y, Fahn S (2007) Manganic encephalopathy due to “ephedrone” abuse. Mov Disord 22(9):1337–1343PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Sikk K, Taba P, Haldre S, Bergquist J, Nyholm D, Zjablov G, Asser T, Aquilonius SM (2007) Irreversible motor impairment in young addicts–ephedrone, manganism or both? Acta Neurol Scand 115(6):385–389PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012(1):209–223PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118(8):1071–1080PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Roth JA, Garrick MD (2003) Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 66(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Roth JA (2009) Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. NeuroMolecular Med 11(4):281–296PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Roth JA, Feng L, Walowitz J, Browne RW (2000) Manganese-induced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J Neurosci Res 61(2):162–171PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy A (2019) Manganese-induced neurotoxicity: new insights into protein misfolding, mitochondrial impairment and neuroinflammation. Front Neurosci 13:654PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ellingsen DG, Shvartsman G, Bast-Pettersen R, Chashchin M, Thomassen Y, Chashchin V (2019) Neurobehavioral performance of patients diagnosed with manganism and idiopathic Parkinson disease. Int Arch Occup Environ Health 92(3):383–394PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Ngim C-H, Devathasan G (1989) Epidemiologic study on the association between body burden mercury level and idiopathic Parkinson’s disease. Neuroepidemiology 8(3):128–141PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Dantzig PI (2006) Parkinson’s disease, macular degeneration and cutaneous signs of mercury toxicity. J Occup Environ Med 48(7):656PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Sun H (2018) Association of soil selenium, strontium, and magnesium concentrations with Parkinson’s disease mortality rates in the USA. Environ Geochem Health 40(1):349–357PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Goldman S, Tanner C, Olanow C, Watts R, Field R, Langston J (2005) Occupation and parkinsonism in three movement disorders clinics. Neurology 65(9):1430–1435PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Cariccio VL, Samà A, Bramanti P, Mazzon E (2019) Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res 187(2):341–356PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Xu F, Farkas S, Kortbeek S, Zhang F-X, Chen L, Zamponi GW, Syed NI (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors. Molecular brain 5(1):30PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Björkblom B, Adilbayeva A, Maple-Grødem J, Piston D, Ökvist M, Xu XM, Brede C, Larsen JP et al (2013) Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. J Biol Chem 288(31):22809–22820PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Goldman SM (2014) Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 54:141–164PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Bjørklund G, Hofer T, Nurchi VM, Aaseth J (2019) Iron and other metals in the pathogenesis of Parkinson’s disease: toxic effects and possible detoxification. J Inorg Biochem:110717PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Logroscino G, Gao X, Chen H, Wing A, Ascherio A (2008) Dietary iron intake and risk of Parkinson’s disease. Am J Epidemiol 168(12):1381–1388PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Miyake Y, Tanaka K, Fukushima W, Sasaki S, Kiyohara C, Tsuboi Y, Yamada T, Oeda T et al (2011) Dietary intake of metals and risk of Parkinson’s disease: a case-control study in Japan. J Neurol Sci 306(1-2):98–102PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Piao Y-S, Lian T-H, Hu Y, Zuo L-J, Guo P, Yu S-Y, Liu L, Jin Z et al (2017) Restless legs syndrome in Parkinson disease: clinical characteristics, abnormal iron metabolism and altered neurotransmitters. Sci Rep 7(1):10547PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64(5-6):1037–1048PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ben-Shachar D, Zuk R, Glinka Y (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64(2):718–723PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Dexter D, Carayon A, Javoy-Agid F, Agid Y, Wells F, Daniel S, Lees A, Jenner P et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(4):1953–1975PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Lian T-H, Guo P, Zuo L-J, Hu Y, Yu S-Y, Yu Q-J, Jin Z, Wang R-D et al (2019) Tremor-dominant in Parkinson disease: the relevance to iron metabolism and inflammation. Front Neurosci 13:255PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sian-Hülsmann J, Mandel S, Youdim MB, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118(6):939–957PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Yu S-y, C-j C, L-j Z, Z-j C, T-h L, Wang F, Hu Y, Y-s P et al (2018) Clinical features and dysfunctions of iron metabolism in Parkinson disease patients with hyper echogenicity in substantia nigra: a cross-sectional study. BMC Neurol 18(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Xuan M, Guan X, Gu Q, Shen Z, Yu X, Qiu T, Luo X, Song R et al (2017) Different iron deposition patterns in early-and middle-late-onset Parkinson’s disease. Parkinsonism Relat Disord 44:23–27PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Guan X, Xuan M, Gu Q, Xu X, Huang P, Wang N, Shen Z, Xu J et al (2017) Influence of regional iron on the motor impairments of Parkinson’s disease: a quantitative susceptibility mapping study. J Magn Reson Imaging 45(5):1335–1342PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Bjørklund G (2015) Clinical use of the metal chelators calcium disodium edetate, DMPS, and DMSA. Saudi J Kidney Dis Transpl 26(3):611CrossRefGoogle Scholar
  149. 149.
    Cao Y, Chen A, Jones RL, Radcliffe J, Dietrich KN, Caldwell KL, Peddada S, Rogan WJ (2011) Efficacy of succimer chelation of mercury at background exposures in toddlers: a randomized trial. J Pediatr 158(3):480–485. e481PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Joshi D, Patel J, Flora S, Kalia K (2008) Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environ Health Prev Med 13(5):257–263PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hamidinia SA, Erdahl WL, Chapman CJ, Steinbaugh GE, Taylor RW, Pfeiffer DR (2005) Monensin improves the effectiveness of meso-dimercaptosuccinate when used to treat lead intoxication in rats. Environ Health Perspect 114(4):484–493PubMedCentralCrossRefGoogle Scholar
  153. 153.
    Crisponi G, Nurchi VM (2016) Chelating agents as therapeutic compounds—basic principles. Chelation therapy in the treatment of metal intoxication, academic press, Elsevier, London:35–61CrossRefGoogle Scholar
  154. 154.
    Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J 2013Google Scholar
  155. 155.
    Flora G, Seth P, Prakash A, Mathur R (1995) Therapeutic efficacy of combined meso 2, 3-dimercaptosuccinic acid and calcium disodium edetate treatment during acute lead intoxication in rats. Hum Exp Toxicol 14(5):410–413PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. The Lancet Neurology 13(10):1045–1060PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Double K, Reyes S, Werry E, Halliday G (2010) Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog Neurobiol 92(3):316–329PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Barbosa JHO, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CEG (2015) Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2. Magn Reson Imaging 33(5):559–565PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Hare DJ, Double KL (2016) Iron and dopamine: a toxic couple. Brain 139(4):1026–1035PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Zhang L, Yagnik G, Jiang D, Shi S, Chang P, Zhou F (2012) Separation of intermediates of iron-catalyzed dopamine oxidation reactions using reversed-phase ion-pairing chromatography coupled in tandem with UV–visible and ESI-MS detections. J Chromatogr B 911:55–58CrossRefGoogle Scholar
  162. 162.
    Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55(6):659–665PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine-or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5(3):165–176PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21(2):195–210PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, Della Corte L, Ward RJ et al (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm 118(2):223–231PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Forni GL, Balocco M, Cremonesi L, Abbruzzese G, Parodi RC, Marchese R (2008) Regression of symptoms after selective iron chelation therapy in a case of neurodegeneration with brain iron accumulation. Mov Disord 23(6):904–907PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Mounsey RB, Teismann P (2012) Chelators in the treatment of iron accumulation in Parkinson’s disease. Int J Cell Biol 2012Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Council for Nutritional and Environmental Medicine (CONEM)Mo i RanaNorway
  2. 2.Razi Vaccine and Serum Research InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
  3. 3.Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
  4. 4.CONEM Scientific SecretaryVeronaItaly
  5. 5.Research DepartmentInnlandet Hospital TrustBrumunddalNorway
  6. 6.IM Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia

Personalised recommendations