Advertisement

Phosphodiesterase 7 Regulation in Cellular and Rodent Models of Parkinson’s Disease

  • Jose A. Morales-GarciaEmail author
  • Sandra Alonso-Gil
  • Ángel Santos
  • Ana Perez-CastilloEmail author
Article

Abstract

Parkinson’s disease is characterized by a loss of dopaminergic neurons in the ventral midbrain. This disease is diagnosed when around 50% of these neurons have already died; consequently, therapeutic treatments start too late. Therefore, an urgent need exists to find new targets involved in the onset and progression of the disease. Phosphodiesterase 7 (PDE7) is a key enzyme involved in the degradation of intracellular levels of cyclic adenosine 3′, 5′-monophosphate in different cell types; however, little is known regarding its role in neurodegenerative diseases, and specifically in Parkinson’s disease. We have previously shown that chemical as well as genetic inhibition of this enzyme results in neuroprotection and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson’s disease. Here, we have used in vitro and in vivo models of Parkinson’s disease to study the regulation of PDE7 protein levels. Our results show that PDE7 is upregulated after an injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures and after lipopolysaccharide or 6-hidroxydopamine injection in the Substantia nigra pars compacta of adult mice. PDE7 increase takes place mainly in degenerating dopaminergic neurons and in microglia cells. This enhanced expression appears to be direct since 6-hydroxydopamine and lipopolysaccharide increase the expression of a 962-bp fragment of its promoter. Taking together, these results reveal an essential function for PDE7 in the pathways leading to neurodegeneration and inflammatory-mediated brain damage and suggest novel roles for PDE7 in neurodegenerative diseases, specifically in PD, opening the door for new therapeutic interventions.

Keywords

Astrocytes Microglial cells Neurodegeneration Neuroinflammation Parkinson Phosphodiesterase7 Regulation 

Abbreviations

6-OHDA

6-Hydroxydopamine

AD

Alzheimer’s disease

DAPI

4′,6-Diamidino-2-phenylindole

GFAP

Glial fibrillary acidic protein

LPS

Lipopolysaccharide

PD

Parkinson’s disease

PDEs

Phosphodiesterases

PDE7

Phosphodiesterase 7

SNpc

Substantia nigra pars compacta

TH

Tyrosine hydroxylase

Notes

Acknowledgments

We thank Monica Belinchon, expert in confocal images, for her technical support with the confocal microscope and Victor Echeverry, Jose Antonio Lopez-Moreno and Manuel Guzman from the Complutense University for kindly providing us with DAT and DARPP32 antibodies.

Funding Information

This work was financially supported by the Spanish Ministry of Economy and Competitiveness (grants SAF2014-52940-R and SAF2017-85199-P to A.P-C) and partially financed with FEDER funds. The Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) is funded by the Institute for Health “Carlos III.” J.A.M-G. is a post-doctoral fellow from CIBERNED.

Compliance with Ethical Standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal experiments were specifically approved by the “Ethics Committee for Animal Experimentation” of the Instituto de Investigaciones Biomedicas (CSIC-UAM) and carried out in accordance with the European Communities Council Directive (2010/63/EEC) and National regulations (normative 53/2013).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90(4):675–691.  https://doi.org/10.1016/j.neuron.2016.03.038 Google Scholar
  2. 2.
    Kulkarni OP, Lichtnekert J, Anders HJ, Mulay SR (2016) The immune system in tissue environments regaining homeostasis after injury: is “inflammation” always inflammation? Mediat Inflamm 2016:2856213.  https://doi.org/10.1155/2016/2856213 Google Scholar
  3. 3.
    Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int. J. Neurosci. 127(7):624–633.  https://doi.org/10.1080/00207454.2016.1212854
  4. 4.
    Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783.  https://doi.org/10.1126/science.aag2590 Google Scholar
  5. 5.
    Russo MV, McGavern DB (2016) Inflammatory neuroprotection following traumatic brain injury. Science 353(6301):783–785.  https://doi.org/10.1126/science.aaf6260 Google Scholar
  6. 6.
    Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468.  https://doi.org/10.1146/annurev-immunol-051116-052358 Google Scholar
  7. 7.
    Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201.  https://doi.org/10.1038/nrneurol.2010.17 Google Scholar
  8. 8.
    Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212.  https://doi.org/10.1016/S1353-8020(11)70065-7 Google Scholar
  9. 9.
    Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep 13(4):3391–3396.  https://doi.org/10.3892/mmr.2016.4948 Google Scholar
  10. 10.
    Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477.  https://doi.org/10.1038/nri3705 Google Scholar
  11. 11.
    Pal R, Tiwari PC, Nath R, Pant KK (2016) Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 38(12):1111–1122.  https://doi.org/10.1080/01616412.2016.1249997 Google Scholar
  12. 12.
    Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208(1):1–25.  https://doi.org/10.1016/j.expneurol.2007.07.004 Google Scholar
  13. 13.
    Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511.  https://doi.org/10.1146/annurev.biochem.76.060305.150444 Google Scholar
  14. 14.
    Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520.  https://doi.org/10.1124/pr.58.3.5 Google Scholar
  15. 15.
    Kelly MP (2018) Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell Signal 42:281–291.  https://doi.org/10.1016/j.cellsig.2017.11.004 Google Scholar
  16. 16.
    Ffytche DH, Creese B, Politis M, Chaudhuri KR, Weintraub D, Ballard C, Aarsland D (2017) The psychosis spectrum in Parkinson disease. Nat Rev Neurol 13(2):81–95.  https://doi.org/10.1038/nrneurol.2016.200 Google Scholar
  17. 17.
    Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398.  https://doi.org/10.1016/j.pharmthera.2005.07.003 Google Scholar
  18. 18.
    Dyke HJ, Montana JG (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 11(1):1–13.  https://doi.org/10.1517/13543784.11.1.1 Google Scholar
  19. 19.
    Spina D (2003) Phosphodiesterase-4 inhibitors in the treatment of inflammatory lung disease. Drugs 63(23):2575–2594.  https://doi.org/10.2165/00003495-200363230-00002 Google Scholar
  20. 20.
    Bloom TJ, Beavo JA (1996) Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc Natl Acad Sci U S A 93(24):14188–14192Google Scholar
  21. 21.
    Sasaki T, Kotera J, Omori K (2002) Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation. Biochem. J. 361 (Pt 2:211–220Google Scholar
  22. 22.
    Miro X, Perez-Torres S, Palacios JM, Puigdomenech P, Mengod G (2001) Differential distribution of cAMP-specific phosphodiesterase 7A mRNA in rat brain and peripheral organs. Synapse 40(3):201–214.  https://doi.org/10.1002/syn.1043 Google Scholar
  23. 23.
    Reyes-Irisarri E, Perez-Torres S, Mengod G (2005) Neuronal expression of cAMP-specific phosphodiesterase 7B mRNA in the rat brain. Neuroscience 132(4):1173–1185.  https://doi.org/10.1016/j.neuroscience.2005.01.050 Google Scholar
  24. 24.
    Morales-Garcia JA, Redondo M, Alonso-Gil S, Gil C, Perez C, Martinez A, Santos A, Perez-Castillo A (2011) Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS One 6(2):e17240.  https://doi.org/10.1371/journal.pone.0017240 Google Scholar
  25. 25.
    Morales-Garcia JA, Alonso-Gil S, Gil C, Martinez A, Santos A, Perez-Castillo A (2015) Phosphodiesterase 7 inhibition induces dopaminergic neurogenesis in hemiparkinsonian rats. Stem Cells Transl Med 4(6):564–575.  https://doi.org/10.5966/sctm.2014-0277 Google Scholar
  26. 26.
    Morales-Garcia JA, Echeverry-Alzate V, Alonso-Gil S, Sanz-SanCristobal M, Lopez-Moreno JA, Gil C, Martinez A, Santos A et al (2017) Phosphodiesterase7 inhibition activates adult neurogenesis in hippocampus and subventricular zone in vitro and in vivo. Stem Cells 35(2):458–472.  https://doi.org/10.1002/stem.2480 Google Scholar
  27. 27.
    Bibb JA (2005) Decoding dopamine signaling. Cell 122(2):153–155.  https://doi.org/10.1016/j.cell.2005.07.011 Google Scholar
  28. 28.
    Sasaki T, Kotera J, Omori K (2004) Transcriptional activation of phosphodiesterase 7B1 by dopamine D1 receptor stimulation through the cyclic AMP/cyclic AMP-dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons. J Neurochem 89(2):474–483.  https://doi.org/10.1111/j.1471-4159.2004.02354.x Google Scholar
  29. 29.
    Morales-Garcia JA, Palomo V, Redondo M, Alonso-Gil S, Gil C, Martinez A, Perez-Castillo A (2014) Crosstalk between phosphodiesterase 7 and glycogen synthase kinase-3: two relevant therapeutic targets for neurological disorders. ACS Chem Neurosci 5(3):194–204.  https://doi.org/10.1021/cn400166d Google Scholar
  30. 30.
    Morales-Garcia JA, de la Fuente RM, Alonso-Gil S, Rodriguez-Franco MI, Feilding A, Perez-Castillo A, Riba J (2017) The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Sci Rep 7(1):5309.  https://doi.org/10.1038/s41598-017-05407-9 Google Scholar
  31. 31.
    Morales-Garcia JA, Gine E, Hernandez-Encinas E, Aguilar-Morante D, Sierra-Magro A, Sanz-SanCristobal M, Alonso-Gil S, Sanchez-Lanzas R et al (2017) CCAAT/Enhancer binding protein beta silencing mitigates glial activation and neurodegeneration in a rat model of Parkinson’s disease. Sci Rep 7(1):13526.  https://doi.org/10.1038/s41598-017-13269-4 Google Scholar
  32. 32.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. 6th edn. Academic Press/Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Barnes MJ, Cooper N, Davenport RJ, Dyke HJ, Galleway FP, Galvin FC, Gowers L, Haughan AF et al (2001) Synthesis and structure-activity relationships of guanine analogues as phosphodiesterase 7 (PDE7) inhibitors. Bioorg Med Chem Lett 11(8):1081–1083Google Scholar
  34. 34.
    Pitts WJ, Vaccaro W, Huynh T, Leftheris K, Roberge JY, Barbosa J, Guo J, Brown B et al (2004) Identification of purine inhibitors of phosphodiesterase 7 (PDE7). Bioorg Med Chem Lett 14(11):2955–2958.  https://doi.org/10.1016/j.bmcl.2004.03.021 Google Scholar
  35. 35.
    Vergne F, Bernardelli P, Lorthiois E, Pham N, Proust E, Oliveira C, Mafroud AK, Royer F et al (2004) Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 1: design, synthesis and structure-activity relationship studies. Bioorg Med Chem Lett 14(18):4607–4613.  https://doi.org/10.1016/j.bmcl.2004.07.008 Google Scholar
  36. 36.
    Persson M, Brantefjord M, Hansson E, Ronnback L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51(2):111–120.  https://doi.org/10.1002/glia.20191 Google Scholar
  37. 37.
    Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388(2):211–227Google Scholar
  38. 38.
    Anderson KD, Reiner A (1991) Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons. Brain Res 568(1–2):235–243.  https://doi.org/10.1016/0006-8993(91)91403-n Google Scholar
  39. 39.
    Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16(6):653–661.  https://doi.org/10.1038/nm.2165 Google Scholar
  40. 40.
    Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13(4):290–314.  https://doi.org/10.1038/nrd4228 Google Scholar
  41. 41.
    Ribaudo G, Pagano MA, Bova S, Zagotto G (2016) New therapeutic applications of phosphodiesterase 5 inhibitors (PDE5-Is). Curr Med Chem 23(12):1239–1249Google Scholar
  42. 42.
    Li P, Zheng H, Zhao J, Zhang L, Yao W, Zhu H, Beard JD, Ida K et al (2016) Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J Med Chem 59(3):1149–1164.  https://doi.org/10.1021/acs.jmedchem.5b01751 Google Scholar
  43. 43.
    Soares LM, Meyer E, Milani H, Steinbusch HW, Prickaerts J, de Oliveira RM (2017) The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity. Eur J Neurosci 45(4):510–520.  https://doi.org/10.1111/ejn.13461 Google Scholar
  44. 44.
    Nthenge-Ngumbau DN, Mohanakumar KP (2018) Can cyclic nucleotide phosphodiesterase inhibitors be drugs for Parkinson’s disease? Mol Neurobiol 55(1):822–834.  https://doi.org/10.1007/s12035-016-0355-8 Google Scholar
  45. 45.
    Perez-Gonzalez R, Pascual C, Antequera D, Bolos M, Redondo M, Perez DI, Perez-Grijalba V, Krzyzanowska A et al (2013) Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(9):2133–2145.  https://doi.org/10.1016/j.neurobiolaging.2013.03.011 Google Scholar
  46. 46.
    Paterniti I, Mazzon E, Gil C, Impellizzeri D, Palomo V, Redondo M, Perez DI, Esposito E et al (2011) PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury. PLoS One 6(1):e15937.  https://doi.org/10.1371/journal.pone.0015937 Google Scholar
  47. 47.
    Redondo M, Zarruk JG, Ceballos P, Perez DI, Perez C, Perez-Castillo A, Moro MA, Brea J et al (2012) Neuroprotective efficacy of quinazoline type phosphodiesterase 7 inhibitors in cellular cultures and experimental stroke model. Eur J Med Chem 47(1):175–185.  https://doi.org/10.1016/j.ejmech.2011.10.040 Google Scholar
  48. 48.
    Martin-Alvarez R, Paul-Fernandez N, Palomo V, Gil C, Martinez A, Mengod G (2017) A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice. J Chem Neuroanat 80:27–36.  https://doi.org/10.1016/j.jchemneu.2016.12.001 Google Scholar
  49. 49.
    Mestre L, Redondo M, Carrillo-Salinas FJ, Morales-Garcia JA, Alonso-Gil S, Perez-Castillo A, Gil C, Martinez A et al (2015) PDE7 inhibitor TC3.6 ameliorates symptomatology in a model of primary progressive multiple sclerosis. Br J Pharmacol 172(17):4277–4290.  https://doi.org/10.1111/bph.13192 Google Scholar
  50. 50.
    Morales-Garcia JA, Aguilar-Morante D, Hernandez-Encinas E, Alonso-Gil S, Gil C, Martinez A, Santos A, Perez-Castillo A (2015) Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiol Aging 36(2):1160–1173.  https://doi.org/10.1016/j.neurobiolaging.2014.10.008 Google Scholar
  51. 51.
    Johansson EM, Reyes-Irisarri E, Mengod G (2012) Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain. Neurosci Lett 525(1):1–6.  https://doi.org/10.1016/j.neulet.2012.07.050 Google Scholar
  52. 52.
    Hoffmann R, Abdel’Al S, Engels P (1998) Differential distribution of rat PDE-7 mRNA in embryonic and adult rat brain. Cell Biochem Biophys 28(2–3):103–113.  https://doi.org/10.1007/BF02737807 Google Scholar
  53. 53.
    Giembycz MA, Smith SJ (2006) Phosphodiesterase 7A: a new therapeutic target for alleviating chronic inflammation? Curr Pharm Des 12(25):3207–3220Google Scholar
  54. 54.
    Nakata A, Ogawa K, Sasaki T, Koyama N, Wada K, Kotera J, Kikkawa H, Omori K et al (2002) Potential role of phosphodiesterase 7 in human T cell function: comparative effects of two phosphodiesterase inhibitors. Clin Exp Immunol 128(3):460–466Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones Biomédicas (CSIC-UAM)MadridSpain
  2. 2.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
  3. 3.Departamento de Biología Celular, Facultad de MedicinaUCMMadridSpain
  4. 4.Departamento de Bioquímica y Biología MolecularFacultad de Medicina, UCMMadridSpain

Personalised recommendations