Advertisement

Intravitreal S100B Injection Triggers a Time-Dependent Microglia Response in a Pro-Inflammatory Manner in Retina and Optic Nerve

  • Pia Grotegut
  • Sandra Kuehn
  • Wilhelm Meißner
  • H. Burkhard Dick
  • Stephanie C. JoachimEmail author
Article
  • 55 Downloads

Abstract

S100B is a glial protein, which belongs to calcium-binding protein family. Alterations of S100B level were noted in various neurodegenerative diseases. In a new glaucoma-like animal model S100B was injected intravitreally, which led to neuronal degeneration in retina and optic nerve. The pathological mechanisms are still unknown. Therefore, S100B protein was intravitreally injected in rats. At days 14 and 21, retina, optic nerve, serum, and aqueous humor were investigated. S100B injection led to an increase of retinal NF-κB at day 14. Furthermore, higher IL-1β levels in retina, serum, and aqueous humor were measured. A co-localization of microglia and IL-1β was noted, which correlated with an increased microglia response in retina and optic nerve at day 14. At the same point in time, more apoptotic RGCs and a decline in RGC numbers were observed. At 21 days, this damage was still present, but no signal pathway activations were detectable anymore. Interestingly, macroglia were not affected at any point in time. We conclude that S100B activated the NF-κB signal pathway, which then regulated IL-1β production and release from microglia. A positive feedback loop of IL-1β likely stimulates microglia in a pro-inflammatory manner. These microglia probably induce apoptotic damage in retina and optic nerve. Meanwhile, the injected S100B protein was naturally degraded, which explains the resting state of the pro-inflammatory signal pathways with constant damage later on. The inhibition of S100B release or microglia response could potentially decrease the damage in degenerative diseases, like glaucoma.

Keywords

Glaucoma S100B Microglia NF-κB IL-1β 

Notes

Funding Information

This project was funded in part by the Ernst und Berta Grimmke Stiftung.

Compliance with Ethical Standards

This study was carried out in accordance with the recommendations of ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. The protocol was approved by the animal care committee of North Rhine-Westphalia in Germany (84-02.04.2013.A442).

Conflict Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Casson RJ, Chidlow G, Wood JP, Crowston JG, Goldberg I (2012) Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol 40(4):341–349PubMedCrossRefGoogle Scholar
  2. 2.
    Grus FH, Boehm N, Beck S, Schlich M, Lossbrandt U, Pfeiffer N (2010) Autoantibody profiles in tear fluid as a diagnostic tool in glaucoma. Invest Ophthalmol Vis Sci 51(5):6110Google Scholar
  3. 3.
    Lorenz K, Beck S, Keilani MM, Wasielica-Poslednik J, Pfeiffer N, Grus FH (2017) Course of serum autoantibodies in patients after acute angle-closure glaucoma attack. Clin Exp Ophthalmol 45(3):280–287PubMedCrossRefGoogle Scholar
  4. 4.
    Wax MB, Tezel G, Kawase K, Kitazawa Y (2001) Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology. 108(2):296–302PubMedCrossRefGoogle Scholar
  5. 5.
    Tezel G, Hernandez R, Wax MB (2000) Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol 118(4):511–518PubMedCrossRefGoogle Scholar
  6. 6.
    Chong ZZ, Changyaleket B, Xu H, Dull RO, Schwartz DE (2016) Identifying S100B as a biomarker and a therapeutic target for brain injury and multiple diseases. Curr Med Chem 23(15):1571–1596PubMedCrossRefGoogle Scholar
  7. 7.
    Sakai M, Sakai H, Nakamura Y, Fukuchi T, Sawaguchi S (2003) Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Jpn J Ophthalmol 47(1):42–52PubMedCrossRefGoogle Scholar
  8. 8.
    Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, Mathew R, McHam ML et al (2018) Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9(1):3209PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ (2008) Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 28(46):12085–12096PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Joachim SC, Grus FH, Kraft D, White-Farrar K, Barnes G, Barbeck M, Ghanaati S, Cao S et al (2009) Complex antibody profile changes in an experimental autoimmune glaucoma animal model. Invest Ophthalmol Vis Sci 50(10):4734–4742PubMedCrossRefGoogle Scholar
  11. 11.
    Donaldson C, Barber KR, Kay CM, Shaw GS (1995) Human S100b protein: formation of a tetramer from synthetic calcium-binding site peptides. Protein Sci 4(4):765–772PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793(6):1008–1022PubMedCrossRefGoogle Scholar
  13. 13.
    Sorci G, Riuzzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I et al (2013) S100B protein in tissue development, repair and regeneration. World J Biol Chem 4:1):1–1)12PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368PubMedGoogle Scholar
  15. 15.
    Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286(9):7214–7226PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200PubMedCrossRefGoogle Scholar
  17. 17.
    Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, Fernandes A (2016) S100B as a potential biomarker and therapeutic target in multiple sclerosis. Mol Neurobiol 53(6):3976–3991PubMedCrossRefGoogle Scholar
  18. 18.
    Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ (2011) S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-kappaB signaling. J Neurochem 117(2):321–332PubMedCrossRefGoogle Scholar
  19. 19.
    Tezel G, Yang X, Luo C, Cai J, Powell DW (2012) An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest Ophthalmol Vis Sci 53(7):4220–4233PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Casola C, Schiwek JE, Reinehr S, Kuehn S, Grus FH, Kramer M, Dick HB, Joachim SC (2015) S100 alone has the same destructive effect on retinal ganglion cells as in combination with HSP 27 in an autoimmune glaucoma model. J Mol Neurosci 56(1):228–236PubMedCrossRefGoogle Scholar
  21. 21.
    Reinehr S, Reinhard J, Gandej M, Gottschalk I, Stute G, Faissner A, Dick HB, Joachim SC (2018) S100B immunization triggers NFkappaB and complement activation in an autoimmune glaucoma model. Sci Rep 8(1):9821PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chavakis T, Bierhaus A, Nawroth PP (2004) RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect 6(13):1219–1225PubMedCrossRefGoogle Scholar
  23. 23.
    Ponath G, Schettler C, Kaestner F, Voigt B, Wentker D, Arolt V et al (2007) Autocrine S100B effects on astrocytes are mediated via RAGE. J Neuroimmunol 184(1–2):214–222PubMedCrossRefGoogle Scholar
  24. 24.
    Ray R, Juranek JK, Rai V (2016) RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 62:48–55PubMedCrossRefGoogle Scholar
  25. 25.
    Peng L, Parpura V, Verkhratsky A (2014) EDITORIAL neuroglia as a central element of neurological diseases: an underappreciated target for therapeutic intervention. Curr Neuropharmacol 12(4):303–307PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia. 36(2):180–190PubMedCrossRefGoogle Scholar
  27. 27.
    Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145PubMedCrossRefGoogle Scholar
  28. 28.
    Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC (2000) Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 41(2):431–442PubMedGoogle Scholar
  30. 30.
    de Hoz R, Rojas B, Ramirez AI, Salazar JJ, Gallego BI, Trivino A et al (2016) Retinal macroglial responses in health and disease. Biomed Res Int 2016:2954721PubMedPubMedCentralGoogle Scholar
  31. 31.
    Dossi E, Vasile F, Rouach N (2018) Human astrocytes in the diseased brain. Brain Res Bull 136:139–156PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, Lu RB, Hong JS (2015) Microglial regulation of immunological and neuroprotective functions of astroglia. Glia. 63(1):118–131PubMedCrossRefGoogle Scholar
  33. 33.
    Aloisi F (2001) Immune function of microglia. Glia. 36(2):165–179PubMedCrossRefGoogle Scholar
  34. 34.
    Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 40(2):133–139PubMedCrossRefGoogle Scholar
  35. 35.
    Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313PubMedCrossRefGoogle Scholar
  36. 36.
    Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm 2013:480739Google Scholar
  37. 37.
    Kuehn S, Meissner W, Grotegut P, Theiss C, Dick HB, Joachim SC (2018) Intravitreal S100B injection leads to progressive glaucoma like damage in retina and optic nerve. Front Cell Neurosci 12:312PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kuehn S, Rodust C, Stute G, Grotegut P, Meissner W, Reinehr S et al (2017) Concentration-dependent inner retina layer damage and optic nerve degeneration in a NMDA model. J Mol Neurosci 63(3–4):283–299PubMedCrossRefGoogle Scholar
  39. 39.
    Noristani R, Kuehn S, Stute G, Reinehr S, Stellbogen M, Dick HB, Joachim SC (2016) Retinal and optic nerve damage is associated with early glial responses in an experimental autoimmune glaucoma model. J Mol Neurosci 58(4):470–482PubMedCrossRefGoogle Scholar
  40. 40.
    Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, Dick HB, Pfeiffer N et al (2012) Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 7(7):e40616PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC (2013) Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflammation 10:120PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shindler KS, Guan Y, Ventura E, Bennett J, Rostami A (2006) Retinal ganglion cell loss induced by acute optic neuritis in a relapsing model of multiple sclerosis. Mult Scler 12(5):526–532PubMedCrossRefGoogle Scholar
  43. 43.
    Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31(4):665–677PubMedCrossRefGoogle Scholar
  44. 44.
    Cogswell JP, Godlevski MM, Wisely GB, Clay WC, Leesnitzer LM, Ways JP et al (1994) NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol 153(2):712–723PubMedGoogle Scholar
  45. 45.
    Gerlach R, Demel G, Konig HG, Gross U, Prehn JH, Raabe A et al (2006) Active secretion of S100B from astrocytes during metabolic stress. Neuroscience. 141(4):1697–1701PubMedCrossRefGoogle Scholar
  46. 46.
    Ellis EF, Willoughby KA, Sparks SA, Chen T (2007) S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 101(6):1463–1470PubMedCrossRefGoogle Scholar
  47. 47.
    Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia. 51(2):81–97PubMedCrossRefGoogle Scholar
  48. 48.
    Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148(2):168–187PubMedCrossRefGoogle Scholar
  49. 49.
    Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J 24(4):1043–1055PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Huang L, Zhang L, Liu Z, Zhao S, Xu D, Li L, Peng Q, Ai Y (2019) Pentamidine protects mice from cecal ligation and puncture-induced brain damage via inhibiting S100B/RAGE/NF-kappaB. Biochem Biophys Res Commun 517:221–226PubMedCrossRefGoogle Scholar
  51. 51.
    Bianchi R, Adami C, Giambanco I, Donato R (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81(1):108–118PubMedCrossRefGoogle Scholar
  52. 52.
    Chen M, Glenn JV, Dasari S, McVicar C, Ward M, Colhoun L, Quinn M, Bierhaus A et al (2014) RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization. PLoS One 9(2):e89548PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jenkins HG, Ikeda H (1992) Tumour necrosis factor causes an increase in axonal transport of protein and demyelination in the mouse optic nerve. J Neurol Sci 108(1):99–104PubMedCrossRefGoogle Scholar
  54. 54.
    Costa DVS, Bon-Frauches AC, Silva A, Lima-Junior RCP, Martins CS, Leitao RFC et al (2019) 5-Fluorouracil induces enteric neuron death and glial activation during intestinal mucositis via a S100B-RAGE-NFkappaB-dependent pathway. Sci Rep 9(1):665PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25(4):431–439PubMedCrossRefGoogle Scholar
  56. 56.
    Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA et al (2016) RAGE expression and ROS generation in neurons: differentiation versus damage. Oxidative Med Cell Longev 2016:9348651CrossRefGoogle Scholar
  57. 57.
    Solt LA, May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42(1–3):3–18PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394PubMedCrossRefGoogle Scholar
  59. 59.
    Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R (2001) S100B expression in and effects on microglia. Glia. 33(2):131–142PubMedCrossRefGoogle Scholar
  60. 60.
    Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194PubMedCrossRefGoogle Scholar
  61. 61.
    Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou S, Zhu W, Zhang Y, Pan S, Bao J (2018) S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm Res 67(11–12):937–949PubMedCrossRefGoogle Scholar
  63. 63.
    Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) pathway. Sci Signal 3(105):cm1PubMedGoogle Scholar
  64. 64.
    Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R (2001) IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 18(9):947–956PubMedCrossRefGoogle Scholar
  65. 65.
    Fan Z, Brooks DJ, Okello A, Edison P (2017) An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 140(3):792–803PubMedPubMedCentralGoogle Scholar
  66. 66.
    H EH, Noristani HN, Perrin FE (2017) Microglia responses in acute and chronic neurological diseases: what microglia-specific transcriptomic studies taught (and did not teach) us. Front Aging Neurosci 9:227CrossRefGoogle Scholar
  67. 67.
    Li DR, Zhang F, Wang Y, Tan XH, Qiao DF, Wang HJ, Michiue T, Maeda H (2012) Quantitative analysis of GFAP- and S100 protein-immunopositive astrocytes to investigate the severity of traumatic brain injury. Legal Med 14(2):84–92PubMedCrossRefGoogle Scholar
  68. 68.
    Kondo H, Iwanaga T, Nakajima T (1983) An immunocytochemical study on the localization of S-100 protein in the retina of rats. Cell Tissue Res 231(3):527–532PubMedCrossRefGoogle Scholar
  69. 69.
    Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313(3):239–245PubMedCrossRefGoogle Scholar
  70. 70.
    Brozzi F, Arcuri C, Giambanco I, Donato R (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation, and tumor growth. J Biol Chem 284(13):8797–8811PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Reali C, Pillai R, Saba F, Cabras S, Michetti F, Sogos V (2012) S100B modulates growth factors and costimulatory molecules expression in cultured human astrocytes. J Neuroimmunol 243(1–2):95–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Experimental Eye Research Institute, University Eye HospitalRuhr-University BochumBochumGermany

Personalised recommendations