Advertisement

P2X7 Purinergic Receptor Is Involved in the Pathophysiology of Mania: a Preclinical Study

  • Carolina GubertEmail author
  • Roberta Andrejew
  • Carlos Eduardo Leite
  • Cesar Eduardo Jacintho Moritz
  • Juliete Scholl
  • Fabricio Figueiro
  • Flávio Kapczinski
  • Pedro Vieira da Silva Magalhães
  • Ana Maria Oliveira Battastini
Article

Abstract

The pathophysiology of bipolar disorder remains incompletely elucidated. The purinergic receptor, P2X7 (P2X7R), plays a central role in neuroinflammation, the establishment, and maintenance of microglial activation and neuronal damage/death, all characteristics of bipolar disorder pathology. The present study aims to explore the participation of the P2X7R in a preclinical pharmacological model of mania. We analyzed the modulatory effects of the P2X7R antagonist, brilliant blue, on behavior, monoamines, gene expression, serum purine levels, and cell typing in a pharmacological model of mania induced by d-amphetamine (AMPH) in mice. Our results corroborate an association between the P2X7 receptor and the preclinical animal model of mania, as demonstrated by the decreased responsiveness to AMPH in animals with pharmacologically blocked P2X7R. This study further suggests a possible dopaminergic mechanism for the action of P2X7 receptor antagonism. Additionally, we observed increased peripheral levels of adenosine, a neuroprotective molecule, and increased central expression of Entpd3 and Entpd1 leading to the hydrolysis of ATP, a danger signal, possibly as an attempt to compensate for the damage induced by AMPH. Lastly, P2X7R antagonism in the AMPH model was found to potentially modulate astrogliosis. Our results support the hypothesis that P2X7R plays a vital role in the pathophysiology of mania, possibly by modulating the dopaminergic pathway and astrogliosis, as reflected in the behavioral changes observed. Taken together, this study suggests that a purinergic system imbalance is associated with the AMPH-induced preclinical animal model of mania. P2X7R may represent a promising molecular therapeutic target for bipolar disorder.

Keywords

Bipolar disorder Amphetamine P2X7R Dopaminergic axis Adenosine ENTPD3 ENTPD1 CD39 Astrogliosis 

Notes

Acknowledgments

CG and RA were recipients of scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). CEJM is recipient of scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES). PVSM is supported by a CNPq productivity fellowship. Currently CG is recipient of a Post-Doctoral Fellowship (PDE–Pos Doutorado no Exterior) from CNPq–Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, of the Ministry of Science, Technology, Innovation, Communication of Brazil and a University of Melbourne Early Career Researcher Award.

Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. This work was also supported by grants from the National Science and Technology Institute for Translational Medicine (INCT-TM) (Project 573671/2008-7), INCT for excitotoxicity and neuroprotection (INCT-EN) (Project 465671/2014-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Project No 303264/2013-6), and Fundo de Incentivo à Pesquisa–Hospital de Clínicas de Porto Alegre (FIPE-HCPA). The funding agencies did not have any role in study design, data collection and analysis, the decision to publish, or manuscript preparation. Dr. Kapczinski reports personal fees from Daiichi sankyo, personal fees from Janssen-Cilag, grants from Stanley Medical Research Institute 07TGF/1148, grants from INCT-CNPq 465458/2014-9, grants from Canada Foundation for Innovation-CFI, outside the submitted work.

Compliance with ethical standards

The experimental procedures reported in this manuscript were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Brazilian College of Animal Experimentation. The Animal Ethics Committee of the Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil, approved this project under protocol number 15-0192.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1817_MOESM1_ESM.doc (196 kb)
ESM 1 (DOC 196 kb)

References

  1. 1.
    Mondimore FM (2005) Kraepelin and manic-depressive insanity: an historical perspective. Int Rev Psychiatry 17(1):49–52PubMedCrossRefGoogle Scholar
  2. 2.
    Kraeplin E Manic-Depressive Insanity and Paranoia. 1921, EdinburghGoogle Scholar
  3. 3.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492PubMedGoogle Scholar
  4. 4.
    Baroja-Mazo A, Barberà-Cremades M, Pelegrín P (2013) The participation of plasma membrane hemichannels to purinergic signaling. Biochim Biophys Acta 1828(1):79–93PubMedCrossRefGoogle Scholar
  5. 5.
    Cheffer A, Castillo ARG, Corrêa-Velloso J, Gonçalves MCB, Naaldijk Y, Nascimento IC, Burnstock G, Ulrich H (2018) Purinergic system in psychiatric diseases. Mol Psychiatry 23(1):94–106PubMedCrossRefGoogle Scholar
  6. 6.
    Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bobo WV (2017) The diagnosis and management of bipolar I and II disorders: clinical practice update. Mayo Clin ProcGoogle Scholar
  8. 8.
    Backlund L, Nikamo P, Hukic DS, Ek IR, Träskman-Bendz L, Landén M, Edman G, Schalling M et al (2011) Cognitive manic symptoms associated with the P2RX7 gene in bipolar disorder. Bipolar Disord 13(5-6):500–508PubMedCrossRefGoogle Scholar
  9. 9.
    Gubert C et al (2016) Role of P2X7 Receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol 53(1):611–620PubMedCrossRefGoogle Scholar
  10. 10.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067PubMedCrossRefGoogle Scholar
  11. 11.
    Sluyter R (2017) The P2X7 Receptor. Adv Exp Med Biol 1051:17–53PubMedCrossRefGoogle Scholar
  12. 12.
    Rao JS, Harry GJ, Rapoport SI, Kim HW (2010) Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 15(4):384–392PubMedCrossRefGoogle Scholar
  13. 13.
    Stertz L, Magalhães PV, Kapczinski F (2013) Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatry 26(1):19–26PubMedCrossRefGoogle Scholar
  14. 14.
    Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817PubMedCrossRefGoogle Scholar
  15. 15.
    McQuillin A, Bass NJ, Choudhury K, Puri V, Kosmin M, Lawrence J, Curtis D, Gurling HM (2009) Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders. Mol Psychiatry 14(6):614–620PubMedCrossRefGoogle Scholar
  16. 16.
    Gubert C, Andrejew R, Jacintho Moritz CE, Dietrich F, Vasconcelos-Moreno MP, Dos Santos BTMQ, Fijtman A, Kauer-Sant'Anna M et al (2019) Bipolar disorder and 1513A>C P2RX7 polymorphism frequency. Neurosci Lett 694:143–147PubMedCrossRefGoogle Scholar
  17. 17.
    Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L, Fraser I, Nepomuceno D et al (2013) Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 170(3):624–640PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Csölle C, Andó RD, Kittel Á, Gölöncsér F, Baranyi M, Soproni K, Zelena D, Haller J et al (2013) The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol 16(1):213–233PubMedCrossRefGoogle Scholar
  19. 19.
    Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC et al (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26(4):1616–1628PubMedCrossRefGoogle Scholar
  20. 20.
    Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F et al (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31(5):326–332PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hows ME, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 138(1-2):123–132PubMedCrossRefGoogle Scholar
  22. 22.
    Voelter W, Zech K, Arnold P, Ludwig G (1980) Determination of selected pyrimidines, purines and their metabolites in serum and urine by reversed-phase ion-pair chromatography. J Chromatogr 199:345–354PubMedCrossRefGoogle Scholar
  23. 23.
    Li CR, Huang GB, Sui ZY, Han EH, Chung YC (2010) Effects of 6-hydroxydopamine lesioning of the medial prefrontal cortex on social interactions in adolescent and adult rats. Brain Res 1346:183–189PubMedCrossRefGoogle Scholar
  24. 24.
    Macêdo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, Hyphantis TN, McIntyre R et al (2012) Effects of alpha-lipoic acid in an animal model of mania induced by D-amphetamine. Bipolar Disord 14(7):707–718PubMedCrossRefGoogle Scholar
  25. 25.
    Kimbler DE, Shields J, Yanasak N, Vender JR, Dhandapani KM (2012) Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One 7(7):e41229PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151(5):571–579PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Berk M et al (2007) Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand Suppl 434:41–49CrossRefGoogle Scholar
  28. 28.
    Peleg-Raibstein D, Feldon J (2006) Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology 51(5):947–957PubMedCrossRefGoogle Scholar
  29. 29.
    Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS, Innis RB (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157(7):1108–1114PubMedCrossRefGoogle Scholar
  30. 30.
    Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10(10):808–819PubMedCrossRefGoogle Scholar
  31. 31.
    Haarman BC et al (2016) Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder - a combined magnetic resonance imaging and positron emission tomography study. Brain Behav Immun 56:21–33PubMedCrossRefGoogle Scholar
  32. 32.
    López-Muñoz F et al (2014) Ecstasy (3,4-methylenedioxymethamphetamine, MDMA): pharmacological, clinical, and criminological aspects. Trastornos Adictivos 6(1):22Google Scholar
  33. 33.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg's Arch Pharmacol 362(4-5):299–309CrossRefGoogle Scholar
  34. 34.
    Adinolfi E, et al. (2017) The P2X7 receptor: a main player in inflammation. Biochem PharmacolGoogle Scholar
  35. 35.
    Di Virgilio F (1998) ATP as a death factor. Biofactors 8(3-4):301–303PubMedCrossRefGoogle Scholar
  36. 36.
    Bulavina L, Szulzewsky F, Rocha A, Krabbe G, Robson SC, Matyash V, Kettenmann H (2013) NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signal 9(2):199–205PubMedCrossRefGoogle Scholar
  37. 37.
    Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16(3):177–192PubMedCrossRefGoogle Scholar
  39. 39.
    Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8(1):2–7PubMedCrossRefGoogle Scholar
  40. 40.
    Gubert C, Jacintho Moritz CE, Vasconcelos-Moreno MP, Quadros Dos Santos BTM, Sartori J, Fijtman A, Kauer-Sant'Anna M, Kapczinski F et al (2016) Peripheral adenosine levels in euthymic patients with bipolar disorder. Psychiatry Res 246:421–426PubMedCrossRefGoogle Scholar
  41. 41.
    Machado-Vieira R (2012) Purinergic system in the treatment of bipolar disorder: uric acid levels as a screening test in mania. J Clin Psychopharmacol 32(5):735–736PubMedCrossRefGoogle Scholar
  42. 42.
    Bartoli F, Carrà G, Clerici M (2017) Update on bipolar disorder biomarker candidates: what about uric acid/adenosine hypothesis? Expert Rev Mol Diagn 17(2):105–106PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V (2016) Regulation of uric acid metabolism and excretion. Int J Cardiol 213:8–14PubMedCrossRefGoogle Scholar
  44. 44.
    Morton RA, Baptista-Hon DT, Hales TG, Lovinger DM (2015) Agonist- and antagonist-induced up-regulation of surface 5-HT3 A receptors. Br J Pharmacol 172(16):4066–4077PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Milligan G, Bond RA, Lee M (1995) Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 16(1):10–13PubMedCrossRefGoogle Scholar
  46. 46.
    Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Di Virgilio F (2016) P2RX7: a receptor with a split personality in inflammation and cancer. Mol Cell Oncol 3(2):e1010937PubMedCrossRefGoogle Scholar
  48. 48.
    Khadra A, Tomić M, Yan Z, Zemkova H, Sherman A, Stojilkovic SS (2013) Dual gating mechanism and function of P2X7 receptor channels. Biophys J 104(12):2612–2621PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Miras-Portugal MT, Sebastián-Serrano Á, de Diego García L, Díaz-Hernández M (2017) Neuronal P2X7 receptor: involvement in neuronal physiology and pathology. J Neurosci 37(30):7063–7072PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38PubMedCrossRefGoogle Scholar
  51. 51.
    Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420PubMedCrossRefGoogle Scholar
  52. 52.
    Peng L, Li B, Verkhratsky A (2016) Targeting astrocytes in bipolar disorder. Expert Rev Neurother 16(6):649–657PubMedCrossRefGoogle Scholar
  53. 53.
    Logan RW, McClung CA (2016) Animal models of bipolar mania: the past, present and future. Neuroscience 321:163–188PubMedCrossRefGoogle Scholar
  54. 54.
    Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F et al (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44(14):903–909PubMedCrossRefGoogle Scholar
  55. 55.
    Tétrault S, Chever O, Sik A, Amzica F (2008) Opening of the blood-brain barrier during isoflurane anaesthesia. Eur J Neurosci 28(7):1330–1341PubMedCrossRefGoogle Scholar
  56. 56.
    Kim M, Ham A, Kim JY, Brown KM, D'Agati VD, Lee HT (2013) The volatile anesthetic isoflurane induces ecto-5'-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury. Kidney Int 84(1):90–103PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carolina Gubert
    • 1
    • 2
    Email author
  • Roberta Andrejew
    • 1
  • Carlos Eduardo Leite
    • 3
  • Cesar Eduardo Jacintho Moritz
    • 4
  • Juliete Scholl
    • 1
  • Fabricio Figueiro
    • 1
  • Flávio Kapczinski
    • 5
  • Pedro Vieira da Silva Magalhães
    • 6
    • 7
  • Ana Maria Oliveira Battastini
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
  3. 3.Instituto de Toxicologia e FarmacologiaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  4. 4.Programa de Pós-Graduação em Ciências do Movimento HumanoUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Department of Psychiatry and Behavioral SciencesMacMaster UniversityHamiltonCanada
  6. 6.Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
  7. 7.Departamento de PsiquiatriaUniversidade Federal Rio Grande do SulPorto AlegreBrazil

Personalised recommendations