Targeting Cannabinoid Receptor Activation and BACE-1 Activity Counteracts TgAPP Mice Memory Impairment and Alzheimer’s Disease Lymphoblast Alterations

  • Emilio Nuñez-Borque
  • Pedro González-Naranjo
  • Fernando Bartolomé
  • Carolina Alquézar
  • Alejandro Reinares-Sebastián
  • Concepción Pérez
  • Maria L. Ceballos
  • Juan A. Páez
  • Nuria E. CampilloEmail author
  • Ángeles Martín-RequeroEmail author


Alzheimer’s disease (AD), the leading cause of dementia in the elderly, is a neurodegenerative disorder marked by progressive impairment of cognitive ability. Patients with AD display neuropathological lesions including senile plaques, neurofibrillary tangles, and neuronal loss. There are no disease-modifying drugs currently available. With the number of affected individuals increasing dramatically throughout the world, there is obvious urgent need for effective treatment strategy for AD. The multifactorial nature of AD encouraged the development of multifunctional compounds, able to interact with several putative targets. Here, we have evaluated the effects of two in-house designed cannabinoid receptors (CB) agonists showing inhibitory actions on β-secretase-1 (BACE-1) (NP137) and BACE-1/butyrylcholinesterase (BuChE) (NP148), on cellular models of AD, including immortalized lymphocytes from late-onset AD patients. Furthermore, the performance of TgAPP mice in a spatial navigation task was investigated following chronic administration of NP137 and NP148. We report here that NP137 and NP148 showed neuroprotective effects in amyloid-β-treated primary cortical neurons, and NP137 in particular rescued the cognitive deficit of TgAPP mice. The latter compound was able to blunt the abnormal cell response to serum addition or withdrawal of lymphoblasts derived from AD patients. It is suggested that NP137 could be a good drug candidate for future treatment of AD.


Alzheimer’s disease Cannabinoids Lymphoblasts Cell proliferation Cell survival TgAPP mice Memory 



We thank G. Porras for technical assistance. The help of Sonia Diaz Pacheco in the management and treatment of TgAPP mice is acknowledged.

Authorship Contributions

Participated in research design: JAP, MLC, NEC, and A M-R

Conducted experiments: EN-B, PGN, AR-S, CP, FB, CA, and MLC

Contributed new cannabinoids: JAP and PGN

Performed data analysis: All authors contributed to data analysis

Wrote or contributed to the writing of the manuscript: MLC, NEC, and AM-R

Funding Information

This work has been supported by grants from Ministerio de Economía y Competitividad (CTQ2015-66313-R, and RTI2018-096100-B-I00) and CIBERNED to MLC.

Compliance with ethical standards

All study protocols were approved by the Hospital Doce de Octubre and the Spanish Council of Higher Research Institutional Review Board and are in accordance with National and European Union Guidelines. In all cases, peripheral blood samples were taken after written informed consent of the patients or their relatives.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Iqbal K, Grundke-Iqbal I (2010) Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6(5):420–424. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232–9239. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cooper C, Mukadam N, Katona C, Lyketsos CG, Ames D, Rabins P, Engedal K, de Mendonca Lima C et al (2012) Systematic review of the effectiveness of non-pharmacological interventions to improve quality of life of people with dementia. Int Psychogeriatr 24(6):856–870. CrossRefPubMedGoogle Scholar
  4. 4.
    Gonzalez-Naranjo P, Perez-Macias N, Campillo NE, Perez C, Aran VJ, Giron R, Sanchez-Robles E, Martin MI et al (2014) Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer’s disease. Eur J Med Chem 73:56–72. CrossRefPubMedGoogle Scholar
  5. 5.
    Gonzalez-Naranjo P, Perez-Macias N, Perez C, Roca C, Vaca G, Giron R, Sanchez-Robles E, Martin-Fontelles MI et al (2019) Indazolylketones as new multitarget cannabinoid drugs. Eur J Med Chem 166:90–107. CrossRefPubMedGoogle Scholar
  6. 6.
    Gonzalez-Naranjo P, Campillo NE, Perez C, Paez JA (2013) Multitarget cannabinoids as novel strategy for Alzheimer disease. Curr Alzheimer Res 10(3):229–239CrossRefGoogle Scholar
  7. 7.
    Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936CrossRefGoogle Scholar
  8. 8.
    Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. CrossRefPubMedGoogle Scholar
  9. 9.
    Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z et al (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536. CrossRefPubMedGoogle Scholar
  10. 10.
    den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, Kruse CG, Maccarrone M et al (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A 109(9):3534–3539. CrossRefGoogle Scholar
  11. 11.
    Paez JA, Campillo NE (2018) Innovative therapeutic potential of cannabinoid receptors as targets in Alzheimer’s disease and less well-known diseases. Curr Med Chem. CrossRefGoogle Scholar
  12. 12.
    Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mulder J, Zilberter M, Pasquare SJ, Alpar A, Schulte G, Ferreira SG, Kofalvi A, Martin-Moreno AM et al (2011) Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease. Brain 134(Pt 4):1041–1060. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pascual AC, Martin-Moreno AM, Giusto NM, de Ceballos ML, Pasquare SJ (2014) Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: modulation by cannabinoid agonists. Exp Gerontol 60:92–99. CrossRefPubMedGoogle Scholar
  15. 15.
    Jung KM, Astarita G, Yasar S, Vasilevko V, Cribbs DH, Head E, Cotman CW, Piomelli D (2012) An amyloid beta42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol Aging 33(8):1522–1532. CrossRefPubMedGoogle Scholar
  16. 16.
    Sun S, Hu F, Wu J, Zhang S (2017) Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol 11:577–585. CrossRefPubMedGoogle Scholar
  17. 17.
    Zhuang Q, Dai C, Yang L, Wen H, Wang H, Jiang X, Zhang Y (2017) Stimulated CB1 cannabinoid receptor inducing ischemic tolerance and protecting neuron from cerebral ischemia. Cent Nerv Syst Agents Med Chem 17(2):141–150. CrossRefPubMedGoogle Scholar
  18. 18.
    Campillo NE, Paez JA (2009) Cannabinoid system in neurodegeneration: new perspectives in Alzheimer’s disease. Mini-Rev Med Chem 9(5):539–559CrossRefGoogle Scholar
  19. 19.
    Martin-Moreno AM, Brera B, Spuch C, Carro E, Garcia-Garcia L, Delgado M, Pozo MA, Innamorato NG et al (2012) Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflammation 9:8. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Martin-Moreno AM, Reigada D, Ramirez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79(6):964–973. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51(6):783–786. CrossRefPubMedGoogle Scholar
  22. 22.
    Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L et al (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9(1):3–4. CrossRefPubMedGoogle Scholar
  23. 23.
    Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, Harada N, Zhong Z et al (2005) Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci U S A 102(52):19198–19203. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zohar O, Pick CG, Cavallaro S, Chapman J, Katzav A, Milman A, Alkon DL (2005) Age-dependent differential expression of BACE splice variants in brain regions of tg2576 mice. Neurobiol Aging 26(8):1167–1175. CrossRefPubMedGoogle Scholar
  25. 25.
    Mushtaq G, Greig NH, Khan JA, Kamal MA (2014) Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 13(8):1432–1439CrossRefGoogle Scholar
  26. 26.
    Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH et al (2000) Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 75(3):1320–1331CrossRefGoogle Scholar
  27. 27.
    Mesulam MM, Geula C (1994) Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 36(5):722–727. CrossRefPubMedGoogle Scholar
  28. 28.
    Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110(4):627–639CrossRefGoogle Scholar
  29. 29.
    Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4(2):131–138. CrossRefPubMedGoogle Scholar
  30. 30.
    Lian W, Fang J, Xu L, Zhou W, Kang XW, Jia H, Liu AL, Du GH (2017) DL0410 ameliorates memory and cognitive impairments induced by scopolamine via increasing cholinergic neurotransmission in mice. Molecules 22(3). CrossRefGoogle Scholar
  31. 31.
    Ponzoni I, Sebastian-Perez V, Requena-Triguero C, Roca C, Martinez MJ, Cravero F, Diaz MF, Paez JA et al (2017) Hybridizing feature selection and feature learning approaches in QSAR modeling for drug discovery. Sci Rep 7(1):2403. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pruszak J, Just L, Isacson O, Nikkhah G (2009) Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. Curr Protoc Stem Cell Biol Chapter 2:Unit 2D 5. doi:
  33. 33.
    Yin LH, Shen H, Diaz-Ruiz O, Backman CM, Bae E, Yu SJ, Wang Y (2012) Early post-treatment with 9-cis retinoic acid reduces neurodegeneration of dopaminergic neurons in a rat model of Parkinson’s disease. BMC Neurosci 13:120. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277CrossRefGoogle Scholar
  35. 35.
    Ibarreta D, Parrilla R, Ayuso MS (1997) Altered Ca2+ homeostasis in lymphoblasts from patients with late-onset Alzheimer disease. Alzheimer Dis Assoc Disord 11(4):220–227PubMedGoogle Scholar
  36. 36.
    Alquezar C, Esteras N, de la Encarnacion A, Alzualde A, Moreno F, Lopez de Munain A, Martin-Requero A (2014) PGRN haploinsufficiency increased Wnt5a signaling in peripheral cells from frontotemporal lobar degeneration-progranulin mutation carriers. Neurobiol Aging 35(4):886–898. CrossRefPubMedGoogle Scholar
  37. 37.
    Esteras N, Alquezar C, Bartolome F, de la Encarnacion A, Bermejo-Pareja F, Molina JA, Martin-Requero A (2015) G1/S cell cycle checkpoint dysfunction in lymphoblasts from sporadic Parkinson’s disease patients. Mol Neurobiol 52(1):386–398. CrossRefPubMedGoogle Scholar
  38. 38.
    Del Cerro P, Alquezar C, Bartolome F, Gonzalez-Naranjo P, Perez C, Carro E, Paez JA, Campillo NE et al (2018) Activation of the cannabinoid type 2 receptor by a novel indazole derivative normalizes the survival pattern of lymphoblasts from patients with late-onset Alzheimer’s disease. CNS Drugs 32(6):579–591. CrossRefPubMedGoogle Scholar
  39. 39.
    Esteras N, Alquezar C, Bermejo-Pareja F, Bialopiotrowicz E, Wojda U, Martin-Requero A (2013) Downregulation of extracellular signal-regulated kinase 1/2 activity by calmodulin KII modulates p21Cip1 levels and survival of immortalized lymphocytes from Alzheimer’s disease patients. Neurobiol Aging 34(4):1090–1100. CrossRefPubMedGoogle Scholar
  40. 40.
    Bartolome F, de Las CN, Munoz U, Bermejo F, Martin-Requero A (2007) Impaired apoptosis in lymphoblasts from Alzheimer's disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci 64(11):1437–1448. CrossRefPubMedGoogle Scholar
  41. 41.
    Munoz U, Bartolome F, Bermejo F, Martin-Requero A (2008) Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer’s dementia patients. Neurobiol Aging 29(10):1474–1484. CrossRefPubMedGoogle Scholar
  42. 42.
    Agell N, Jaumot M, Rodriguez-Vilarrupla A, Brun S, Abella N, Canela N, Estanyol JM, Bachs O (2006) The diverging roles of calmodulin and PKC in the regulation of p21 intracellular localization. Cell Cycle 5(1):3–6. CrossRefPubMedGoogle Scholar
  43. 43.
    Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70CrossRefGoogle Scholar
  44. 44.
    Aso E, Ferrer I (2014) Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front Pharmacol 5:37. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bilkei-Gorzo A, Albayram O, Draffehn A, Michel K, Piyanova A, Oppenheimer H, Dvir-Ginzberg M, Racz I et al (2017) A chronic low dose of delta(9)-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med 23(6):782–787. CrossRefPubMedGoogle Scholar
  46. 46.
    Wiley JL, Martin BR (2003) Cannabinoid pharmacological properties common to other centrally acting drugs. Eur J Pharmacol 471(3):185–193CrossRefGoogle Scholar
  47. 47.
    Jarbe TU, Ross T, DiPatrizio NV, Pandarinathan L, Makriyannis A (2006) Effects of the CB1R agonist WIN-55,212-2 and the CB1R antagonists SR-141716 and AM-1387: open-field examination in rats. Pharmacol Biochem Behav 85(1):243–252. CrossRefPubMedGoogle Scholar
  48. 48.
    Hampson RE, Simeral JD, Kelly EJ, Deadwyler SA (2003) Tolerance to the memory disruptive effects of cannabinoids involves adaptation by hippocampal neurons. Hippocampus 13(5):543–556. CrossRefPubMedGoogle Scholar
  49. 49.
    Van Dam D, Marescau B, Engelborghs S, Cremers T, Mulder J, Staufenbiel M, De Deyn PP (2005) Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models. Neurochem Int 46(5):409–422. CrossRefPubMedGoogle Scholar
  50. 50.
    Wang X, Li P, Ding Q, Wu C, Zhang W, Tang B (2019) Observation of acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain. J Am Chem Soc 141(5):2061–2068. CrossRefPubMedGoogle Scholar
  51. 51.
    Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383(3):231–240CrossRefGoogle Scholar
  52. 52.
    Neumann U, Rueeger H, Machauer R, Veenstra SJ, Lueoend RM, Tintelnot-Blomley M, Laue G, Beltz K et al (2015) A novel BACE inhibitor NB-360 shows a superior pharmacological profile and robust reduction of amyloid-beta and neuroinflammation in APP transgenic mice. Mol Neurodegener 10:44. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46(1):125–135. CrossRefPubMedGoogle Scholar
  54. 54.
    Weiss RH (2003) p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 4(6):425–429CrossRefGoogle Scholar
  55. 55.
    Sanchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW et al (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 61(15):5784–5789PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Centro de Investigaciones Biológicas (CSIC)MadridSpain
  2. 2.Instituto de Química Médica (CSIC)MadridSpain
  3. 3.Neurodegenerative Disorders GroupInstituto de Investigación Hospital 12 de OctubreMadridSpain
  4. 4.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
  5. 5.Department of Neurology, Memory and Aging CenterUniversity of CaliforniaSan FranciscoUSA
  6. 6.Insituto Cajal (CSIC)MadridSpain

Personalised recommendations