Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 7929–7949 | Cite as

Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus Accumbens

  • Pan Zhang
  • Laura S. Moye
  • Bruce R. Southey
  • Isaac Dripps
  • Jonathan V. Sweedler
  • Amynah Pradhan
  • Sandra L. Rodriguez-ZasEmail author
Article

Abstract

The benefits of opioid-based treatments to mitigate chronic pain can be hindered by the side effects of opioid-induced hyperalgesia (OIH) that can lead to higher consumption and risk of addiction. The present study advances the understanding of the molecular mechanisms associated with OIH by comparing mice presenting OIH symptoms in response to chronic morphine exposure (OIH treatment) relative to control mice (CON treatment). Using RNA-Seq profiles, gene networks were inferred in the trigeminal ganglia (TG), a central nervous system region associated with pain signaling, and in the nucleus accumbens (NAc), a region associated with reward dependency. The biological process of nucleic acid processing was over-represented among the 122 genes that exhibited a region-dependent treatment effect. Within the 187 genes that exhibited a region-independent treatment effect, circadian rhythm processes were enriched among the genes over-expressed in OIH relative to CON mice. This enrichment was supported by the differential expression of the period circadian clock 2 and 3 genes (Per2 and Per3). Transcriptional regulators in the PAR bZip family that are influenced by the circadian clock and that modulate neurotransmission associated with pain and drug addiction were also over-expressed in OIH relative to CON mice. Also notable was the under-expression in OIH relative to CON mice of the Toll-like receptor, nuclear factor-kappa beta, and interferon gamma genes and enrichment of the adaptive immune processes. The results from the present study offer insights to advance the effective use of opioids for pain management while minimizing hyperalgesia.

Keywords

Opioid-induced hyperalgesia Morphine RNA-Seq Circadian rhythm Adaptive immune response 

Notes

Acknowledgments

We would like to thank Dr. Dennis Grayson for helpful discussion regarding experimental procedures and manuscript preparation. We are also grateful to Ying Chen for helping us with the RNA isolation and Hyeonsoo Jeong for preliminary data evaluation. Laura Moye is a member of the UIC Graduate Program in Neuroscience.

Funding

This study was funded by the National Institute of Health (grant numbers P30 DA018310-14 (SRZ, BS, JS), and DA031243 (AP)), the Department of Defense (grant number PR100085 (AP)), and US Department of Agriculture NIFA ILLU-538-909.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1650_MOESM1_ESM.xlsx (723 kb)
ESM 1 (XLSX 723 kb)

References

  1. 1.
    Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, Kerns R, Von Korff M et al (2018) Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. MMWR Morb Mortal Wkly Rep 67(36):1001–1006.  https://doi.org/10.15585/mmwr.mm6736a2 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Breivik H, Eisenberg E, O’Brien T, OPENMinds (2013) The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care. BMC Public Health 13:1229.  https://doi.org/10.1186/1471-2458-13-1229 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10(4):287–333.  https://doi.org/10.1016/j.ejpain.2005.06.009 CrossRefPubMedGoogle Scholar
  4. 4.
    Patch Iii RK, Eldrige JS, Moeschler SM, Pingree MJ (2017) Dexmedetomidine as part of a multimodal analgesic treatment regimen for opioid induced hyperalgesia in a patient with significant opioid tolerance. Case Rep Anesthesiol 2017.  https://doi.org/10.1155/2017/9876306
  5. 5.
    Hayhurst CJ, Durieux ME (2016) Differential opioid tolerance and opioid-induced hyperalgesia: a clinical reality. Anesthesiology 124(2):483–488.  https://doi.org/10.1097/ALN.0000000000000963 CrossRefPubMedGoogle Scholar
  6. 6.
    Wanigasekera V, Lee MC, Rogers R, Hu P, Tracey I (2011) Neural correlates of an injury-free model of central sensitization induced by opioid withdrawal in humans. J Neurosci 31(8):2835–2842.  https://doi.org/10.1523/JNEUROSCI.5412-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim SH, Stoicea N, Soghomonyan S, Bergese SD (2015) Remifentanil-acute opioid tolerance and opioid-induced hyperalgesia: a systematic review. Am J Ther 22(3):e62–e74.  https://doi.org/10.1097/MJT.0000000000000019 CrossRefPubMedGoogle Scholar
  8. 8.
    Roeckel LA, Le Coz GM, Gaveriaux-Ruff C, Simonin F (2016) Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience 338:160–182.  https://doi.org/10.1016/j.neuroscience.2016.06.029 CrossRefPubMedGoogle Scholar
  9. 9.
    Johnson EE, Chieng B, Napier I, Connor M (2006) Decreased mu-opioid receptor signalling and a reduction in calcium current density in sensory neurons from chronically morphine-treated mice. Br J Pharmacol 148(7):947–955.  https://doi.org/10.1038/sj.bjp.0706820 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Akerman S, Holland PR, Goadsby PJ (2011) Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 12(10):570–584.  https://doi.org/10.1038/nrn3057 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE, Durham PL (2007) Neuron–glia signaling in trigeminal ganglion: Implications for migraine pathology. Headache 47(7):1008–1023CrossRefGoogle Scholar
  12. 12.
    LaPaglia DM, Sapio MR, Burbelo PD, Thierry-Mieg J, Thierry-Mieg D, Raithel SJ, Ramsden CE, Iadarola MJ et al (2017) RNA-Seq investigations of human post-mortem trigeminal ganglia. Cephalalgia 38:912–932.  https://doi.org/10.1177/0333102417720216 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li JL, Ding YQ, Li YQ, Li JS, Nomura S, Kaneko T, Mizuno N (1998) Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin gene-related peptide. A light and electron microscope study in the rat. Brain Res 794(2):347–352CrossRefGoogle Scholar
  14. 14.
    Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23(8):2057–2066CrossRefGoogle Scholar
  15. 15.
    Burstein R, Jakubowski M (2005) Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol 493(1):9–14CrossRefGoogle Scholar
  16. 16.
    Chen Y, Yang C, Wang ZJ (2010) Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia. J Neurosci 30(1):38–46.  https://doi.org/10.1523/JNEUROSCI.4346-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, Sotoudeh C, Clark JD et al (2017) Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 23(2):164–173.  https://doi.org/10.1038/nm.4262 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Elhabazi K, Ayachi S, Ilien B, Simonin F (2014) Assessment of morphine-induced hyperalgesia and analgesic tolerance in mice using thermal and mechanical nociceptive modalities. J Vis Exp (89):e51264.  https://doi.org/10.3791/51264
  19. 19.
    Liang DY, Shi X, Li X, Li J, Clark JD (2007) The beta2 adrenergic receptor regulates morphine tolerance and physical dependence. Behav Brain Res 181(1):118–126.  https://doi.org/10.1016/j.bbr.2007.03.037 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Moye LS, Novack ML, Tipton AF, Krishnan H, Pandey SC, Pradhan AA (2018) The development of a mouse model of mTBI-induced post-traumatic migraine, and identification of the delta opioid receptor as a novel therapeutic target. Cephalalgia.  https://doi.org/10.1177/0333102418777507
  21. 21.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63CrossRefGoogle Scholar
  22. 22.
    Tipton AF, Tarash I, McGuire B, Charles A, Pradhan AA (2016) The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia 36(11):1048–1056.  https://doi.org/10.1177/0333102415623070 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moye LS, Pradhan AAA (2017) Animal model of chronic migraine-associated pain. Curr Protoc Neurosci 80:9.60.61–69.60.69.  https://doi.org/10.1002/cpns.33 CrossRefGoogle Scholar
  24. 24.
    Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. PAIN® 155(2):269–274CrossRefGoogle Scholar
  25. 25.
    Jeong H, Moye LS, Southey BR, Hernandez AG, Dripps I, Romanova EV, Rubakhin SS, Sweedler JV et al (2018) Gene network dysregulation in the trigeminal ganglia and nucleus accumbens of a model of chronic migraine-associated hyperalgesia. Front Syst Neurosci 12:63.  https://doi.org/10.3389/fnsys.2018.00063 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.Google Scholar
  27. 27.
    Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(suppl 1):D61–D65CrossRefGoogle Scholar
  28. 28.
    Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527CrossRefGoogle Scholar
  29. 29.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140CrossRefGoogle Scholar
  30. 30.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol:289–300Google Scholar
  31. 31.
    Caetano-Anollés K, Rhodes JS, Garland T Jr, Perez SD, Hernandez AG, Southey BR, Rodriguez-Zas SL (2016) Cerebellum transcriptome of mice bred for high voluntary activity offers insights into locomotor control and reward-dependent behaviors. PLoS One 11(11):e0167095CrossRefGoogle Scholar
  32. 32.
    Gonzalez-Pena D, Nixon SE, Southey BR, Lawson MA, McCusker RH, Hernandez AG, Dantzer R, Kelley KW et al (2016) Differential transcriptome networks between IDO1-knockout and wild-type mice in brain microglia and macrophages. PLoS One 11(6):e0157727.  https://doi.org/10.1371/journal.pone.0157727 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gonzalez-Pena D, Nixon SE, O’Connor JC, Southey BR, Lawson MA, McCusker RH, Borras T, Machuca D et al (2016) Microglia transcriptome changes in a model of depressive behavior after immune challenge. PLoS One 11(3):e0150858CrossRefGoogle Scholar
  34. 34.
    Caetano-Anolles K, Mishra S, Rodriguez-Zas SL (2015) Synergistic and antagonistic interplay between myostatin gene expression and physical activity levels on gene expression patterns in triceps brachii muscles of C57/BL6 mice. PLoS One 10(2):e0116828.  https://doi.org/10.1371/journal.pone.0116828 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP (2007) GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 23(23):3251–3253CrossRefGoogle Scholar
  36. 36.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefGoogle Scholar
  37. 37.
    Serao NV, Delfino KR, Southey BR, Beever JE, Rodriguez-Zas SL (2011) Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med Genet 4:49.  https://doi.org/10.1186/1755-8794-4-49 CrossRefGoogle Scholar
  38. 38.
    Delfino KR, Serao NV, Southey BR, Rodriguez-Zas SL (2011) Therapy-, gender- and race-specific microRNA markers, target genes and networks related to glioblastoma recurrence and survival. Cancer Genomics Proteomics 8(4):173–183PubMedPubMedCentralGoogle Scholar
  39. 39.
    Delfino KR, Rodriguez-Zas SL (2013) Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence. PLoS One 8(3):e58608.  https://doi.org/10.1371/journal.pone.0058608 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Martin A, Ochagavia M, Rabasa L, Miranda J, Fernandez-de-Cossio J, Bringas R (2010) BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinf 11(1):1–9.  https://doi.org/10.1186/1471-2105-11-91 CrossRefGoogle Scholar
  41. 41.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504.  https://doi.org/10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451.  https://doi.org/10.1093/nar/gkh086 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B et al (2005) The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res 33(Database issue):D418–D424.  https://doi.org/10.1093/nar/gki051 CrossRefPubMedGoogle Scholar
  44. 44.
    Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539.  https://doi.org/10.1093/nar/gkj109 CrossRefPubMedGoogle Scholar
  45. 45.
    Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861.  https://doi.org/10.1093/nar/gkr930 CrossRefPubMedGoogle Scholar
  46. 46.
    Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M et al (2007) IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35(Database):D561–D565.  https://doi.org/10.1093/nar/gkl958 CrossRefPubMedGoogle Scholar
  47. 47.
    Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N et al (2006) Human protein reference database—2006 update. Nucleic Acids Res 34(Database issue):D411–D414.  https://doi.org/10.1093/nar/gkj141 CrossRefPubMedGoogle Scholar
  48. 48.
    Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V, Hulselmans G, Herten K et al (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 10(7):e1003731.  https://doi.org/10.1371/journal.pcbi.1003731 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liang D, Shi X, Qiao Y, Angst MS, Yeomans DC, Clark JD (2008) Chronic morphine administration enhances nociceptive sensitivity and local cytokine production after incision. Mol Pain 4:7.  https://doi.org/10.1186/1744-8069-4-7 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sarlani E, Balciunas BA, Grace EG (2005) Orofacial pain—part I: assessment and management of musculoskeletal and neuropathic causes. AACN Clin Issues 16(3):333–346CrossRefGoogle Scholar
  51. 51.
    Grueter BA, Rothwell PE, Malenka RC (2012) Integrating synaptic plasticity and striatal circuit function in addiction. Curr Opin Neurobiol 22(3):545–551.  https://doi.org/10.1016/j.conb.2011.09.009 CrossRefPubMedGoogle Scholar
  52. 52.
    Gear RW, Levine JD (2011) Nucleus accumbens facilitates nociception. Exp Neurol 229(2):502–506.  https://doi.org/10.1016/j.expneurol.2011.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cook-Sather SD, Li J, Goebel TK, Sussman EM, Rehman MA, Hakonarson H (2014) TAOK3, a novel genome-wide association study locus associated with morphine requirement and postoperative pain in a retrospective pediatric day surgery population. Pain 155(9):1773–1783.  https://doi.org/10.1016/j.pain.2014.05.032 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Crowder RJ, Enomoto H, Yang M, Johnson EM Jr, Milbrandt J (2004) Dok-6, a novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 279(40):42072–42081.  https://doi.org/10.1074/jbc.M403726200
  55. 55.
    Maynard KB, Smith SA, Davis AC, Trivette A, Seipelt-Thiemann RL (2014) Evolutionary analysis of the mammalian M1 aminopeptidases reveals conserved exon structure and gene death. Gene 552(1):126–132.  https://doi.org/10.1016/j.gene.2014.09.025 CrossRefPubMedGoogle Scholar
  56. 56.
    Osada T, Ikegami S, Takiguchi-Hayashi K, Yamazaki Y, Katoh-Fukui Y, Higashinakagawa T, Sakaki Y et al (1999) Increased anxiety and impaired pain response in puromycin-sensitive aminopeptidase gene-deficient mice obtained by a mouse gene-trap method. J Neurosci 19(14):6068–6078CrossRefGoogle Scholar
  57. 57.
    Li W, Shi L, You Y, Gong Y, Yin B, Yuan J, Peng X (2010) Downstream of tyrosine kinase/docking protein 6, as a novel substrate of tropomyosin-related kinase C receptor, is involved in neurotrophin 3-mediated neurite outgrowth in mouse cortex neurons. BMC Biol 8:86.  https://doi.org/10.1186/1741-7007-8-86 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tanioka T, Hattori A, Masuda S, Nomura Y, Nakayama H, Mizutani S, Tsujimoto M (2003) Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem 278(34):32275–32283.  https://doi.org/10.1074/jbc.M305076200
  59. 59.
    Paek J, Kalocsay M, Staus DP, Wingler L, Pascolutti R, Paulo JA, Gygi SP, Kruse AC (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169(2):338–349 e311.  https://doi.org/10.1016/j.cell.2017.03.028 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vo L, Hood S, Drummond PD (2016) Involvement of opioid receptors and alpha2-adrenoceptors in inhibitory pain modulation processes: a double-blind placebo-controlled crossover study. J Pain 17(11):1164–1173.  https://doi.org/10.1016/j.jpain.2016.07.004 CrossRefPubMedGoogle Scholar
  61. 61.
    Ofte HK, Berg DH, Bekkelund SI, Alstadhaug KB (2013) Insomnia and periodicity of headache in an arctic cluster headache population. Headache 53(10):1602–1612.  https://doi.org/10.1111/head.12241 CrossRefPubMedGoogle Scholar
  62. 62.
    Bering T, Carstensen MB, Wortwein G, Weikop P, Rath MF (2017) The circadian oscillator of the cerebral cortex: molecular, biochemical and behavioral effects of deleting the Arntl clock gene in cortical neurons. Cereb Cortex.  https://doi.org/10.1093/cercor/bhw406
  63. 63.
    Dorsey SG, Leitch CC, Renn CL, Lessans S, Smith BA, Wang XM, Dionne RA (2009) Genome-wide screen identifies drug-induced regulation of the gene giant axonal neuropathy (Gan) in a mouse model of antiretroviral-induced painful peripheral neuropathy. Biol Res Nurs 11(1):7–16.  https://doi.org/10.1177/1099800409332726 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang Y, Zhang Y, Li XH, Li Y, Qian R, Li J, Xu SL (2015) Involvements of galanin and its receptors in antinociception in nucleus accumbens of rats with inflammatory pain. Neurosci Res 97:20–25.  https://doi.org/10.1016/j.neures.2015.03.006 CrossRefPubMedGoogle Scholar
  65. 65.
    Grace PM, Maier SF, Watkins LR (2015) Opioid-induced central immune signaling: Implications for opioid analgesia. Headache 55(4):475–489.  https://doi.org/10.1111/head.12552 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Nousiainen HO, Quintero IB, Myöhänen TT, Voikar V, Mijatovic J, Segerstråle M, Herrala AM, Kulesskaya N et al (2014) Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations. PLoS One 9(5):e97851.  https://doi.org/10.1371/journal.pone.0097851 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang C, Gu L, Ruan Y, Gegen T, Yu L, Zhu C, Yang Y, Zhou Y et al (2018) Pirt together with TRPV1 is involved in the regulation of neuropathic pain. Neural Plast 2018.  https://doi.org/10.1155/2018/4861491
  68. 68.
    Capasso KE, Manners MT, Quershi RA, Tian Y, Gao R, Hu H, Barrett JE, Sacan A et al (2015) Effect of histone deacetylase inhibitor JNJ-26481585 in pain. J Mol Neurosci 55(3):570–578.  https://doi.org/10.1007/s12031-014-0391-7 CrossRefPubMedGoogle Scholar
  69. 69.
    Hong QX, Xu SY, Dai SH, Zhao WX (2016) Expression profiling of spinal genes in peripheral neuropathy model rats with type 2 diabetes mellitus. Int J Clin Exp Med 9(3):6376–6384Google Scholar
  70. 70.
    Nagy V, Cole T, Van Campenhout C, Khoung TM, Leung C, Vermeiren S, Novatchkova M, Wenzel D et al (2015) The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception. Cell Cycle 14(12):1799–1808.  https://doi.org/10.1080/15384101.2015.1036209 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY et al (2018) Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 159(7):1325–1345.  https://doi.org/10.1097/j.pain.0000000000001217 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Buchman VL, Adu J, Pinon LG, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, influences neurofilament network integrity. Nat Neurosci 1(2):101–103.  https://doi.org/10.1038/349 CrossRefPubMedGoogle Scholar
  73. 73.
    Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y et al (2005) Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol 169(3):527–538.  https://doi.org/10.1083/jcb.200501154 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dacci P, Taroni F, Bella ED, Milani M, Pareyson D, Morbin M, Lauria G (2012) Myelin protein zero Arg36Gly mutation with very late onset and rapidly progressive painful neuropathy. J Peripher Nerv Syst 17(4):422–425.  https://doi.org/10.1111/j.1529-8027.2012.00443.x CrossRefPubMedGoogle Scholar
  75. 75.
    Gillespie CS, Sherman DL, Fleetwood-Walker SM, Cottrell DF, Tait S, Garry EM, Wallace VC, Ure J et al (2000) Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 26(2):523–531CrossRefGoogle Scholar
  76. 76.
    McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, Edenberg HJ (2016) Gene expression changes in glutamate and GABA-A receptors, neuropeptides, ion channels, and cholesterol synthesis in the periaqueductal gray following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats. Alcohol Clin Exp Res 40(5):955–968.  https://doi.org/10.1111/acer.13056 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chen SP, Zhou YQ, Liu DQ, Zhang W, Manyande A, Guan XH, Tian YK, Ye DW et al (2017) PI3K/Akt pathway: a potential therapeutic target for chronic pain. Curr Pharm Des 23(12):1860–1868.  https://doi.org/10.2174/1381612823666170210150147 CrossRefPubMedGoogle Scholar
  78. 78.
    Nehme B, Henry M, Mouginot D, Drolet G (2012) The expression pattern of the Na(+) sensor, Na(X) in the hydromineral homeostatic network: a comparative study between the rat and mouse. Front Neuroanat 6:26.  https://doi.org/10.3389/fnana.2012.00026 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ke CB, He WS, Li CJ, Shi D, Gao F, Tian YK (2012) Enhanced SCN7A/Nax expression contributes to bone cancer pain by increasing excitability of neurons in dorsal root ganglion. Neuroscience 227:80–89.  https://doi.org/10.1016/j.neuroscience.2012.09.046 CrossRefPubMedGoogle Scholar
  80. 80.
    Maruyama K (2012) Integrins and nitric oxide in the regulation of glia cells: potential roles in pathological pain. J Anesth Clin Res S7 (01). doi: https://doi.org/10.4172/2155-6148.s7-008
  81. 81.
    Sapio MR, Goswami SC, Gross JR, Mannes AJ, Iadarola MJ (2016) Transcriptomic analyses of genes and tissues in inherited sensory neuropathies. Exp Neurol 283(Pt A):375–395.  https://doi.org/10.1016/j.expneurol.2016.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Schurks M (2010) Genetics of cluster headache. Curr Pain Headache Rep 14(2):132–139.  https://doi.org/10.1007/s11916-010-0096-8 CrossRefPubMedGoogle Scholar
  83. 83.
    Harris RA, Harris LS, Dunn A (1975) Effect of narcotic drugs on ribonucleic-acid and nucleotide-metabolism in mouse-brain. J Pharmacol Exp Ther 192(2):280–287PubMedGoogle Scholar
  84. 84.
    Tsai RY, Shen CH, Feng YP, Chien CC, Lee SO, Tsai WY, Lin YS, Wong CS (2012) Ultra-low-dose naloxone enhances the antinociceptive effect of morphine in PTX-treated rats: regulation on global histone methylation. Acta Anaesthesiol Taiwanica 50(3):106–111.  https://doi.org/10.1016/j.aat.2012.08.003 CrossRefGoogle Scholar
  85. 85.
    Altier N, Stewart J (1998) Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine. J Pharmacol Exp Ther 285(1):208–215PubMedGoogle Scholar
  86. 86.
    Smith HS (2008) Combination opioid analgesics. Pain Physician 11(2):201–214PubMedGoogle Scholar
  87. 87.
    Ito T, Ohtori S, Hata K, Inoue G, Moriya H, Takahashi K, Yamashita T (2007) Rho kinase inhibitor improves motor dysfunction and hypoalgesia in a rat model of lumbar spinal canal stenosis. Spine (Phila Pa 1976) 32(19):2070–2075.  https://doi.org/10.1097/BRS.0b013e318145a502 CrossRefGoogle Scholar
  88. 88.
    Majdalawieh A, Zhang L, Ro HS (2007) Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell 18(3):930–942.  https://doi.org/10.1091/mbc.E06-03-0217
  89. 89.
    Bai L, Zhai C, Han K, Li Z, Qian J, Jing Y, Zhang W, Xu JT (2014) Toll-like receptor 4-mediated nuclear factor-kappaB activation in spinal cord contributes to chronic morphine-induced analgesic tolerance and hyperalgesia in rats. Neurosci Bull 30(6):936–948.  https://doi.org/10.1007/s12264-014-1483-7 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Simmler LD, Anacker AMJ, Levin MH, Vaswani NM, Gresch PJ, Nackenoff AG, Anastasio NC, Stutz SJ et al (2017) Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br J Pharmacol 174(16):2716–2738.  https://doi.org/10.1111/bph.13899 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gaiteri C, Sibille E (2011) Differentially expressed genes in major depression reside on the periphery of resilient gene coexpression networks. Front Neurosci 5:95.  https://doi.org/10.3389/fnins.2011.00095 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Li SX, Liu LJ, Jiang WG, Sun LL, Zhou SJ, Le Foll B, Zhang XY, Kosten TR et al (2010) Circadian alteration in neurobiology during protracted opiate withdrawal in rats. J Neurochem 115(2):353–362.  https://doi.org/10.1111/j.1471-4159.2010.06941.x CrossRefPubMedGoogle Scholar
  93. 93.
    Vansteensel MJ, Magnone MC, van Oosterhout F, Baeriswyl S, Albrecht U, Albus H, Dahan A, Meijer JH (2005) The opioid fentanyl affects light input, electrical activity and per gene expression in the hamster suprachiasmatic nuclei. Eur J Neurosci 21(11):2958–2966.  https://doi.org/10.1111/j.1460-9568.2005.04131.x CrossRefPubMedGoogle Scholar
  94. 94.
    Segal JP, Tresidder KA, Bhatt C, Gilron I, Ghasemlou N (2018) Circadian control of pain and neuroinflammation. J Neurosci Res 96(6):1002–1020.  https://doi.org/10.1002/jnr.24150 CrossRefPubMedGoogle Scholar
  95. 95.
    Proudnikov D, Yuferov V, Randesi M, Kreek MJ (2013) Genetics of opioid addiction. In: Biological research on addiction: comprehensive addictive behaviors and disorders, vol 2, pp. 509–521.  https://doi.org/10.1016/B978-0-12-398335-0.00050-9 CrossRefGoogle Scholar
  96. 96.
    Burish MJ, Chen Z, Yoo SH (2019) Emerging relevance of circadian rhythms in headaches and neuropathic pain. Acta Physiol (Oxf) 225(1):e13161.  https://doi.org/10.1111/apha.13161 CrossRefGoogle Scholar
  97. 97.
    Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythm 20(5):391–403.  https://doi.org/10.1177/0748730405277232 CrossRefGoogle Scholar
  98. 98.
    Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419(6909):841–844.  https://doi.org/10.1038/nature01123 CrossRefPubMedGoogle Scholar
  99. 99.
    Gachon F (2007) Physiological function of PARbZip circadian clock-controlled transcription factors. Ann Med 39(8):562–571.  https://doi.org/10.1080/07853890701491034 CrossRefPubMedGoogle Scholar
  100. 100.
    Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106(3):357–387.  https://doi.org/10.1016/j.pharmthera.2005.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30(11):581–591.  https://doi.org/10.1016/j.tips.2009.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sandstrom ME, Madden LA, Taylor L, Siegler JC, Lovell RJ, Midgley A, McNaughton L (2009) Variation in basal heat shock protein 70 is correlated to core temperature in human subjects. Amino Acids 37(2):279–284.  https://doi.org/10.1007/s00726-008-0144-4 CrossRefPubMedGoogle Scholar
  103. 103.
    Koks S, Fernandes C, Kurrikoff K, Vasar E, Schalkwyk LC (2008) Gene expression profiling reveals upregulation of Tlr4 receptors in Cckb receptor deficient mice. Behav Brain Res 188(1):62–70.  https://doi.org/10.1016/j.bbr.2007.10.020 CrossRefPubMedGoogle Scholar
  104. 104.
    Ko MH, Hsieh YL, Hsieh ST, Tseng TJ (2015) Nerve demyelination increases metabotropic glutamate receptor subtype 5 expression in peripheral painful mononeuropathy. Int J Mol Sci 16(3):4642–4665.  https://doi.org/10.3390/ijms16034642 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Pringsheim T (2002) Cluster headache: evidence for a disorder of circadian rhythm and hypothalamic function. Can J Neurol Sci 29(1):33–40CrossRefGoogle Scholar
  106. 106.
    Plein LM, Rittner HL (2018) Opioids and the immune system—friend or foe. Br J Pharmacol 175(14):2717–2725.  https://doi.org/10.1111/bph.13750 CrossRefPubMedGoogle Scholar
  107. 107.
    Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158.  https://doi.org/10.1016/j.pharmthera.2017.10.006 CrossRefPubMedGoogle Scholar
  108. 108.
    Hasegawa-Moriyama M, Kurimoto T, Nakama M, Godai K, Kojima M, Kuwaki T, Kanmura Y (2013) Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates inflammatory pain through the induction of heme oxygenase-1 in macrophages. Pain 154(8):1402–1412.  https://doi.org/10.1016/j.pain.2013.04.039 CrossRefPubMedGoogle Scholar
  109. 109.
    Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S, Di Marzo V (2007) Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology 52(2):415–422.  https://doi.org/10.1016/j.neuropharm.2006.08.011 CrossRefPubMedGoogle Scholar
  110. 110.
    Kostadinova R, Wahli W, Michalik L (2005) PPARs in diseases: control mechanisms of inflammation. Curr Med Chem 12(25):2995–3009CrossRefGoogle Scholar
  111. 111.
    D’Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Mattace Raso G, Cuzzocrea S et al (2009) Central administration of palmitoylethanolamide reduces hyperalgesia in mice via inhibition of NF-kappaB nuclear signalling in dorsal root ganglia. Eur J Pharmacol 613(1–3):54–59.  https://doi.org/10.1016/j.ejphar.2009.04.022 CrossRefPubMedGoogle Scholar
  112. 112.
    Goswami SC, Thierry-Mieg D, Thierry-Mieg J, Mishra S, Hoon MA, Mannes AJ, Iadarola MJ (2014) Itch-associated peptides: RNA-Seq and bioinformatic analysis of natriuretic precursor peptide B and gastrin releasing peptide in dorsal root and trigeminal ganglia, and the spinal cord. Mol Pain 10:44.  https://doi.org/10.1186/1744-8069-10-44 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Flegel C, Schobel N, Altmuller J, Becker C, Tannapfel A, Hatt H, Gisselmann G (2015) RNA-Seq analysis of human trigeminal and dorsal root ganglia with a focus on chemoreceptors. PLoS One 10(6):e0128951.  https://doi.org/10.1371/journal.pone.0128951 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Lopes DM, Denk F, McMahon SB (2017) The molecular fingerprint of dorsal root and trigeminal ganglion neurons. Front Mol Neurosci 10:304.  https://doi.org/10.3389/fnmol.2017.00304 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Nguyen MQ, Wu Y, Bonilla LS, von Buchholtz LJ, Ryba NJP (2017) Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLoS One 12(9):e0185543.  https://doi.org/10.1371/journal.pone.0185543 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Delbes AS, Castel J, Denis RGP, Morel C, Quinones M, Everard A, Cani PD, Massiera F et al (2018) Prebiotics supplementation impact on the reinforcing and motivational aspect of feeding. Front Endocrinol (Lausanne) 9:273.  https://doi.org/10.3389/fendo.2018.00273 CrossRefGoogle Scholar
  117. 117.
    van den Heuvel JK, Furman K, Gumbs MC, Eggels L, Opland DM, Land BB, Kolk SM, Narayanan NS et al (2015) Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity. Biol Psychiatry 77(7):633–641.  https://doi.org/10.1016/j.biopsych.2014.06.008 CrossRefPubMedGoogle Scholar
  118. 118.
    Chen H, Liu Z, Gong S, Wu X, Taylor WL, Williams RW, Matta SG, Sharp BM (2011) Genome-wide gene expression profiling of nucleus accumbens neurons projecting to ventral pallidum using both microarray and transcriptome sequencing. Front Neurosci 5:98.  https://doi.org/10.3389/fnins.2011.00098 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L (2011) A comprehensive review of opioid-induced hyperalgesia. Pain Physician 14(2):145–161PubMedGoogle Scholar
  120. 120.
    Zhou J, Fan Y, Chen H (2017) Analyses of long non-coding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model. RNA Biol 14(12):1810–1826.  https://doi.org/10.1080/15476286.2017.1371400 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hur J, Sullivan KA, Pande M, Hong Y, Sima AA, Jagadish HV, Kretzler M, Feldman EL (2011) The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain 134(Pt 11):3222–3235.  https://doi.org/10.1093/brain/awr228 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18(21):5943–5952.  https://doi.org/10.1093/emboj/18.21.5943 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Wessells J, Baer M, Young HA, Claudio E, Brown K, Siebenlist U, Johnson PF (2004) BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J Biol Chem 279(48):49995–50003.  https://doi.org/10.1074/jbc.M404246200
  124. 124.
    Wu HY, Mao XF, Tang XQ, Ali U, Apryani E, Liu H, Li XY, Wang YX (2018) Spinal interleukin-10 produces antinociception in neuropathy through microglial beta-endorphin expression, separated from antineuroinflammation. Brain Behav Immun 73:504–519.  https://doi.org/10.1016/j.bbi.2018.06.015 CrossRefPubMedGoogle Scholar
  125. 125.
    Shao J, Wang J, Huang J, Liu C, Pan Y, Guo Q, Zou W (2018) Identification of lncRNA expression profiles and ceRNA analysis in the spinal cord of morphine-tolerant rats. Mol Brain 11(1):21.  https://doi.org/10.1186/s13041-018-0365-8 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gomez R, Kohler DM, Brackley AD, Henry MA, Jeske NA (2018) Serum response factor mediates nociceptor inflammatory pain plasticity. Pain Rep 3(3):e658.  https://doi.org/10.1097/PR9.0000000000000658 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Groth RD, Mermelstein PG (2003) Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression. J Neurosci 23(22):8125–8134CrossRefGoogle Scholar
  128. 128.
    Jourdan D, Boghossian S, Alloui A, Veyrat-Durebex C, Coudore MA, Eschalier A, Alliot J (2000) Age-related changes in nociception and effect of morphine in the Lou rat. Eur J Pain 4(3):291–300.  https://doi.org/10.1053/eujp.2000.0188 CrossRefPubMedGoogle Scholar
  129. 129.
    Goldberg JS (2013) Chronic opioid therapy and opioid tolerance: a new hypothesis. Pain Res Treat 2013:1–6.  https://doi.org/10.1155/2013/407504 CrossRefGoogle Scholar
  130. 130.
    Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE, Castonguay A, Doyon N et al (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(−) homeostasis. Nat Neurosci 16(2):183–192.  https://doi.org/10.1038/nn.3295 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Bruehl S, Apkarian AV, Ballantyne JC, Berger A, Borsook D, Chen WG, Farrar JT, Haythornthwaite JA et al (2013) Personalized medicine and opioid analgesic prescribing for chronic pain: opportunities and challenges. J Pain 14(2):103–113.  https://doi.org/10.1016/j.jpain.2012.10.016 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Open AccessSpringer Nature terms of reuse for archived author accepted manuscripts (AAMs) of subscription articles For articles published within the Springer Nature group of companies that have been archived into academic repositories such as institutional repositories, PubMed Central and its mirror sites, where a Springer Nature company holds copyright, or an exclusive license to publish, users may view, print, copy, download and text and data-mine the content, for the purposes of academic research, subject always to the full conditions of use. The conditions of use are not intended to override, should any national law grant further rights to any user.Conditions of use Articles, books and chapters published within the Springer Nature group of companies which are made available through academic repositories remain subject to copyright. The following restrictions on use of such articles, books and chapters apply: Academic research only 1. Archived content may only be used for academic research. Any content downloaded for text based experiments should be destroyed when the experiment is complete. Reuse must not be for Commercial Purposes 2. Archived content may not be used for purposes that are intended for or directed towards commercial advantage or monetary compensation by means of sale, resale, licence, loan, transfer or any other form of commercial exploitation ("Commercial Purposes"). Wholesale re-publishing is prohibited 3. Archived content may not be published verbatim in whole or in part, whether or not this is done for Commercial Purposes, either in print or online. 4. This restriction does not apply to reproducing normal quotations with an appropriate citation. In the case of text-mining, individual words, concepts and quotes up to 100 words per matching sentence may be used, whereas longer paragraphs of text and images cannot (without specific permission from Springer Nature). Moral rights 5. All use must be fully attributed.  Attribution must take the form of a link - using the article DOI - to the published article on the journal's website. 6. All use must ensure that the authors' moral right to the integrity of their work is not compromised. Third party content 7. Where content in the document is identified as belonging to a third party, it is the obligation of the user to ensure that any use complies with copyright policies of the owner. Reuse at own risk 8. Any use of Springer Nature content is at your own risk and Springer Nature accepts no liability arising from such use.

Authors and Affiliations

  1. 1.Illinois Informatics InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of PsychiatryUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Animal SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Chemistry and the Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Department of StatisticsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations