Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8656–8667 | Cite as

Severe Consequences of SAC3/FIG4 Phosphatase Deficiency to Phosphoinositides in Patients with Charcot-Marie-Tooth Disease Type-4J

  • Assia ShishevaEmail author
  • Diego Sbrissa
  • Bo Hu
  • Jun Li
Article

Abstract

Charcot-Marie-Tooth disease type-4J (CMT4J), an autosomal recessively inherited peripheral neuropathy characterized by neuronal degeneration, segmental demyelination, and limb muscle weakness, is caused by compound heterozygous mutations in the SAC3/FIG4 gene, resulting in SAC3/FIG4 protein deficiency. SAC3/FIG4 is a phosphatase that not only turns over PtdIns(3,5)P2 to PtdIns3P but also promotes PtdIns(3,5)P2 synthesis by activating the PIKFYVE kinase that also makes PtdIns5P. Whether CMT4J patients have alterations in PtdIns(3,5)P2, PtdIns5P or in other phosphoinositides (PIs), and if yes, in what direction these changes might be, has never been examined. We performed PI profiling in primary fibroblasts from a cohort of CMT4J patients. Subsequent to myo-[2-3H]inositol cell labeling to equilibrium, steady-state levels of PIs were quantified by HPLC under conditions concurrently detecting PtdIns5P, PtdIns(3,5)P2, and the other PIs. Immunoblotting verified SAC3/FIG4 depletion in CMT4J fibroblasts. Compared to normal human controls (n = 9), both PtdIns(3,5)P2 and PtdIns5P levels were significantly decreased in CMT4J fibroblasts (n = 13) by 36.4 ± 3.6% and 43.1 ± 4.4%, respectively (p < 0.0001). These reductions were independent of patients’ gender or disease onset. Although mean values for PtdIns3P in the CMT4J cohort remained unchanged, there were high variations in PtdIns3P among individual patients. Aberrant endolysosomal vacuoles, typically seen under PtdIns(3,5)P2 reduction, were apparent but not in fibroblasts from all patients. The subset of patients without aberrant vacuoles exhibited especially low PtdIns3P levels. Concomitant decreases in PtdIns5P and PtdIns(3,5)P2 and the link between PtdIns3P levels and cellular vacuolization are novel insights shedding further light into the molecular determinants in CMT4J polyneuropathy.

Keywords

Charcot-Marie-Tooth type-4J polyneuropathy Demyelination Phosphoinositides PtdIns3P/PtdIns5P/PtdIns(3,5)P2 SAC3/FIG4 PIKFYVE PAS complex HPLC 

Abbreviations

CMT4J

Charcot-Marie-Tooth disease type-4J

PtdIns

phosphatidylinositol

PI

phosphoinositides

PIKFYVE

phosphoinositide kinase for position 5 containing a FYVE domain

ARPIKFYVE

associated regulator of PIKFYVE

FIG4

factor-induced gene, phosphoinositide 5-phosphatase

SAC3

Sac1 domain-containing phosphoinositide 5-phosphatase 3 (an alternative name of FIG4)

PAS complex

PIKFYVE-ARPIKFYVE-SAC3 complex

EEA1

early endosome antigen A1

GroPInsP

glycerophosphorylinositol phosphates

HPLC

high-performance liquid chromatography

Notes

Acknowledgments

We thank Dr. Ognian C. Ikonomov for the helpful discussions. The first author expresses gratitude to the late Violeta Shisheva for her many years of support.

Author Contributions

DS performed the HPLC, phase-contrast microscopy for the vacuolation assays and prepared figures. BH performed the fibroblasts for the assays, phase-contrast microscopy for the vacuolation assays, the statistical analyses and prepared figures. AS and JL conceived and supervised the experiments. AS wrote the first draft of the manuscript. DS, BH, JL, and AS edited the final version. All authors read and approved the final manuscript.

Funding

This project was supported by the Department of Defense (W81XWH-17-1-0060), National Institute of Health (DK58058) (to AS), and Department of Veterans Affairs (IBX003385A) and NINDS (R01NS066927) (to JL).

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Wayne State University Institutional Review Board (IRB) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1693_MOESM1_ESM.pdf (193 kb)
ESM 1 (PDF 192 kb)

References

  1. 1.
    Fridman V, Bundy B, Reilly MM, Pareyson D, Bacon C, Burns J, Day J, Feely S et al (2015) CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis. J Neurol Neurosurg Psychiatry 86(8):873–878CrossRefPubMedGoogle Scholar
  2. 2.
    Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME et al (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448(7149):68–72CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nicholson G, Lenk GM, Reddel SW, Grant AE, Towne CF, Ferguson CJ, Simpson E, Scheuerle A et al (2011) Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG4. Brain 134(Pt 7):1959–1971CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J (2008) Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131(Pt 8):1990–2001CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martyn C, Li J (2013) Fig4 deficiency: a newly emerged lysosomal storage disorder? Prog Neurobiol 101-102:35–45CrossRefPubMedGoogle Scholar
  6. 6.
    Li J (2013) Charcot-Marie-Tooth neuropathy type 4J. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews((R)), SeattleGoogle Scholar
  7. 7.
    Hu B, McCollum M, Ravi V, Arpag S, Moiseev D, Castoro R, Mobley B, Burnette B et al (2018) Myelin abnormality in Charcot-Marie-Tooth type 4J recapitulates features of acquired demyelination. Ann Neurol 83(4):756–770CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Orengo JP, Khemani P, Day JW, Li J, Siskind CE (2018) Charcot Marie Tooth disease type 4J with complex central nervous system features. Ann Clin Transl Neurol 5(2):222–225CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282(33):23878–23891CrossRefPubMedGoogle Scholar
  10. 10.
    Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384(4):766–779CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ikonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (2010) ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem 285(35):26760–26764CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ikonomov OC, Sbrissa D, Ijuin T, Takenawa T, Shisheva A (2009) Sac3 is an insulin-regulated phosphatidylinositol 3,5-bisphosphate phosphatase: gain in insulin responsiveness through Sac3 down-regulation in adipocytes. J Biol Chem 284(36):23961–23971CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657CrossRefPubMedGoogle Scholar
  14. 14.
    Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb JM, Terrisse AD et al (2016) Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie 125:250–258CrossRefPubMedGoogle Scholar
  16. 16.
    Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291(2):C393–C404CrossRefPubMedGoogle Scholar
  17. 17.
    Shisheva A (2012) PIKfyve and its lipid products in health and in sickness. Curr Top Microbiol Immunol 362:127–162PubMedGoogle Scholar
  18. 18.
    Shisheva A, Sbrissa D, Ikonomov O (1999) Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol Cell Biol 19(1):623–634CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sbrissa D, Ikonomov OC, Deeb R, Shisheva A (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277(49):47276–47284CrossRefPubMedGoogle Scholar
  20. 20.
    Sbrissa D, Ikonomov OC, Filios C, Delvecchio K, Shisheva A (2012) Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol 303(4):C436–C446CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shisheva A (2013) PtdIns5P: news and views of its appearance, disappearance and deeds. Arch Biochem Biophys 538(2):171–180CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shisheva A, Sbrissa D, Ikonomov O (2015) Plentiful PtdIns5P from scanty PtdIns(3,5)P2 or from ample PtdIns? PIKfyve-dependent models: Evidence and speculation (response to:  https://doi.org/10.1002/bies.201300012). Bioessays 37 (3):267–277
  23. 23.
    Ikonomov OC, Sbrissa D, Fenner H, Shisheva A (2009) PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 284(51):35794–35806CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ferguson CJ, Lenk GM, Jones JM, Grant AE, Winters JJ, Dowling JJ, Giger RJ, Meisler MH (2012) Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet 21(16):3525–3534CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vaccari I, Dina G, Tronchere H, Kaufman E, Chicanne G, Cerri F, Wrabetz L, Payrastre B et al (2011) Genetic interaction between MTMR2 and FIG4 phospholipid phosphatases involved in Charcot-Marie-Tooth neuropathies. PLoS Genet 7(10):e1002319CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mironova YA, Lin JP, Kalinski AL, Huffman LD, Lenk GM, Havton LA, Meisler MH, Giger RJ (2018) Protective role of the lipid phosphatase Fig4 in the adult nervous system. Hum Mol Genet 27(14):2443–2453CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ et al (2011) Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet 7(6):e1002104CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gentil BJ, O'Ferrall E, Chalk C, Santana LF, Durham HD, Massie R (2017) A new mutation in FIG4 causes a severe form of CMT4J involving TRPV4 in the pathogenic cascade. J Neuropathol Exp Neurol 76(9):789–799CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Michell RH (2013) Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease. FEBS J 280(24):6281–6294CrossRefPubMedGoogle Scholar
  30. 30.
    Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP(2). Traffic 13(1):1–8CrossRefPubMedGoogle Scholar
  31. 31.
    Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13(4):1238–1251CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15(1):24–36CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ikonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin JP, Rappolee D, Shisheva A (2011) The phosphoinositide kinase PIKfyve is vital in early embryonic development: PREIMPLANTATION LETHALITY OF PIKfyve−/− EMBRYOS BUT NORMALITY OF PIKfyve+/− MICE. J Biol Chem 286(15):13404–13413CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ikonomov OC, Sbrissa D, Venkatareddy M, Tisdale E, Garg P, Shisheva A (2015) Class III PI 3-kinase is the main source of PtdIns3P substrate and membrane recruitment signal for PIKfyve constitutive function in podocyte endomembrane homeostasis. Biochim Biophys Acta 1853(5):1240–1250CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sbrissa D, Naisan G, Ikonomov OC, Shisheva A (2018) Apilimod, a candidate anticancer therapeutic, arrests not only PtdIns(3,5)P2 but also PtdIns5P synthesis by PIKfyve and induces bafilomycin A1-reversible aberrant endomembrane dilation. PLoS One 13(9):e0204532CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hu B, Arpag S, Zuchner S, Li J (2016) A novel missense mutation of CMT2P alters transcription machinery. Ann Neurol 80(6):834–845CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Compton LM, Ikonomov OC, Sbrissa D, Garg P, Shisheva A (2016) Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency. Am J Physiol Cell Physiol 311(3):C366–C377CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ho CY, Choy CH, Wattson CA, Johnson DE, Botelho RJ (2015) The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole. J Biol Chem 290(15):9919–9928CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sbrissa D, Shisheva A (2005) Acquisition of unprecedented phosphatidylinositol 3,5-bisphosphate rise in hyperosmotically stressed 3T3-L1 adipocytes, mediated by ArPIKfyve-PIKfyve pathway. J Biol Chem 280(9):7883–7889CrossRefPubMedGoogle Scholar
  40. 40.
    Cai X, Xu Y, Cheung AK, Tomlinson RC, Alcazar-Roman A, Murphy L, Billich A, Zhang B et al (2013) PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem Biol 20(7):912–921CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276(28):26141–26147CrossRefPubMedGoogle Scholar
  42. 42.
    Ikonomov OC, Sbrissa D, Mlak K, Kanzaki M, Pessin J, Shisheva A (2002) Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. J Biol Chem 277(11):9206–9211CrossRefPubMedGoogle Scholar
  43. 43.
    Campeau PM, Lenk GM, Lu JT, Bae Y, Burrage L, Turnpenny P, Roman Corona-Rivera J, Morandi L et al (2013) Yunis-Varon syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. Am J Hum Genet 92(5):781–791CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nakajima J, Okamoto N, Shiraishi J, Nishimura G, Nakashima M, Tsurusaki Y, Saitsu H, Kawashima H et al (2013) Novel FIG4 mutations in Yunis-Varon syndrome. J Hum Genet 58(12):822–824CrossRefPubMedGoogle Scholar
  45. 45.
    Baulac S, Lenk GM, Dufresnois B, Ouled Amar Bencheikh B, Couarch P, Renard J, Larson PA, Ferguson CJ et al (2014) Role of the phosphoinositide phosphatase FIG4 gene in familial epilepsy with polymicrogyria. Neurology 82(12):1068–1075CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM et al (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84(1):85–88CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Osmanovic A, Rangnau I, Kosfeld A, Abdulla S, Janssen C, Auber B, Raab P, Preller M et al (2017) FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. Eur J Hum Genet 25(3):324–331CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bertolin C, Querin G, Bozzoni V, Martinelli I, De Bortoli M, Rampazzo A, Gellera C, Pegoraro E et al (2018) New FIG4 gene mutations causing aggressive ALS. Eur J Neurol 25(3):e41–e42CrossRefPubMedGoogle Scholar
  49. 49.
    Lenk GM, Berry IR, Stutterd CA, Blyth M, Green L, Vadlamani G, Warren D, Craven I et al (2019) Cerebral hypomyelination associated with biallelic variants of FIG4. Hum Mutat 40:619–630CrossRefPubMedGoogle Scholar
  50. 50.
    Handel AE, Lincoln MR, Ramagopalan SV (2011) Of mice and men: experimental autoimmune encephalitis and multiple sclerosis. Eur J Clin Investig 41(11):1254–1258CrossRefGoogle Scholar
  51. 51.
    Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179CrossRefPubMedGoogle Scholar
  52. 52.
    Vicinanza M, Korolchuk VI, Ashkenazi A, Puri C, Menzies FM, Clarke JH, Rubinsztein DC (2015) PI(5)P regulates autophagosome biogenesis. Mol Cell 57(2):219–234CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sbrissa D, Ikonomov OC, Strakova J, Shisheva A (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145(11):4853–4865CrossRefPubMedGoogle Scholar
  54. 54.
    Boal F, Mansour R, Gayral M, Saland E, Chicanne G, Xuereb JM, Marcellin M, Burlet-Schiltz O et al (2015) TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci 128(4):815–827CrossRefPubMedGoogle Scholar
  55. 55.
    Shisheva A (2008) PIKfyve: partners, significance, debates and paradoxes. Cell Biol Int 32(6):591–604CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443(3):587–601CrossRefPubMedGoogle Scholar
  57. 57.
    Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410(1):1–17CrossRefPubMedGoogle Scholar
  58. 58.
    Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16(8):403–412CrossRefPubMedGoogle Scholar
  59. 59.
    Naughtin MJ, Sheffield DA, Rahman P, Hughes WE, Gurung R, Stow JL, Nandurkar HH, Dyson JM et al (2010) The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J Cell Sci 123(Pt 18):3071–3083CrossRefPubMedGoogle Scholar
  60. 60.
    Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19(8):3334–3346CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zou J, Hu B, Arpag S, Yan Q, Hamilton A, Zeng YS, Vanoye CG, Li J (2015) Reactivation of lysosomal Ca2+ efflux rescues abnormal lysosomal storage in FIG4-deficient cells. J Neurosci 35(17):6801–6812CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ikonomov OC, Altankov G, Sbrissa D, Shisheva A (2018) PIKfyve inhibitor cytotoxicity requires AKT suppression and excessive cytoplasmic vacuolation. Toxicol Appl Pharmacol 356:151–158CrossRefPubMedGoogle Scholar
  63. 63.
    Maltese WA, Overmeyer JH (2014) Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol 184(6):1630–1642CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H (2013) The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol 47(2):495–508CrossRefPubMedGoogle Scholar
  65. 65.
    Kon T, Mori F, Tanji K, Miki Y, Toyoshima Y, Yoshida M, Sasaki H, Kakita A et al (2014) ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neuropathology 34(1):19–26CrossRefPubMedGoogle Scholar
  66. 66.
    Katona I, Zhang X, Bai Y, Shy ME, Guo J, Yan Q, Hatfield J, Kupsky WJ et al (2011) Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Eur J Neurosci 33(8):1401–1410CrossRefPubMedGoogle Scholar
  67. 67.
    Ikonomov OC, Sbrissa D, Compton LM, Kumar R, Tisdale EJ, Chen X, Shisheva A (2015) The protein complex of neurodegeneration-related phosphoinositide phosphatase Sac3 and ArPIKfyve binds the Lewy body-associated Synphilin-1, preventing its aggregation. J Biol Chem 290(47):28515–28529CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysiologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of NeurologyWayne State University School of MedicineDetroitUSA
  3. 3.John D. Dingell VA Medical CenterDetroitUSA

Personalised recommendations