Advertisement

Differential Alterations in Cortico-Amygdala Circuitry in Mice with Impaired Fear Extinction

  • Kwanghoon Park
  • ChiHye ChungEmail author
Article
  • 168 Downloads

Abstract

129S1/SvImJ (S1) mice exhibit selective impairments in fear extinction, though the mechanisms underlying these impairments are not fully understood. The medial prefrontal cortex (mPFC) consists of the prelimbic cortex (PL) and infralimbic cortex (IL), which are known to be involved in fear conditioning and extinction, respectively. The PL and IL project to the basolateral amygdala (BLA) that also plays an important role in both mechanisms. In the present study, we utilized optogenetic and electrophysiological approaches to measure inhibitory/excitatory ratios (I/E ratios) in mPFC-BLA circuits of S1 and control C57BL/6 (B6) mice following fear conditioning and extinction. As suggested previously, PL inputs to the BLA became more excitatory after fear conditioning in B6 mice. S1 mice also exhibited strengthened PL-BLA circuit following fear conditioning. Interestingly, fear extinction restored PL-BLA circuit strength to levels comparable to the baseline in B6 mice. However, PL-BLA circuit strength remained abnormally high even after extinction in S1 mice. The IL-BLA circuit became more inhibitory in B6 mice after fear extinction, whereas extinction failed to change the excitability of the IL-BLA circuit in S1 mice. These data suggest that the fear extinction impairments observed in S1 mice may be due to constantly decreased I/E balance in the PL-BLA circuit and lack of changes in I/E balance in the IL-BLA circuit. This further suggests that investigation of both pathways is instrumental in developing more effective therapeutics for psychopathologies that involve impairments in fear extinction, such as chronic pain and posttraumatic stress disorder.

Keywords

Fear conditioning Fear extinction 129S1/SvImJ mice Prelimbic cortex Infralimbic cortex Basolateral amygdala 

Notes

Acknowledgements

We thank all the members of the Chung lab for discussion and helpful comments.

Author Contributions

C.C. conceived this work and designed the experiments. K.P. performed the experiments and acquired the data. K.P. and C.C. analyzed and interpreted the data. C.C. and K.P. prepared the manuscript. All authors have approved the final version of the manuscript.

Funding Information

This study was supported by Konkuk University in 2016.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Institutional Animal Care and Use Committee of Konkuk University, Seoul, Korea). This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931.  https://doi.org/10.1146/annurev.neuro.24.1.897 CrossRefPubMedGoogle Scholar
  2. 2.
    Pavlov IP (1927) Conditioned reflexes. Oxford University Press, LondonGoogle Scholar
  3. 3.
    Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150.  https://doi.org/10.1038/sj.mp.4001939 CrossRefPubMedGoogle Scholar
  4. 4.
    Wessa M, Flor H (2007) Failure of extinction of fear responses in posttraumatic stress disorder: Evidence from second-order conditioning. Am J Psychiatry 164(11):1684–1692.  https://doi.org/10.1176/appi.ajp.2007.07030525 CrossRefPubMedGoogle Scholar
  5. 5.
    Wicking M, Steiger F, Nees F, Diener SJ, Grimm O, Ruttorf M, Schad LR, Winkelmann T et al (2016) Deficient fear extinction memory in posttraumatic stress disorder. Neurobiol Learn Mem 136:116–126.  https://doi.org/10.1016/j.nlm.2016.09.016 CrossRefPubMedGoogle Scholar
  6. 6.
    Camp M, Norcross M, Whittle N, Feyder M, D'Hanis W, Yilmazer-Hanke D, Singewald N, Holmes A (2009) Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain. Genes Brain Behav 8(8):744–752.  https://doi.org/10.1111/j.1601-183X.2009.00519.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson RM, Saksida LM, Bussey TJ, Singewald N et al (2008) Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 28(32):8074–8085.  https://doi.org/10.1523/JNEUROSCI.4904-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wille A, Maurer V, Piatti P, Whittle N, Rieder D, Singewald N, Lusser A (2015) Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors. Front Behav Neurosci 9:313.  https://doi.org/10.3389/fnbeh.2015.00313 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Park K, Chung C (2019) Systemic cellular activation mapping of an extinction-impaired animal model. Front Cell Neurosci 13:99.  https://doi.org/10.3389/fncel.2019.00099 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Whittle N, Hauschild M, Lubec G, Holmes A, Singewald N (2010) Rescue of impaired fear extinction and normalization of cortico-amygdala circuit dysfunction in a genetic mouse model by dietary zinc restriction. J Neurosci 30(41):13586–13596.  https://doi.org/10.1523/JNEUROSCI.0849-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27(4):840–844.  https://doi.org/10.1523/JNEUROSCI.5327-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606.  https://doi.org/10.1038/nature07166 CrossRefPubMedGoogle Scholar
  13. 13.
    Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20(16):6225–6231CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ (2009) Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci 29(26):8474–8482.  https://doi.org/10.1523/JNEUROSCI.0378-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Do-Monte FH, Manzano-Nieves G, Quinones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35(8):3607–3615.  https://doi.org/10.1523/JNEUROSCI.3137-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420(6911):70–74.  https://doi.org/10.1038/nature01138 CrossRefPubMedGoogle Scholar
  17. 17.
    Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13(6):728–733.  https://doi.org/10.1101/lm.306106 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538.  https://doi.org/10.1038/npp.2010.184 CrossRefPubMedGoogle Scholar
  19. 19.
    Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: Contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31(43):15481–15489.  https://doi.org/10.1523/JNEUROSCI.3410-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24(15):3810–3815.  https://doi.org/10.1523/JNEUROSCI.4100-03.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Laurent V, Westbrook RF (2010) Role of the basolateral amygdala in the reinstatement and extinction of fear responses to a previously extinguished conditioned stimulus. Learn Mem 17(2):86–96.  https://doi.org/10.1101/lm.1655010 CrossRefPubMedGoogle Scholar
  22. 22.
    Arruda-Carvalho M, Clem RL (2014) Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. J Neurosci 34(47):15601–15609.  https://doi.org/10.1523/JNEUROSCI.2664-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, Colacicco G, Busch E et al (2015) Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 1(6).  https://doi.org/10.1126/sciadv.1500251
  24. 24.
    Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80(6):1491–1507.  https://doi.org/10.1016/j.neuron.2013.09.025 CrossRefPubMedGoogle Scholar
  25. 25.
    Likhtik E, Pelletier JG, Paz R, Pare D (2005) Prefrontal control of the amygdala. J Neurosci 25(32):7429–7437.  https://doi.org/10.1523/JNEUROSCI.2314-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58.  https://doi.org/10.1002/syn.10279 CrossRefPubMedGoogle Scholar
  27. 27.
    Brinley-Reed M, Mascagni F, McDonald AJ (1995) Synaptology of prefrontal cortical projections to the basolateral amygdala: An electron microscopic study in the rat. Neurosci Lett 202(1–2):45–48.  https://doi.org/10.1016/0304-3940(95)12212-5 CrossRefPubMedGoogle Scholar
  28. 28.
    Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35(10):607–618.  https://doi.org/10.1016/j.tins.2012.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jones EG, Huntley GW, Benson DL (1994) Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: Comparison with GAD-67 expression. J Neurosci 14(2):611–629CrossRefPubMedGoogle Scholar
  30. 30.
    Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T et al (2015) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157.  https://doi.org/10.1016/j.neures.2014.09.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Arruda-Carvalho M, Wu WC, Cummings KA, Clem RL (2017) Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci 37(11):2976–2985.  https://doi.org/10.1523/JNEUROSCI.3097-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hubner C, Bosch D, Gall A, Luthi A, Ehrlich I (2014) Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: Implications for fear and emotional memory. Front Behav Neurosci 8:64.  https://doi.org/10.3389/fnbeh.2014.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arruda-Carvalho M, Clem RL (2015) Prefrontal-amygdala fear networks come into focus. Front Syst Neurosci 9:145.  https://doi.org/10.3389/fnsys.2015.00145 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Krabbe S, Grundemann J, Luthi A (2018) Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatry 83(10):800–809.  https://doi.org/10.1016/j.biopsych.2017.10.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Blum S, Hebert AE, Dash PK (2006) A role for the prefrontal cortex in recall of recent and remote memories. Neuroreport 17(3):341–344.  https://doi.org/10.1097/01.wnr.0000201509.53750.bc CrossRefPubMedGoogle Scholar
  36. 36.
    Stern CA, Gazarini L, Vanvossen AC, Hames MS, Bertoglio LJ (2013) Activity in prelimbic cortex subserves fear memory reconsolidation over time. Learn Mem 21(1):14–20.  https://doi.org/10.1101/lm.032631.113 CrossRefPubMedGoogle Scholar
  37. 37.
    Do-Monte FH, Quinones-Laracuente K, Quirk GJ (2015) A temporal shift in the circuits mediating retrieval of fear memory. Nature 519(7544):460–463.  https://doi.org/10.1038/nature14030 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Laurent V, Westbrook RF (2009) Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn Mem 16(9):520–529.  https://doi.org/10.1101/lm.1474609 CrossRefPubMedGoogle Scholar
  39. 39.
    Fitzgerald PJ, Whittle N, Flynn SM, Graybeal C, Pinard CR, Gunduz-Cinar O, Kravitz AV, Singewald N et al (2014) Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol Learn Mem 113:69–81.  https://doi.org/10.1016/j.nlm.2013.11.002 CrossRefPubMedGoogle Scholar
  40. 40.
    Maroun M, Kavushansky A, Holmes A, Wellman C, Motanis H (2012) Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex. PLoS One 7(5):e35853.  https://doi.org/10.1371/journal.pone.0035853 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Brooks DC, Bouton ME (1993) A retrieval cue for extinction attenuates spontaneous recovery. J Exp Psychol Anim Behav Process 19(1):77–89CrossRefPubMedGoogle Scholar
  42. 42.
    Rescorla RA (2004) Spontaneous recovery. Learn Mem 11(5):501–509.  https://doi.org/10.1101/lm.77504 CrossRefPubMedGoogle Scholar
  43. 43.
    Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11(5):485–494.  https://doi.org/10.1101/lm.78804 CrossRefPubMedGoogle Scholar
  44. 44.
    Bouton ME, Bolles RC (1979) Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process 5(4):368–378CrossRefPubMedGoogle Scholar
  45. 45.
    Bouton ME, King DA (1983) Contextual control of the extinction of conditioned fear: Tests for the associative value of the context. J Exp Psychol Anim Behav Process 9(3):248–265CrossRefPubMedGoogle Scholar
  46. 46.
    Rescorla RA, Heth CD (1975) Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol Anim Behav Process 1(1):88–96CrossRefPubMedGoogle Scholar
  47. 47.
    Bouton ME, Westbrook RF, Corcoran KA, Maren S (2006) Contextual and temporal modulation of extinction: Behavioral and biological mechanisms. Biol Psychiatry 60(4):352–360.  https://doi.org/10.1016/j.biopsych.2005.12.015 CrossRefPubMedGoogle Scholar
  48. 48.
    Rescorla RA (2001) Retraining of extinguished Pavlovian stimuli. J Exp Psychol Anim Behav Process 27(2):115–124CrossRefPubMedGoogle Scholar
  49. 49.
    Elsenbruch S, Wolf OT (2015) Could stress contribute to pain-related fear in chronic pain? Front Behav Neurosci 9:340.  https://doi.org/10.3389/fnbeh.2015.00340 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Peuter S, Van Diest I, Vansteenwegen D, Van den Bergh O, Vlaeyen JW (2011) Understanding fear of pain in chronic pain: Interoceptive fear conditioning as a novel approach. Eur J Pain 15(9):889–894.  https://doi.org/10.1016/j.ejpain.2011.03.002 CrossRefPubMedGoogle Scholar
  51. 51.
    Schneider C, Palomba D, Flor H (2004) Pavlovian conditioning of muscular responses in chronic pain patients: Central and peripheral correlates. Pain 112(3):239–247.  https://doi.org/10.1016/j.pain.2004.08.025 CrossRefPubMedGoogle Scholar
  52. 52.
    Woods MP, Asmundson GJ (2008) Evaluating the efficacy of graded in vivo exposure for the treatment of fear in patients with chronic back pain: A randomized controlled clinical trial. Pain 136(3):271–280.  https://doi.org/10.1016/j.pain.2007.06.037 CrossRefPubMedGoogle Scholar
  53. 53.
    Vlaeyen JW, de Jong J, Geilen M, Heuts PH, van Breukelen G (2001) Graded exposure in vivo in the treatment of pain-related fear: A replicated single-case experimental design in four patients with chronic low back pain. Behav Res Ther 39(2):151–166CrossRefPubMedGoogle Scholar
  54. 54.
    Linton SJ, Boersma K, Jansson M, Overmeer T, Lindblom K, Vlaeyen JW (2008) A randomized controlled trial of exposure in vivo for patients with spinal pain reporting fear of work-related activities. Eur J Pain 12(6):722–730.  https://doi.org/10.1016/j.ejpain.2007.11.001 CrossRefPubMedGoogle Scholar
  55. 55.
    Bailey KM, Carleton RN, Vlaeyen JW, Asmundson GJ (2010) Treatments addressing pain-related fear and anxiety in patients with chronic musculoskeletal pain: A preliminary review. Cogn Behav Ther 39(1):46–63.  https://doi.org/10.1080/16506070902980711 CrossRefPubMedGoogle Scholar
  56. 56.
    den Hollander M, de Jong JR, Volders S, Goossens ME, Smeets RJ, Vlaeyen JW (2010) Fear reduction in patients with chronic pain: A learning theory perspective. Expert Rev Neurother 10(11):1733–1745.  https://doi.org/10.1586/ern.10.115 CrossRefGoogle Scholar
  57. 57.
    Lohnberg JA (2007) A review of outcome studies on cognitive-behavioral therapy for reducing fear-avoidance beliefs among individuals with chronic pain. J Clin Psychol Med Settings 14(2):113–122.  https://doi.org/10.1007/s10880-007-9062-y CrossRefGoogle Scholar
  58. 58.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (5th ed.). 5th edn.Google Scholar
  59. 59.
    Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ (2006) Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci 26(37):9503–9511.  https://doi.org/10.1523/JNEUROSCI.2021-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004) Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 43(6):897–905.  https://doi.org/10.1016/j.neuron.2004.08.042 CrossRefPubMedGoogle Scholar
  61. 61.
    Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS (1999) Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biol Psychiatry 45(7):806–816CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Semple WE, Goyer PF, McCormick R, Compton-Toth B, Morris E, Donovan B, Muswick G, Nelson D et al (1996) Attention and regional cerebral blood flow in posttraumatic stress disorder patients with substance abuse histories. Psychiatry Res 67(1):17–28CrossRefPubMedGoogle Scholar
  63. 63.
    Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM, Metzger LJ, Lasko NB et al (1999) Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A PET investigation. Am J Psychiatry 156(4):575–584.  https://doi.org/10.1176/ajp.156.4.575 CrossRefPubMedGoogle Scholar
  64. 64.
    Dunsmoor JE, Bandettini PA, Knight DC (2008) Neural correlates of unconditioned response diminution during Pavlovian conditioning. NeuroImage 40(2):811–817.  https://doi.org/10.1016/j.neuroimage.2007.11.042 CrossRefPubMedGoogle Scholar
  65. 65.
    Knight DC, Waters NS, King MK, Bandettini PA (2010) Learning-related diminution of unconditioned SCR and fMRI signal responses. NeuroImage 49(1):843–848.  https://doi.org/10.1016/j.neuroimage.2009.07.012 CrossRefPubMedGoogle Scholar
  66. 66.
    Linnman C, Rougemont-Bucking A, Beucke JC, Zeffiro TA, Milad MR (2011) Unconditioned responses and functional fear networks in human classical conditioning. Behav Brain Res 221(1):237–245.  https://doi.org/10.1016/j.bbr.2011.02.045 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL (2007) A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry 62(10):1191–1194.  https://doi.org/10.1016/j.biopsych.2007.04.032 CrossRefPubMedGoogle Scholar
  68. 68.
    Koenigs M, Grafman J (2009) Posttraumatic stress disorder: The role of medial prefrontal cortex and amygdala. Neuroscientist 15(5):540–548.  https://doi.org/10.1177/1073858409333072 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesKonkuk UniversitySeoulSouth Korea

Personalised recommendations