Advertisement

The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function

  • Erica C. Pandolfi
  • Joseph A. Breuer
  • Viet Anh Nguyen Huu
  • Tulasi Talluri
  • Duong Nguyen
  • Jessica Sora Lee
  • Rachael Hu
  • Kapil Bharti
  • Dorota Skowronska-Krawczyk
  • Michael R. Gorman
  • Pamela L. Mellon
  • Hanne M. HoffmannEmail author
Original Paper

Abstract

The brain’s primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.

Keywords

Suprachiasmatic nucleus Gonadotropin-releasing hormone neuron Ventral anterior homeobox 1 Sine oculis homeobox protein 6 Circadian rhythm Mouse model validation 

Notes

Acknowledgements

We thank Dr. Catherine Dulac (Harvard University, Cambridge, MA, USA) for the Lhrh-cre mice and Dr. Andrew Wolfe (Johns Hopkins University) for the Gnrh-cre mice. The Vip-luciferase plasmid was kindly provided by Dr. Satchidananda Panda (Salk Institute, La Jolla, CA, USA).

Funding Information

This work was supported by National Institutes of Health (NIH) Grants R01 HD072754 and R01 HD082567 (to P.L.M.). It was also supported by NIH/Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) P50 HD012303 as part of the National Centers for Translational Research in Reproduction and Infertility (P.L.M.). P.L.M. was also partially supported by P30 DK063491, P30 CA023100, and P42 ES010337. H.M.H. was partially supported by K99/R00 HD084759 and the United States Department of Agriculture National Institute of Food and Agriculture Hatch project 1018024. E.C.P. was partially supported by NIH R25 GM083275 and F31 HD098652. T.T. was partially supported by the Endocrine Society and R.H. was partially supported by the Howell Foundation and the Frontiers of Innovation Scholars Program, UC San Diego. J.A.B. was partially supported by the Frontiers of Innovation Scholars Program, UC San Diego. Work in the M.R.G. laboratory was supported by Office of Naval Research #N00014-13-1-0285, and work in the D.S.K. laboratory is supported by NIH/National Eye Institute award R01EY027011, RPB Special Scholar Award, Atkinson laboratory funds as well as by RPB Unrestricted Grant to Shiley Eye Institute and by the UCSD VisionResearch Center Core Grant P30EY022589. K.B. was supported by NIH/National Institute of Neurological Disorders and Stroke IRP funds. The University of Virginia, Center for Research in Reproduction, Ligand Assay and Analysis Core, is supported by the NIH/NICHD Grant P50 HD028934. We thank Karen J. Tonsfeldt, Erica L. Schoeller, Alexandra Yaw, Sabrina Baretto, Ichiko Saotome, and Jason D. Meadows for assistance

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13(6):767–775.  https://doi.org/10.1038/nn.2545 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176CrossRefGoogle Scholar
  3. 3.
    Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep 18(13):3227–3241.  https://doi.org/10.1016/j.celrep.2017.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI et al (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306(5705):2255–2257.  https://doi.org/10.1126/science.1104935 CrossRefPubMedGoogle Scholar
  5. 5.
    Pasquier L, Dubourg C, Blayau M, Lazaro L, Le Marec B, David V, Odent S (2000) A new mutation in the six-domain of SIX3 gene causes holoprosencephaly. Eur J Hum Genet 8(10):797–800.  https://doi.org/10.1038/sj.ejhg.5200540 CrossRefPubMedGoogle Scholar
  6. 6.
    Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S et al (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: mutation review and genotype-phenotype correlations. Hum Mutat 24(1):43–51.  https://doi.org/10.1002/humu.20056 CrossRefPubMedGoogle Scholar
  7. 7.
    Pasquier L, Dubourg C, Gonzales M, Lazaro L, David V, Odent S, Encha-Razavi F (2005) First occurrence of aprosencephaly/atelencephaly and holoprosencephaly in a family with a SIX3 gene mutation and phenotype/genotype correlation in our series of SIX3 mutations. J Med Genet 42(1):e4.  https://doi.org/10.1136/jmg.2004.023416 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Larder R, Kimura I, Meadows J, Clark DD, Mayo S, Mellon PL (2013) Gene dosage of Otx2 is important for fertility in male mice. Mol Cell Endocrinol 377(1–2):16–22.  https://doi.org/10.1016/j.mce.2013.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoffmann HM, Tamrazian A, Xie H, Perez-Millan MI, Kauffman AS, Mellon PL (2014) Heterozygous deletion of ventral anterior homeobox (vax1) causes subfertility in mice. Endocrinology 155(10):4043–4053.  https://doi.org/10.1210/en.2014-1277 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pandolfi EC, Hoffmann HM, Schoeller EL, Gorman MR, Mellon PL (2018) Haploinsufficiency of SIX3 abolishes male reproductive behavior through disrupted olfactory development, and impairs female fertility through disrupted GnRH neuron migration. Mol Neurobiol 55(11):8709–8727.  https://doi.org/10.1007/s12035-018-1013-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Geng X, Acosta S, Lagutin O, Gil H, Oliver G (2016) Six3 dosage mediates the pathogenesis of holoprosencephaly. Development 143(23):4462–4473.  https://doi.org/10.1242/dev.132142 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoffmann H, Pandolfi E, Larder R, Mellon P (2018) Haploinsufficiency of homeodomain proteins Six3, Vax1, and Otx2, causes subfertility in mice via distinct mechanisms. Neuroendocrinology 109:200–207.  https://doi.org/10.1159/000494086 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH, Brinkmeier ML, Raetzman LT et al (2010) Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol Cell Endocrinol 323(1):4–19CrossRefGoogle Scholar
  14. 14.
    Nesan D, Kurrasch DM (2016) Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 438:3–17.  https://doi.org/10.1016/j.mce.2016.09.031 CrossRefPubMedGoogle Scholar
  15. 15.
    Sladek M, Sumova A, Kovacikova Z, Bendova Z, Laurinova K, Illnerova H (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A 101(16):6231–6236.  https://doi.org/10.1073/pnas.0401149101 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J et al (2018) Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362(6416):eaau5324.  https://doi.org/10.1126/science.aau5324 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J et al (2014) Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 7(3):609–622.  https://doi.org/10.1016/j.celrep.2014.03.060 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Challet E (2010) Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 180(5):631–644.  https://doi.org/10.1007/s00360-010-0451-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17 Suppl 1:76–83.  https://doi.org/10.1111/dom.12516 CrossRefPubMedGoogle Scholar
  20. 20.
    Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S et al (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythm 23(1):26–36.  https://doi.org/10.1177/0748730407311254 CrossRefGoogle Scholar
  21. 21.
    Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):E1132–E1141.  https://doi.org/10.1073/pnas.1217154110 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    VanDunk C, Hunter LA, Gray PA (2011) Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 31(17):6457–6467.  https://doi.org/10.1523/JNEUROSCI.5385-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mahoney MM (2010) Shift work, jet lag, and female reproduction. Int J Endocrinol 2010:813764.  https://doi.org/10.1155/2010/813764 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Loh DH, Kuljis DA, Azuma L, Wu Y, Truong D, Wang HB, Colwell CS (2014) Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide. J Biol Rhythm 29(5):355–369.  https://doi.org/10.1177/0748730414549767 CrossRefGoogle Scholar
  25. 25.
    Hickok JR, Tischkau SA (2010) In vivo circadian rhythms in gonadotropin-releasing hormone neurons. Neuroendocrinology 91(1):110–120.  https://doi.org/10.1159/000243163 CrossRefPubMedGoogle Scholar
  26. 26.
    Mosko SS, Moore RY (1979) Neonatal ablation of the suprachiasmatic nucleus. Effects on the development of the pituitary-gonadal axis in the female rat. Neuroendocrinology 29(5):350–361CrossRefGoogle Scholar
  27. 27.
    Christian CA, Moenter SM (2008) Vasoactive intestinal polypeptide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology 149(6):3130–3136CrossRefGoogle Scholar
  28. 28.
    Williams WP 3rd, Kriegsfeld LJ (2012) Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol 3:60.  https://doi.org/10.3389/fendo.2012.00060 CrossRefGoogle Scholar
  29. 29.
    Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW, Liposits Z, Kallo I (2010) Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol 22(9):1032–1039.  https://doi.org/10.1111/j.1365-2826.2010.02045.x CrossRefPubMedGoogle Scholar
  30. 30.
    Russo KA, La JL, Stephens SB, Poling MC, Padgaonkar NA, Jennings KJ, Piekarski DJ, Kauffman AS et al (2015) Circadian control of the female reproductive axis through gated responsiveness of the RFRP-3 system to VIP signaling. Endocrinology 156(7):2608–2618.  https://doi.org/10.1210/en.2014-1762 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Smarr BL, Gile JJ, de la Iglesia HO (2013) Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in female rats: possible role as an integrator for circadian and ovarian signals timing the luteinising hormone surge. J Neuroendocrinol 25(12):1273–1279.  https://doi.org/10.1111/jne.12104 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ (2011) Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 152(2):595–606.  https://doi.org/10.1210/en.2010-0943 CrossRefPubMedGoogle Scholar
  33. 33.
    Schafer D, Kane G, Colledge WH, Piet R, Herbison AE (2018) Sex- and sub region-dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. J Neuroendocrinol 30(12):e12660.  https://doi.org/10.1111/jne.12660 CrossRefPubMedGoogle Scholar
  34. 34.
    Piet R, Dunckley H, Lee K, Herbison AE (2016) Vasoactive intestinal peptide excites GnRH neurons in male and female mice. Endocrinology 157(9):3621–3630.  https://doi.org/10.1210/en.2016-1399 CrossRefPubMedGoogle Scholar
  35. 35.
    Piet R, Fraissenon A, Boehm U, Herbison AE (2015) Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J Neurosci 35(17):6881–6892.  https://doi.org/10.1523/JNEUROSCI.4587-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hoffmann HM, Mellon PL (2018) Regulation of GnRH gene expression. In: Herbison AE, Plant TM (eds) The GnRH neuron and its control. Wiley Blackwell, Hoboken, pp. 95–120Google Scholar
  37. 37.
    Bedont JL, Newman EA, Blackshaw S (2015) Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol 4(5):445–468.  https://doi.org/10.1002/wdev.187 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chappell PE, White RS, Mellon PL (2003) Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J Neurosci 23(35):11202–11213CrossRefGoogle Scholar
  39. 39.
    Forni PE, Wray S (2015) GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 36:165–177.  https://doi.org/10.1016/j.yfrne.2014.09.004 CrossRefPubMedGoogle Scholar
  40. 40.
    Hallonet M, Hollemann T, Pieler T, Gruss P (1999) Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev 13(23):3106–3114CrossRefGoogle Scholar
  41. 41.
    Bertuzzi S, Hindges R, Mui SH, O'Leary DD, Lemke G (1999) The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev 13(23):3092–3105CrossRefGoogle Scholar
  42. 42.
    Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178CrossRefGoogle Scholar
  43. 43.
    Larder R, Clark DD, Miller NL, Mellon PL (2011) Hypothalamic dysregulation and infertility in mice lacking the homeodomain protein Six6. J Neurosci 31(2):426–438.  https://doi.org/10.1523/JNEUROSCI.1688-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Clark DD, Gorman MR, Hatori M, Meadows JD, Panda S, Mellon PL (2013) Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein six6. J Biol Rhythm 28(1):15–25.  https://doi.org/10.1177/0748730412468084 CrossRefGoogle Scholar
  45. 45.
    Pandolfi EC, Tonsfeldt KJ, Hoffmann HM, Mellon PL (2019) Deletion of the homeodomain protein Six6 from GnRH neurons decreases GnRH gene expression resulting in infertility. Endocrinology 160:2151–2164.  https://doi.org/10.1210/en.2019-00113 CrossRefPubMedGoogle Scholar
  46. 46.
    Hoffmann HM, Trang C, Gong P, Kimura I, Pandolfi EC, Mellon PL (2016) Deletion of Vax1 from GnRH neurons abolishes GnRH expression and leads to hypogonadism and infertility. J Neurosci 36(12):3506–3518.  https://doi.org/10.1523/JNEUROSCI.2723-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bharti K, Gasper M, Bertuzzi S, Arnheiter H (2011) Lack of the ventral anterior homeodomain transcription factor VAX1 leads to induction of a second pituitary. Development 138(5):873–878.  https://doi.org/10.1242/dev.056465 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123(4):669–682CrossRefGoogle Scholar
  49. 49.
    Wolfe A, Divall S, Singh SP, Nikrodhanond AA, Baria AT, Le WW, Hoffman GE, Radovick S (2008) Temporal and spatial regulation of CRE recombinase expression in gonadotrophin-releasing hormone neurones in the mouse. J Neuroendocrinol 20(7):909–916CrossRefGoogle Scholar
  50. 50.
    Ridder WH 3rd, Nusinowitz S (2006) The visual evoked potential in the mouse--origins and response characteristics. Vis Res 46(6–7):902–913.  https://doi.org/10.1016/j.visres.2005.09.006 CrossRefPubMedGoogle Scholar
  51. 51.
    Hoffmann HM, Gong P, Tamrazian A, Mellon PL (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143–154.  https://doi.org/10.1016/j.mce.2017.09.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Hatori M, Gill S, Mure LS, Goulding M, O'Leary DD, Panda S (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. eLife 3:e03357.  https://doi.org/10.7554/eLife.03357 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Givens ML, Rave-Harel N, Goonewardena VD, Kurotani R, Berdy SE, Swan CH, Rubenstein JL, Robert B et al (2005) Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families. J Biol Chem 280(19):19156–19165CrossRefGoogle Scholar
  54. 54.
    Hoffmann HM (2018) Determination of reproductive competence by confirming pubertal onset and performing a fertility assay in mice and rats. J Vis Exp (140):e58352. doi: https://doi.org/10.3791/58352
  55. 55.
    Hoffmann HM, Larder R, Lee JS, Hu RJ, Trang C, Devries BM, Clark DD, Mellon PL (2019) Differential CRE expression in Lhrh-Cre and Gnrh-Cre alleles and the impact on fertility in Otx2-flox mice. Neuroendocrinology 108:328–342.  https://doi.org/10.1159/000497791 CrossRefPubMedGoogle Scholar
  56. 56.
    Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H (2008) Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 135(6):1169–1178.  https://doi.org/10.1242/dev.014142 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bedont JL, Blackshaw S (2015) Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks. Front Syst Neurosci 9:74.  https://doi.org/10.3389/fnsys.2015.00074 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Plageman TF Jr, Lang RA (2012) Generation of an Rx-tTA: TetOp-Cre knock-in mouse line for doxycycline regulated Cre activity in the Rx expression domain. PLoS One 7(11):e50426.  https://doi.org/10.1371/journal.pone.0050426 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Blattner MS, Mahoney MM (2014) Estrogen receptor 1 modulates circadian rhythms in adult female mice. Chronobiol Int 31(5):637–644.  https://doi.org/10.3109/07420528.2014.885528 CrossRefPubMedGoogle Scholar
  60. 60.
    Bailey M, Silver R (2014) Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 35(1):111–139.  https://doi.org/10.1016/j.yfrne.2013.11.003 CrossRefPubMedGoogle Scholar
  61. 61.
    Edgar DM, Kilduff TS, Martin CE, Dement WC (1991) Influence of running wheel activity on free-running sleep/wake and drinking circadian rhythms in mice. Physiol Behav 50(2):373–378CrossRefGoogle Scholar
  62. 62.
    Tonsfeldt KJ, Schoeller EL, Brusman LE, Cui LJ, Lee J, Mellon PL (2019) The contribution of the circadian gene Bmal1 to female fertility and the generation of the preovulatory luteinizing hormone surge. J Endocr Soc 3(4):716–733.  https://doi.org/10.1210/js.2018-00228 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246.  https://doi.org/10.1146/annurev-neuro-071714-034120 CrossRefPubMedGoogle Scholar
  64. 64.
    Herzog ED, Schwartz WJ (2002) A neural clockwork for encoding circadian time. J Appl Physiol 92(1):401–408.  https://doi.org/10.1152/japplphysiol.00836.2001 CrossRefPubMedGoogle Scholar
  65. 65.
    Crossland WJ, Uchwat CJ (1982) Neurogenesis in the chick ventral lateral geniculate and ectomammillary nuclei: relationship of soma size to birthdate. Brain Res 282(1):33–46CrossRefGoogle Scholar
  66. 66.
    Kabrita CS, Davis FC (2008) Development of the mouse suprachiasmatic nucleus: determination of time of cell origin and spatial arrangements within the nucleus. Brain Res 1195:20–27.  https://doi.org/10.1016/j.brainres.2007.12.020 CrossRefPubMedGoogle Scholar
  67. 67.
    Compston A (1991) Limiting and repairing the damage in multiple sclerosis. J Neurol Neurosurg Psychiatry 54(11):945–948CrossRefGoogle Scholar
  68. 68.
    van der Beek EM, Horvath TL, Wiegant VM, van den Hurk R, Buijs RM (1997) Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384(4):569–579CrossRefGoogle Scholar
  69. 69.
    Horvath TL, Cela V, van der Beek EM (1998) Gender-specific apposition between vasoactive intestinal peptide-containing axons and gonadotrophin-releasing hormone-producing neurons in the rat. Brain Res 795(1–2):277–281CrossRefGoogle Scholar
  70. 70.
    Kriegsfeld LJ, Silver R, Gore AC, Crews D (2002) Vasoactive intestinal polypeptide contacts on gonadotropin-releasing hormone neurones increase following puberty in female rats. J Neuroendocrinol 14(9):685–690CrossRefGoogle Scholar
  71. 71.
    Ward DR, Dear FM, Ward IA, Anderson SI, Spergel DJ, Smith PA, Ebling FJ (2009) Innervation of gonadotropin-releasing hormone neurons by peptidergic neurons conveying circadian or energy balance information in the mouse. PLoS One 4(4):e5322.  https://doi.org/10.1371/journal.pone.0005322 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Smarr BL, Morris E, de la Iglesia HO (2012) The dorsomedial suprachiasmatic nucleus times circadian expression of Kiss1 and the luteinizing hormone surge. Endocrinology 153(6):2839–2850.  https://doi.org/10.1210/en.2011-1857 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Smith MJ, Jiennes L, Wise PM (2000) Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Endocrinology 141(11):4317–4320.  https://doi.org/10.1210/endo.141.11.7876 CrossRefPubMedGoogle Scholar
  74. 74.
    Dolatshad H, Campbell EA, O'Hara L, Maywood ES, Hastings MH, Johnson MH (2006) Developmental and reproductive performance in circadian mutant mice. Hum Reprod 21(1):68–79.  https://doi.org/10.1093/humrep/dei313 CrossRefPubMedGoogle Scholar
  75. 75.
    Legan SJ, Karsch FJ (1975) A daily signal for the LH surge in the rat. Endocrinology 96(1):57–62CrossRefGoogle Scholar
  76. 76.
    Christian CA, Moenter SM (2010) The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 31(4):544–577.  https://doi.org/10.1210/er.2009-0023 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Conte I, Marco-Ferreres R, Beccari L, Cisneros E, Ruiz JM, Tabanera N, Bovolenta P (2010) Proper differentiation of photoreceptors and amacrine cells depends on a regulatory loop between NeuroD and Six6. Development 137(14):2307–2317.  https://doi.org/10.1242/dev.045294 CrossRefPubMedGoogle Scholar
  78. 78.
    Tetreault N, Champagne MP, Bernier G (2009) The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev Biol 327(2):541–550.  https://doi.org/10.1016/j.ydbio.2008.12.022 CrossRefPubMedGoogle Scholar
  79. 79.
    Diaczok D, DiVall S, Matsuo I, Wondisford FE, Wolfe AM, Radovick S (2011) Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism. Mol Endocrinol 25(5):833–846.  https://doi.org/10.1210/me.2010-0271 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kurian JR, Louis S, Keen KL, Wolfe A, Terasawa E, Levine JE (2016) The methylcytosine dioxygenase ten-eleven translocase-2 (tet2) enables elevated GnRH gene expression and maintenance of male reproductive function. Endocrinology 157(9):3588–3603.  https://doi.org/10.1210/en.2016-1087 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    DiVall SA, Herrera D, Sklar B, Wu S, Wondisford F, Radovick S, Wolfe A (2015) Insulin receptor signaling in the GnRH neuron plays a role in the abnormal GnRH pulsatility of obese female mice. PLoS One 10(3):e0119995.  https://doi.org/10.1371/journal.pone.0119995 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Novaira HJ, Sonko ML, Hoffman G, Koo Y, Ko C, Wolfe A, Radovick S (2014) Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism. Mol Endocrinol 28(2):225–238.  https://doi.org/10.1210/me.2013-1319 CrossRefPubMedGoogle Scholar
  83. 83.
    Wu S, Divall S, Hoffman GE, Le WW, Wagner KU, Wolfe A (2011) Jak2 is necessary for neuroendocrine control of female reproduction. J Neurosci 31(1):184–192CrossRefGoogle Scholar
  84. 84.
    Divall SA, Williams TR, Carver SE, Koch L, Bruning JC, Kahn CR, Wondisford F, Radovick S et al (2010) Divergent roles of growth factors in the GnRH regulation of puberty in mice. J Clin Invest 120(8):2900–2909.  https://doi.org/10.1172/JCI41069 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and MedicineUniversity of California San DiegoLa JollaUSA
  2. 2.Center for Circadian BiologyUniversity of California San DiegoLa JollaUSA
  3. 3.Viterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaUSA
  4. 4.Reproductive and Developmental Science Group, Department of Animal ScienceMichigan State UniversityEast LansingUSA
  5. 5.Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIHBethesdaUSA
  6. 6.Department of PsychologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations