Molecular Neurobiology

, Volume 56, Issue 12, pp 8109–8123 | Cite as

Neuroprotective Effects of AG490 in Neonatal Hypoxic-Ischemic Brain Injury

  • Feiya Li
  • Raymond Wong
  • Zhengwei Luo
  • Lida Du
  • Ekaterina Turlova
  • Luiz R. G. Britto
  • Zhong-Ping FengEmail author
  • Hong-Shuo SunEmail author


In infants and children, neonatal hypoxic-ischemic (HI) brain injury represents a major cause of chronic neurological morbidity. The transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel that conducts calcium, can mediate neuronal death following HI brain injury. An important endogenous activator of TRPM2 is H2O2, which has previously been reported to be upregulated in the neonatal brain after hypoxic ischemic injury. Here, incorporating both in vitro (H2O2-induced neuronal cell death model) and in vivo (mouse HI brain injury model) approaches, we examined the effects of AG490, which can inhibit the H2O2-induced TRPM2 channel. We found that AG490 elicited neuroprotective effects. We confirmed that AG490 reduced H2O2-induced TRPM2 currents. Specifically, application of AG490 to neurons ameliorated H2O2-induced cell injury in vitro. In addition, AG490 administration reduced brain damage and improved neurobehavioral performance following HI brain injury in vivo. The neuroprotective benefits of AG490 suggest that pharmacological inhibition of H2O2-activated TRPM2 currents can be exploited as a potential therapeutic strategy to treat HI-induced neurological complications.


Transient receptor potential melastatin 2 Ion channel Hypoxic-ischemic brain injury Neuroprotection Inhibitor AG490 



We also thank S Huang and W Chen for their technical assistance.


This study is supported by grants to HSS from Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants (RGPIN-2016-04574) and to ZPF from the National Sciences and Engineering Research Council of Canada (RGPIN-2014-06471).


  1. 1.
    Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z (2017) Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front Cell Neurosci 78.
  2. 2.
    Ferriero DM (2004) Neonatal Brain Injury. N Engl J Med 351:1985–1995. CrossRefPubMedGoogle Scholar
  3. 3.
    Finer NN, Robertson CM, Richards RT, Pinnell LE, Peters KL (1981) Hypoxic-ischemic encephalopathy in term neonates: Perinatal factors and outcome. J Pediatr 98:112–117. CrossRefPubMedGoogle Scholar
  4. 4.
    Choi HA, Badjatia N, Mayer SA (2012) Hypothermia for acute brain injury—mechanisms and practical aspects. Nat Rev Neurol 8:214–222. CrossRefPubMedGoogle Scholar
  5. 5.
    Fatemi A, Wilson MA, Michael VJ (2009) Hypoxic ischemic encephalopathy in the term infant. Clin Perinatol 36:835–858. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gunn AJ, Battin M, Gluckman PD, Gunn TR, Bennet L (2005) Therapeutic hypothermia: from lab to NICU. J Perinat Med 33:340–346. CrossRefPubMedGoogle Scholar
  7. 7.
    Pauliah SS, Shankaran S, Wade A, Cady EB, Thayyil S (2013) Therapeutic hypothermia for neonatal encephalopathy in low- and middle-income countries: a systematic review and meta-analysis. PLoS One 8:e58834. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Savman K, Brown KL (2010) Treating neonatal brain injury—promise and inherent research challenges. Recent Pat Inflamm Allergy Drug Discov 4:16–24CrossRefGoogle Scholar
  9. 9.
    Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668. CrossRefPubMedGoogle Scholar
  10. 10.
    Besancon E, Guo S, Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29:268–275. CrossRefPubMedGoogle Scholar
  11. 11.
    Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6:787–799CrossRefGoogle Scholar
  12. 12.
    Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136. CrossRefPubMedGoogle Scholar
  13. 13.
    Aarts MM, Tymianski M (2005) TRPMs and neuronal cell death. Pflugers Arch - Eur J Physiol 451:243–249. CrossRefGoogle Scholar
  14. 14.
    Eisfeld J, Lückhoff A (2007) TRPM2. Handb Exp Pharmacol 179:237–252. CrossRefGoogle Scholar
  15. 15.
    Jiang L-H, Yang W, Zou J, Beech DJ (2010) TRPM2 channel properties, functions and therapeutic potentials. Expert Opin Ther Targets 14:973–988. CrossRefPubMedGoogle Scholar
  16. 16.
    Gelderblom M, Melzer N, Schattling B, Göb E, Hicking G, Arunachalam P, Bittner S, Ufer F et al (2014) Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke 45:3395–3402. CrossRefPubMedGoogle Scholar
  17. 17.
    Jang Y, Lee SH, Lee B, Jung S, Khalid A, Uchida K, Tominaga M, Jeon D et al (2015) TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain. J Neurosci 35:11811–11823. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ostapchenko VG, Chen M, Guzman MS, Xie Y-F, Lavine N, Fan J, Beraldo FH, Martyn AC et al (2015) The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci 35:15157–15169. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sumoza-Toledo A, Penner R (2011) TRPM2: a multifunctional ion channel for calcium signalling. J Physiol 589:1515–1525. CrossRefPubMedGoogle Scholar
  20. 20.
    Alim I, Teves L, Li R, Mori Y, Tymianski M (2013) Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 33:17264–17277. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huang S, Turlova E, Li F, Bao M-H, Szeto V, Wong R, Abussaud A, Wang H et al (2017) Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 296:32–40. CrossRefPubMedGoogle Scholar
  22. 22.
    Shimizu S, Yonezawa R, Hagiwara T, Yoshida T, Takahashi N, Hamano S, Negoro T, Toda T et al (2014) Inhibitory effects of AG490 on H2O2-induced TRPM2-mediated Ca2+entry. Eur J Pharmacol 742:22–30. CrossRefPubMedGoogle Scholar
  23. 23.
    Chen WL, Turlova E, Sun CLF, Kim JS, Huang S, Zhong X, Guan YY, Wang GL et al (2015a) Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways. Mar Drugs 13:2505–2525. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A et al (2015b) TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8:11. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun H, Feng Z, Miki T, Seino S, French RJ, Feng Z, Miki T, Seino S et al (2006) Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol 95:2590–2601. CrossRefPubMedGoogle Scholar
  26. 26.
    Wei W-L, Sun H-S, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA et al (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci 104:16323–16328. CrossRefPubMedGoogle Scholar
  27. 27.
    Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141. CrossRefPubMedGoogle Scholar
  28. 28.
    Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CYJ et al (2015) Neuronal KATPchannels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 263:161–171. CrossRefPubMedGoogle Scholar
  29. 29.
    Xiao AJ, Chen W, Xu B, Liu R, Turlova E, Barszczyk A, Sun CL, Liu L et al (2015) Marine compound xyloketal B reduces neonatal hypoxic-ischemic brain injury. Mar Drugs 13:29–47. CrossRefGoogle Scholar
  30. 30.
    Wong R, Abussaud A, Leung JW, Xu BF, Li FY, Huang S, Chen NH, Wang GL et al (2018) Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo. Acta Pharmacol Sin 39:858–865. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Xu B, Xiao A-J, Chen W, Turlova E, Liu R, Barszczyk A, Sun CLF, Liu L et al (2016) Neuroprotective effects of a PSD-95 inhibitor in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 53:5962–5970. CrossRefPubMedGoogle Scholar
  32. 32.
    Lubics A, Reglodi D, Tamás A, Kiss P, Szalai M, Szalontay L, Lengvári I (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157:157–165. CrossRefPubMedGoogle Scholar
  33. 33.
    Castellano C, Pavone F (1988) Effects of ethanol on passive avoidance behavior in the mouse: involvement of GABAergic mechanisms. Pharmacol Biochem Behav 29:321–324. CrossRefPubMedGoogle Scholar
  34. 34.
    Jarvik ME, Kopp R (1967) An improved one-trial passive avoidance learning situation. Psychol Rep 21:221–224. CrossRefPubMedGoogle Scholar
  35. 35.
    Roberge S, Roussel J, Andersson DC, Meli AC, Vidal B, Blandel F, Lanner JT, Le Guennec JY et al (2014) TNF-alpha-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 103:90–99. CrossRefPubMedGoogle Scholar
  36. 36.
    Allen Institute for Brain Science (2015) Allen mouse brain atlas. Allen Mouse Brain Atlas 445:168–176. CrossRefGoogle Scholar
  37. 37.
    Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33:7368–7383. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chai HT, Yip HK, Sun CK, Hsu SY, Leu S (2016) AG490 suppresses EPO-mediated activation of JAK2-STAT but enhances blood flow recovery in rats with critical limb ischemia. J Inflamm (United Kingdom) 13:18. CrossRefGoogle Scholar
  39. 39.
    Davoodi-Semiromi A, Hassanzadeh A, Wasserfall CH, Droney A, Atkinson M (2012) Tyrphostin AG490 agent modestly but significantly prevents onset of type 1 in NOD mouse; implication of immunologic and metabolic effects of a Jak-stat pathway inhibitor. J Clin Immunol 32:1038–1047. CrossRefPubMedGoogle Scholar
  40. 40.
    Higuchi T, Shiraishi T, Shirakusa T, Hirayama S, Shibaguchi H, Kuroki M, Hiratuka M, Yamamoto S et al (2005) Prevention of acute lung allograft rejection in rat by the Janus kinase 3 inhibitor, tyrphostin AG490. J Heart Lung Transplant 24:1557–1564. CrossRefPubMedGoogle Scholar
  41. 41.
    Toda T, Yamamoto S, Yonezawa R, Mori Y, Shimizu S (2016) Inhibitory effects of tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation. Eur J Pharmacol 786:19–28. CrossRefPubMedGoogle Scholar
  42. 42.
    Turlova E, Bae CYJ, Deurloo M, Chen W, Barszczyk A, Horgen FD, Fleig A, Feng ZP et al (2016) TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol Neurobiol 53:595–610. CrossRefPubMedGoogle Scholar
  43. 43.
    Wang H, Huang S, Yan K, Fang X, Abussaud A, Martinez A, Sun HS, Feng ZP (2016) Tideglusib, a chemical inhibitor of GSK3β, attenuates hypoxic-ischemic brain injury in neonatal mice. Biochim Biophys Acta-Gen Subj 1860:2076–2085. CrossRefGoogle Scholar
  44. 44.
    Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Volpe JJ (2012) Neonatal encephalopathy: An inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol 72:156–166. CrossRefPubMedGoogle Scholar
  46. 46.
    McDonald JW, Roeser NF, Silverstein FS, Johnston MV (1989) Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp Neurol 106:289–296. CrossRefPubMedGoogle Scholar
  47. 47.
    Represa A, Tremblay E, Ben-Ari Y (1989) Transient increase of NMDA-binding sites in human hippocampus during development. Neurosci Lett 99:61–66. CrossRefPubMedGoogle Scholar
  48. 48.
    Tremblay E, Roisin MP, Represa A, Charriaut-Marlangue C, Ben-Ari Y (1988) Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res 461:393–396. CrossRefPubMedGoogle Scholar
  49. 49.
    Danysz W, Parsons CG (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664PubMedGoogle Scholar
  50. 50.
    Hagberg H, Andersson P, Kjellmer I, Thiringer K, Thordstein M (1987) Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Neurosci Lett 78:311–317. CrossRefPubMedGoogle Scholar
  51. 51.
    Riikonen RS, Kero PO, Simell OG (1992) Excitatory amino acids in cerebrospinal fluid in neonatal asphysia. Pediatr Neurol 8:37–40. CrossRefPubMedGoogle Scholar
  52. 52.
    Holmes GL (1991) The long-term effects of seizures on the developing brain: clinical and laboratory issues. Brain Dev 13:393–409. CrossRefPubMedGoogle Scholar
  53. 53.
    Holmes GL, Ben-Ari Y, Zipursky A (2001) The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res 49:320–325. CrossRefPubMedGoogle Scholar
  54. 54.
    Lafemina MJ, Sheldon RA, Ferriero DM (2006) Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res 59:680–683. CrossRefPubMedGoogle Scholar
  55. 55.
    Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66–76CrossRefGoogle Scholar
  56. 56.
    Seo IA, Lee HK, Shin YK, Lee SH, Seo S-Y, Park JW, Park HT (2009) Janus kinase 2 inhibitor AG490 inhibits the STAT3 signaling pathway by suppressing protein translation of gp130. Korean J Physiol Pharmacol 13:131–138. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 412:641–647. CrossRefPubMedGoogle Scholar
  58. 58.
    Guo S, Li Z-Z, Gong J, Xiang M, Zhang P, Zhao G-N, Li M, Zheng A et al (2015) Oncostatin M confers neuroprotection against ischemic stroke. J Neurosci 35:12047–12062. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Satriotomo I, Bowen KK, Vemuganti R (2006) JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem 98:1353–1368. CrossRefPubMedGoogle Scholar
  60. 60.
    Wang X-L, Qiao C-M, Liu J-O, Li C-Y (2017) Inhibition of the SOCS1-JAK2-STAT3 signaling pathway confers neuroprotection in rats with ischemic stroke. Cell Physiol Biochem 44:85–98. CrossRefPubMedGoogle Scholar
  61. 61.
    Yoo S-J, Cho B, Lee D, Son G, Lee Y-B, Soo Han H, Kim E, Moon C et al (2017) The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage. Cell Death Dis 8:e3003. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhu H, Zou L, Tian J, Du G, Gao Y (2013) SMND-309, a novel derivative of salvianolic acid B, protects rat brains ischemia and reperfusion injury by targeting the JAK2/STAT3 pathway. Eur J Pharmacol 714:23–31. CrossRefPubMedGoogle Scholar
  63. 63.
    Wu Y, Shang Y, Sun S, Liang H, Liu R (2007) Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3β/caspase-3 mediated signaling pathway. Apoptosis 12:1365–1375. CrossRefPubMedGoogle Scholar
  64. 64.
    Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. CrossRefPubMedGoogle Scholar
  65. 65.
    Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32:577–595. CrossRefPubMedGoogle Scholar
  66. 66.
    Shim SS, Stutzmann GE (2016) Inhibition of glycogen synthase kinase-3: an emerging target in the treatment of traumatic brain injury. J Neurotrauma 33:2065–2076. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Surgery, Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoCanada
  3. 3.Department of Physiology and Biophysics, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
  4. 4.Department of Pharmacology and Toxicology, Faculty of MedicineUniversity of TorontoTorontoCanada
  5. 5.Institute of Medical Science, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations