Advertisement

The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer’s Disease: Critical Aspects to Unravel

  • Samuel Chiquita
  • Ana C. Rodrigues-Neves
  • Filipa I. Baptista
  • Rafael Carecho
  • Paula I. Moreira
  • Miguel Castelo-Branco
  • António F. AmbrósioEmail author
Article

Abstract

Alzheimer’s disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer’s disease patients and their relatives. The diagnosis of Alzheimer’s disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer’s disease at an early stage. Taking into account the evidence for visual deficits in Alzheimer’s disease patients, sometimes even before the appearance of the first disease symptoms, and that the retina is an extension of the brain, the concept of the retina as a window to look into the brain or a mirror of the brain has received increasing interest in recent years. However, only a few studies have assessed the changes occurring in the retina and the brain at the same time points. Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer’s disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.

Keywords

Alzheimer’s disease Retina Brain Biomarkers Diagnosis 

Notes

Funding information

This work was supported by Santa Casa Mantero Belard Award 2015 (MB-1049-2015); Foundation for Science and Technology, PEst (UID/NEU/04539/2013); COMPETE-FEDER (POCI-01-0145-FEDER-007440); and Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000008: BrainHealth 2020). Samuel Chiquita and Filipa I. Baptista acknowledge a fellowship from Foundation for Science and Technology, Portugal (SFRH/BD/52045/2012 and SFRH/BPD/86830/2012, respectively).

References

  1. 1.
    World Health Organization and Alzheimer’s Disease International (2012) Epidemiology of dementia. In: Dementia: a public health priority. World Health Organization and Alzheimer’s Disease International, United Kingdom, pp 11–12Google Scholar
  2. 2.
    Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544CrossRefGoogle Scholar
  3. 3.
    Finder VH, Glockshuber R (2007) Amyloid-beta aggregation. Neurodegener Dis 4(1):13–27.  https://doi.org/10.1159/000100355 CrossRefPubMedGoogle Scholar
  4. 4.
    Huang HC, Jiang ZF (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16(1):15–27.  https://doi.org/10.3233/JAD-2009-0960 CrossRefPubMedGoogle Scholar
  5. 5.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292CrossRefGoogle Scholar
  6. 6.
    Sutphen CL, Fagan AM, Holtzman DM (2014) Progress update: fluid and imaging biomarkers in Alzheimer’s disease. Biol Psychiatry 75(7):520–526CrossRefGoogle Scholar
  7. 7.
    Frost S, Martins RN, Kanagasingam Y (2010) Ocular biomarkers for early detection of Alzheimer’s disease. J Alzheimers Dis 22(1):1–16.  https://doi.org/10.3233/JAD-2010-100819 CrossRefPubMedGoogle Scholar
  8. 8.
    London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9(1):44–53.  https://doi.org/10.1038/nrneurol.2012.227 CrossRefPubMedGoogle Scholar
  9. 9.
    Valenti DA (2010) Alzheimer’s disease: visual system review. Optometry 81(1):12–21.  https://doi.org/10.1016/j.optm.2009.04.101 CrossRefPubMedGoogle Scholar
  10. 10.
    Cronin-Golomb A, Corkin S, Rizzo JF, Cohen J, Growdon JH, Banks KS (1991) Visual dysfunction in Alzheimer’s disease: relation to normal aging. Ann Neurol 29(1):41–52.  https://doi.org/10.1002/ana.410290110 CrossRefPubMedGoogle Scholar
  11. 11.
    Lakshminarayanan V, Lagrave J, Kean ML, Dick M, Shankle R (1996) Vision in dementia: contrast effects. Neurol Res 18(1):9–15CrossRefGoogle Scholar
  12. 12.
    Sadun AA, Borchert M, DeVita E, Hinton DR, Bassi CJ (1987) Assessment of visual impairment in patients with Alzheimer’s disease. Am J Ophthalmol 104(2):113–120CrossRefGoogle Scholar
  13. 13.
    Bassi CJ, Solomon K, Young D (1993) Vision in aging and dementia. Optom Vis Sci 70(10):809–813CrossRefGoogle Scholar
  14. 14.
    Polo V, Rodrigo MJ, Garcia-Martin E, Otin S, Larrosa JM, Fuertes MI, Bambo MP, Pablo LE et al (2017) Visual dysfunction and its correlation with retinal changes in patients with Alzheimer’s disease. Eye (Lond) 31(7):1034–1041.  https://doi.org/10.1038/eye.2017.23 CrossRefGoogle Scholar
  15. 15.
    Pablo Pinero D, Monllor B, Moncho V, de Fez D (2016) Visual function alterations in Alzheimer disease: a case report. Can J Ophthalmol 51(1):e16–e18.  https://doi.org/10.1016/j.jcjo.2015.09.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Graewe B, Lemos R, Ferreira C, Santana I, Farivar R, De Weerd P, Castelo-Branco M (2013) Impaired processing of 3D motion-defined faces in mild cognitive impairment and healthy aging: an fMRI study. Cereb Cortex 23(10):2489–2499.  https://doi.org/10.1093/cercor/bhs246 CrossRefPubMedGoogle Scholar
  17. 17.
    Lemos R, Figueiredo P, Santana I, Simoes MR, Castelo-Branco M (2012) Temporal integration of 3D coherent motion cues defining visual objects of unknown orientation is impaired in amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 28(4):885–896.  https://doi.org/10.3233/JAD-2011-110719 CrossRefPubMedGoogle Scholar
  18. 18.
    Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217.  https://doi.org/10.1016/j.neuroimage.2010.06.020 CrossRefPubMedGoogle Scholar
  19. 19.
    Tsai Y, Lu B, Ljubimov AV, Girman S, Ross-Cisneros FN, Sadun AA, Svendsen CN, Cohen RM et al (2014) Ocular changes in TgF344-AD rat model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 55(1):523–534.  https://doi.org/10.1167/iovs.13-12888 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dehabadi MH, Davis BM, Wong TK, Cordeiro MF (2014) Retinal manifestations of Alzheimer’s disease. Neurodegener Dis Manag 4(3):241–252.  https://doi.org/10.2217/nmt.14.19 CrossRefPubMedGoogle Scholar
  21. 21.
    Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A et al (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2(16).  https://doi.org/10.1172/jci.insight.93621
  22. 22.
    Schön C, Hoffmann NA, Ochs SM, Burgold S, Filser S, Steinbach S, Seeliger MW, Arzberger T et al (2012) Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PLoS One 7(12):e53547CrossRefGoogle Scholar
  23. 23.
    Kurylo DD, Corkin S, Dolan RP, Rizzo JF 3rd, Parker SW, Growdon JH (1994) Broad-band visual capacities are not selectively impaired in Alzheimer’s disease. Neurobiol Aging 15(3):305–311CrossRefGoogle Scholar
  24. 24.
    Mendola JD, Cronin-Golomb A, Corkin S, Growdon JH (1995) Prevalence of visual deficits in Alzheimer’s disease. Optom Vis Sci 72(3):155–167CrossRefGoogle Scholar
  25. 25.
    Cronin-Golomb A (1995) Vision in Alzheimer’s disease. Gerontologist 35(3):370–376CrossRefGoogle Scholar
  26. 26.
    Cronin-Golomb A, Corkin S, Growdon JH (1995) Visual dysfunction predicts cognitive deficits in Alzheimer’s disease. Optom Vis Sci 72(3):168–176CrossRefGoogle Scholar
  27. 27.
    Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38(8):1157–1169CrossRefGoogle Scholar
  28. 28.
    Done DJ, Hajilou BB (2005) Loss of high-level perceptual knowledge of object structure in DAT. Neuropsychologia 43(1):60–68.  https://doi.org/10.1016/j.neuropsychologia.2004.06.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Risacher SL, Wudunn D, Pepin SM, MaGee TR, McDonald BC, Flashman LA, Wishart HA, Pixley HS et al (2013) Visual contrast sensitivity in Alzheimer’s disease, mild cognitive impairment, and older adults with cognitive complaints. Neurobiol Aging 34(4):1133–1144.  https://doi.org/10.1016/j.neurobiolaging.2012.08.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Wood JS, Firbank MJ, Mosimann UP, Watson R, Barber R, Blamire AM, O’Brien JT (2013) Testing visual perception in dementia with Lewy bodies and Alzheimer disease. Am J Geriatr Psychiatry 21(6):501–508.  https://doi.org/10.1016/j.jagp.2012.11.015 CrossRefPubMedGoogle Scholar
  31. 31.
    Nolan JM, Loskutova E, Howard AN, Moran R, Mulcahy R, Stack J, Bolger M, Dennison J et al (2014) Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis 42(4):1191–1202.  https://doi.org/10.3233/JAD-140507 CrossRefPubMedGoogle Scholar
  32. 32.
    Danesh-Meyer H, Birch H, Ku J-F, Carroll S, Gamble G (2006) Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67(10):1852–1854CrossRefGoogle Scholar
  33. 33.
    Nishioka C, Poh C, Sun SW (2015) Diffusion tensor imaging reveals visual pathway damage in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 45(1):97–107.  https://doi.org/10.3233/JAD-141239 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1991) Retinal degeneration in the macula of patients with Alzheimer’s disease. Ann N Y Acad Sci 640:44–46CrossRefGoogle Scholar
  35. 35.
    Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17(3):385–395CrossRefGoogle Scholar
  36. 36.
    Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 420(2):97–99.  https://doi.org/10.1016/j.neulet.2007.02.090 CrossRefPubMedGoogle Scholar
  37. 37.
    Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M (2011) Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg 113(7):523–526.  https://doi.org/10.1016/j.clineuro.2011.02.014 CrossRefPubMedGoogle Scholar
  38. 38.
    Moschos MM, Markopoulos I, Chatziralli I, Rouvas A, Papageorgiou SG, Ladas I, Vassilopoulos D (2012) Structural and functional impairment of the retina and optic nerve in Alzheimer’s disease. Curr Alzheimer Res 9(7):782–788CrossRefGoogle Scholar
  39. 39.
    Kirbas S, Turkyilmaz K, Anlar O, Tufekci A, Durmus M (2013) Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 33(1):58–61CrossRefGoogle Scholar
  40. 40.
    Moreno-Ramos T, Benito-Leon J, Villarejo A, Bermejo-Pareja F (2013) Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimers Dis 34(3):659–664.  https://doi.org/10.3233/JAD-121975 CrossRefPubMedGoogle Scholar
  41. 41.
    Marziani E, Pomati S, Ramolfo P, Cigada M, Giani A, Mariani C, Staurenghi G (2013) Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54(9):5953–5958.  https://doi.org/10.1167/iovs.13-12046 CrossRefPubMedGoogle Scholar
  42. 42.
    Ascaso FJ, Cruz N, Modrego PJ, Lopez-Anton R, Santabarbara J, Pascual LF, Lobo A, Cristobal JA (2014) Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study. J Neurol 261(8):1522–1530.  https://doi.org/10.1007/s00415-014-7374-z CrossRefPubMedGoogle Scholar
  43. 43.
    Bayhan HA, Aslan Bayhan S, Celikbilek A, Tanik N, Gurdal C (2015) Evaluation of the chorioretinal thickness changes in Alzheimer’s disease using spectral-domain optical coherence tomography. Clin Exp Ophthalmol 43(2):145–151.  https://doi.org/10.1111/ceo.12386 CrossRefPubMedGoogle Scholar
  44. 44.
    Cheung CY, Ong YT, Hilal S, Ikram MK, Low S, Ong YL, Venketasubramanian N, Yap P et al (2015) Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 45(1):45–56.  https://doi.org/10.3233/JAD-141659 CrossRefPubMedGoogle Scholar
  45. 45.
    Gao L, Liu Y, Li X, Bai Q, Liu P (2015) Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer’s disease. Arch Gerontol Geriatr 60(1):162–167.  https://doi.org/10.1016/j.archger.2014.10.011 CrossRefPubMedGoogle Scholar
  46. 46.
    Bambo MP, Garcia-Martin E, Gutierrez-Ruiz F, Pinilla J, Perez-Olivan S, Larrosa JM, Polo V, Pablo L (2015) Analysis of optic disk color changes in Alzheimer’s disease: a potential new biomarker. Clin Neurol Neurosurg 132:68–73.  https://doi.org/10.1016/j.clineuro.2015.02.016 CrossRefPubMedGoogle Scholar
  47. 47.
    Liu D, Zhang L, Li Z, Zhang X, Wu Y, Yang H, Min B, Zhang X et al (2015) Thinner changes of the retinal never fiber layer in patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol 1:14CrossRefGoogle Scholar
  48. 48.
    Garcia-Martin E, Bambo MP, Marques ML, Satue M, Otin S, Larrosa JM, Polo V, Pablo LE (2016) Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer’s disease. Acta Ophthalmol 94(6):e454–e459.  https://doi.org/10.1111/aos.12977 CrossRefPubMedGoogle Scholar
  49. 49.
    Cunha LP, Lopes LC, Costa-Cunha LV, Costa CF, Pires LA, Almeida AL, Monteiro ML (2016) Macular thickness measurements with frequency domain-OCT for quantification of retinal neural loss and its correlation with cognitive impairment in Alzheimer’s disease. PLoS One 11(4):e0153830.  https://doi.org/10.1371/journal.pone.0153830 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Trebbastoni A, D’Antonio F, Bruscolini A, Marcelli M, Cecere M, Campanelli A, Imbriano L, de Lena C et al (2016) Retinal nerve fibre layer thickness changes in Alzheimer’s disease: results from a 12-month prospective case series. Neurosci Lett 629:165–170.  https://doi.org/10.1016/j.neulet.2016.07.006 CrossRefPubMedGoogle Scholar
  51. 51.
    Choi SH, Park SJ, Kim NR (2016) Macular ganglion cell -inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimer’s disease. PLoS One 11(9):e0162202.  https://doi.org/10.1371/journal.pone.0162202 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ferrari L, Huang SC, Magnani G, Ambrosi A, Comi G, Leocani L (2017) Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimers Dis 56(3):1101–1107.  https://doi.org/10.3233/JAD-160886 CrossRefPubMedGoogle Scholar
  53. 53.
    Cunha JP, Proenca R, Dias-Santos A, Almeida R, Aguas H, Alves M, Papoila AL, Louro C et al (2017) OCT in Alzheimer’s disease: thinning of the RNFL and superior hemiretina. Graefes Arch Clin Exp Ophthalmol 255(9):1827–1835.  https://doi.org/10.1007/s00417-017-3715-9 CrossRefPubMedGoogle Scholar
  54. 54.
    Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112(10):1860–1867CrossRefGoogle Scholar
  55. 55.
    Iseri PK, Altinas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26(1):18–24.  https://doi.org/10.1097/01.wno.0000204645.56873.26 CrossRefPubMedGoogle Scholar
  56. 56.
    Coppola G, Di Renzo A, Ziccardi L, Martelli F, Fadda A, Manni G, Barboni P, Pierelli F et al (2015) Optical coherence tomography in Alzheimer’s disease: a meta-analysis. PLoS One 10(8):e0134750.  https://doi.org/10.1371/journal.pone.0134750 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Thomson KL, Yeo JM, Waddell B, Cameron JR, Pal S (2015) A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement 1(2):136–143Google Scholar
  58. 58.
    Méndez-Gómez JL, Rougier M-B, Tellouck L, Korobelnik J-F, Schweitzer C, Delyfer M-N, Amieva H, Dartigues J-F et al (2017) Peripapillary retinal nerve fiber layer thickness and the evolution of cognitive performance in an elderly population. Front Neurol 8:93CrossRefGoogle Scholar
  59. 59.
    Lad EM, Mukherjee D, Stinnett SS, Cousins SW, Potter GG, Burke JR, Farsiu S, Whitson HE (2018) Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS One 13(2):e0192646CrossRefGoogle Scholar
  60. 60.
    Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2001) An evaluation of the retinal nerve fiber layer thickness by scanning laser polarimetry in individuals with dementia of the Alzheimer type. Acta Ophthalmol 79(2):187–191CrossRefGoogle Scholar
  61. 61.
    Kurna SA, Akar G, Altun A, Agirman Y, Gozke E, Sengor T (2014) Confocal scanning laser tomography of the optic nerve head on the patients with Alzheimer’s disease compared to glaucoma and control. Int Ophthalmol 34(6):1203–1211.  https://doi.org/10.1007/s10792-014-0004-z CrossRefPubMedGoogle Scholar
  62. 62.
    Pillai JA, Bermel R, Bonner-Jackson A, Rae-Grant A, Fernandez H, Bena J, Jones SE, Ehlers JP et al (2016) Retinal nerve Fiber layer thinning in Alzheimer’s disease: a case-control study in comparison to normal aging, Parkinson’s disease, and non-Alzheimer’s dementia. Am J Alzheimers Dis Other Demen 31(5):430–436.  https://doi.org/10.1177/1533317515628053 CrossRefPubMedGoogle Scholar
  63. 63.
    den Haan J, Janssen SF, van de Kreeke JA, Scheltens P, Verbraak FD, Bouwman FH (2018) Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer’s disease and controls. Alzheimers Dement (Amst) 10:49–55.  https://doi.org/10.1016/j.dadm.2017.10.005 CrossRefGoogle Scholar
  64. 64.
    Kergoat H, Kergoat MJ, Justino L, Robillard A, Bergman H, Chertkow H (2001) Normal optic nerve head topography in the early stages of dementia of the Alzheimer type. Dement Geriatr Cogn Disord 12(6):359–363CrossRefGoogle Scholar
  65. 65.
    Strenn K, Dal-Bianco P, Weghaupt H, Koch G, Vass C, Gottlob I (1991) Pattern electroretinogram and luminance electroretinogram in Alzheimer’s disease. In: Deecke L, Dal-Bianco P (eds) Age-associated neurological diseases. Springer-Verlag, New York, pp 73–80Google Scholar
  66. 66.
    Prager TC, Schweitzer FC, Peacock LW, Garcia CA (1993) The effect of optical defocus on the pattern electroretinogram in normal subjects and patients with Alzheimer’s disease. Am J Ophthalmol 116(3):363–369CrossRefGoogle Scholar
  67. 67.
    Justino L, Kergoat M-J, Bergman H, Chertkow H, Robillard A, Kergoat H (2001) Neuroretinal function is normal in early dementia of the Alzheimer type. Neurobiol Aging 22(4):691–695CrossRefGoogle Scholar
  68. 68.
    Golzan SM, Goozee K, Georgevsky D, Avolio A, Chatterjee P, Shen K, Gupta V, Chung R et al (2017) Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res Ther 9(1):13.  https://doi.org/10.1186/s13195-017-0239-9 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jentsch S, Schweitzer D, Schmidtke KU, Peters S, Dawczynski J, Bar KJ, Hammer M (2015) Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta Ophthalmol 93(4):e241–e247.  https://doi.org/10.1111/aos.12609 CrossRefPubMedGoogle Scholar
  70. 70.
    Katz B, Rimmer S, Iragui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26(2):221–225.  https://doi.org/10.1002/ana.410260207 CrossRefPubMedGoogle Scholar
  71. 71.
    Trick GL, Barris MC, Bickler-Bluth M (1989) Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer type. Ann Neurol 26(2):226–231.  https://doi.org/10.1002/ana.410260208 CrossRefPubMedGoogle Scholar
  72. 72.
    Krasodomska K, Lubiński W, Potemkowski A, Honczarenko K (2010) Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease. Doc Ophthalmol 121(2):111–121CrossRefGoogle Scholar
  73. 73.
    Sartucci F, Borghetti D, Bocci T, Murri L, Orsini P, Porciatti V, Origlia N, Domenici L (2010) Dysfunction of the magnocellular stream in Alzheimer’s disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res Bull 82(3):169–176CrossRefGoogle Scholar
  74. 74.
    Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2002) Visual retinocortical function in dementia of the Alzheimer type. Gerontology 48(4):197–203.  https://doi.org/10.1159/000058350 CrossRefPubMedGoogle Scholar
  75. 75.
    Uhlmann RF, Larson EB, Koepsell TD, Rees TS, Duckert LG (1991) Visual impairment and cognitive dysfunction in Alzheimer’s disease. J Gen Intern Med 6(2):126–132CrossRefGoogle Scholar
  76. 76.
    Lin MY, Gutierrez PR, Stone KL, Yaffe K, Ensrud KE, Fink HA, Sarkisian CA, Coleman AL et al (2004) Vision impairment and combined vision and hearing impairment predict cognitive and functional decline in older women. J Am Geriatr Soc 52(12):1996–2002.  https://doi.org/10.1111/j.1532-5415.2004.52554.x CrossRefPubMedGoogle Scholar
  77. 77.
    Philpot MP, Amin D, Levy R (1990) Visual evoked potentials in Alzheimer’s disease: correlations with age and severity. Electroencephalogr Clin Neurophysiol 77(5):323–329CrossRefGoogle Scholar
  78. 78.
    Rizzo M, Nawrot M (1998) Perception of movement and shape in Alzheimer’s disease. Brain 121(Pt 12):2259–2270CrossRefGoogle Scholar
  79. 79.
    Wright CE, Drasdo N, Harding GF (1987) Pathology of the optic nerve and visual association areas. Information given by the flash and pattern visual evoked potential, and the temporal and spatial contrast sensitivity function. Brain 110(Pt 1):107–120CrossRefGoogle Scholar
  80. 80.
    Schlotterer G, Moscovitch M, Crapper-McLachlan D (1984) Visual processing deficits as assessed by spatial frequency contrast sensitivity and backward masking in normal ageing and Alzheimer’s disease. Brain 107(Pt 1):309–325CrossRefGoogle Scholar
  81. 81.
    Kiyosawa M, Bosley TM, Chawluk J, Jamieson D, Schatz NJ, Savino PJ, Sergott RC, Reivich M et al (1989) Alzheimer’s disease with prominent visual symptoms. Clinical and metabolic evaluation. Ophthalmology 96(7):1077–1085 discussion 1085-1076CrossRefGoogle Scholar
  82. 82.
    Hutton JT, Morris JL, Elias JW, Poston JN (1993) Contrast sensitivity dysfunction in Alzheimer’s disease. Neurology 43(11):2328–2330CrossRefGoogle Scholar
  83. 83.
    Pache M, Smeets CH, Gasio PF, Savaskan E, Flammer J, Wirz-Justice A, Kaiser HJ (2003) Colour vision deficiencies in Alzheimer’s disease. Age Ageing 32(4):422–426CrossRefGoogle Scholar
  84. 84.
    Salamone G, Di Lorenzo C, Mosti S, Lupo F, Cravello L, Palmer K, Musicco M, Caltagirone C (2009) Color discrimination performance in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 27(6):501–507.  https://doi.org/10.1159/000218366 CrossRefPubMedGoogle Scholar
  85. 85.
    Wijk H, Berg S, Sivik L, Steen B (1999) Colour discrimination, colour naming and colour preferences among individuals with Alzheimer’s disease. Int J Geriatr Psychiatry 14(12):1000–1005CrossRefGoogle Scholar
  86. 86.
    Trick GL, Trick LR, Morris P, Wolf M (1995) Visual field loss in senile dementia of the Alzheimer’s type. Neurology 45(1):68–74CrossRefGoogle Scholar
  87. 87.
    Chang LY, Lowe J, Ardiles A, Lim J, Grey AC, Robertson K, Danesh-Meyer H, Palacios AG et al (2014) Alzheimer’s disease in the human eye. Clinical tests that identify ocular and visual information processing deficit as biomarkers. Alzheimers Dement 10(2):251–261.  https://doi.org/10.1016/j.jalz.2013.06.004 CrossRefPubMedGoogle Scholar
  88. 88.
    Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508.  https://doi.org/10.1001/jamaneurol.2013.5847 CrossRefPubMedGoogle Scholar
  89. 89.
    Jagust W (2016) Is amyloid-beta harmful to the brain? Insights from human imaging studies. Brain 139(Pt 1):23–30.  https://doi.org/10.1093/brain/awv326 CrossRefPubMedGoogle Scholar
  90. 90.
    Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732.  https://doi.org/10.1016/j.tins.2014.08.004 CrossRefPubMedGoogle Scholar
  91. 91.
    Blanks JC, Hinton DR, Sadun AA, Miller CA (1989) Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res 501(2):364–372CrossRefGoogle Scholar
  92. 92.
    Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG (2014) Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol 24(1):25–32.  https://doi.org/10.1111/bpa.12070 CrossRefPubMedGoogle Scholar
  93. 93.
    La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, Sambati L, Pan BX et al (2016) Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol 79(1):90–109.  https://doi.org/10.1002/ana.24548 CrossRefPubMedGoogle Scholar
  94. 94.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405.  https://doi.org/10.1016/S1474-4422(15)70016-5 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Obulesu M, Jhansilakshmi M (2014) Neuroinflammation in Alzheimer’s disease: an understanding of physiology and pathology. Int J Neurosci 124(4):227–235.  https://doi.org/10.3109/00207454.2013.831852 CrossRefPubMedGoogle Scholar
  96. 96.
    Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu AC (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80CrossRefGoogle Scholar
  97. 97.
    Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305.  https://doi.org/10.1016/j.biocel.2004.07.009 CrossRefPubMedGoogle Scholar
  98. 98.
    Hopperton KE, Mohammad D, Trepanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23(2):177–198.  https://doi.org/10.1038/mp.2017.246 CrossRefPubMedGoogle Scholar
  99. 99.
    Liew SC, Penfold PL, Provis JM, Madigan MC, Billson FA (1994) Modulation of MHC class II expression in the absence of lymphocytic infiltrates in Alzheimer’s retinae. J Neuropathol Exp Neurol 53(2):150–157CrossRefGoogle Scholar
  100. 100.
    Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419.  https://doi.org/10.1016/j.nbd.2008.08.001 CrossRefPubMedGoogle Scholar
  101. 101.
    Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 11(6):608–621 e607.  https://doi.org/10.1016/j.jalz.2014.06.016 CrossRefPubMedGoogle Scholar
  102. 102.
    Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315(8):485–487.  https://doi.org/10.1056/NEJM198608213150804 CrossRefPubMedGoogle Scholar
  103. 103.
    Sadun AA, Bassi CJ (1990) Optic nerve damage in Alzheimer’s disease. Ophthalmology 97(1):9–17CrossRefGoogle Scholar
  104. 104.
    Tsai CS, Ritch R, Schwartz B, Lee SS, Miller NR, Chi T, Hsieh FY (1991) Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol 109(2):199–204CrossRefGoogle Scholar
  105. 105.
    Guo L, Cordeiro MF (2008) Assessment of neuroprotection in the retina with DARC. Prog Brain Res 173:437–450.  https://doi.org/10.1016/S0079-6123(08)01130-8 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Yap TE, Donna P, Almonte MT, Cordeiro MF (2018) Real-time imaging of retinal ganglion cell apoptosis. Cells 7(6).  https://doi.org/10.3390/cells7060060
  107. 107.
    de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3(3):184–190.  https://doi.org/10.1016/S1474-4422(04)00683-0 CrossRefPubMedGoogle Scholar
  108. 108.
    Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48(5):2285–2289.  https://doi.org/10.1167/iovs.06-1029 CrossRefPubMedGoogle Scholar
  109. 109.
    Feke GT, Hyman BT, Stern RA, Pasquale LR (2015) Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement (Amst) 1(2):144–151.  https://doi.org/10.1016/j.dadm.2015.01.004 CrossRefGoogle Scholar
  110. 110.
    Williams MA, McGowan AJ, Cardwell CR, Cheung CY, Craig D, Passmore P, Silvestri G, Maxwell AP et al (2015) Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimers Dement (Amst) 1(2):229–235.  https://doi.org/10.1016/j.dadm.2015.04.001 CrossRefGoogle Scholar
  111. 111.
    Cheung CY, Ong YT, Ikram MK, Ong SY, Li X, Hilal S, Catindig JA, Venketasubramanian N et al (2014) Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimers Dement 10(2):135–142.  https://doi.org/10.1016/j.jalz.2013.06.009 CrossRefPubMedGoogle Scholar
  112. 112.
    Schultz N, Byman E, Netherlands Brain B, Wennstrom M (2018) Levels of retinal IAPP are altered in Alzheimer’s disease patients and correlate with vascular changes and hippocampal IAPP levels. Neurobiol Aging 69:94–101.  https://doi.org/10.1016/j.neurobiolaging.2018.05.003 CrossRefPubMedGoogle Scholar
  113. 113.
    LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harb Perspect Med 2(11).  https://doi.org/10.1101/cshperspect.a006320
  114. 114.
    Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, Villemagne V, Rowe CC et al (2013) Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 3:e233.  https://doi.org/10.1038/tp.2012.150 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Amram S, Frenkel D (2016) Animal models of Alzheimer’s disease. In: Gozes I (ed) Neuroprotection in Alzheimer’s disease. Elsevier, London, pp 31–58Google Scholar
  116. 116.
    Elder GA, Gama Sosa MA, De Gasperi R, Dickstein DL, Hof PR (2010) Presenilin transgenic mice as models of Alzheimer’s disease. Brain Struct Funct 214(2):127–143CrossRefGoogle Scholar
  117. 117.
    Buccarello L, Sclip A, Sacchi M, Castaldo AM, Bertani I, ReCecconi A, Maestroni S, Zerbini G et al (2017) The c-Jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies. Oncotarget 8(47):83038–83051.  https://doi.org/10.18632/oncotarget.19886 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50(2):793–800.  https://doi.org/10.1167/iovs.08-2384 CrossRefPubMedGoogle Scholar
  119. 119.
    Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Vander Wall R, Georgevsky D, King AE et al (2016) Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett 623:52–56CrossRefGoogle Scholar
  120. 120.
    Shimazawa M, Inokuchi Y, Okuno T, Nakajima Y, Sakaguchi G, Kato A, Oku H, Sugiyama T et al (2008) Reduced retinal function in amyloid precursor protein-over-expressing transgenic mice via attenuating glutamate-N-methyl-d-aspartate receptor signaling. J Neurochem 107(1):279–290CrossRefGoogle Scholar
  121. 121.
    Joly S, Lamoureux S, Pernet V (2017) Nonamyloidogenic processing of amyloid beta precursor protein is associated with retinal function improvement in aging male APPswe/PS1DeltaE9 mice. Neurobiol Aging 53:181–191.  https://doi.org/10.1016/j.neurobiolaging.2017.02.004 CrossRefPubMedGoogle Scholar
  122. 122.
    Leinonen H, Lipponen A, Gurevicius K, Tanila H (2016) Normal amplitude of electroretinography and visual evoked potential responses in AβPP/PS1 mice. J Alzheimers Dis 51(1):21–26CrossRefGoogle Scholar
  123. 123.
    Criscuolo C, Cerri E, Fabiani C, Capsoni S, Cattaneo A, Domenici L (2018) The retina as a window to early dysfunctions of Alzheimer’s disease following studies with a 5xFAD mouse model. Neurobiol Aging 67:181–188.  https://doi.org/10.1016/j.neurobiolaging.2018.03.017 CrossRefPubMedGoogle Scholar
  124. 124.
    Mazzaro N, Barini E, Spillantini MG, Goedert M, Medini P, Gasparini L (2016) Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy. J Neurosci 36(7):2086–2100CrossRefGoogle Scholar
  125. 125.
    Gao L, Chen X, Tang Y, Zhao J, Li Q, Fan X, Xu H, Yin ZQ (2015) Neuroprotective effect of memantine on the retinal ganglion cells of APPswe/PS1DeltaE9 mice and its immunomodulatory mechanisms. Exp Eye Res 135:47–58.  https://doi.org/10.1016/j.exer.2015.04.013 CrossRefPubMedGoogle Scholar
  126. 126.
    Zhao H, Chang R, Che H, Wang J, Yang L, Fang W, Xia Y, Li N et al (2013) Hyperphosphorylation of tau protein by calpain regulation in retina of Alzheimer’s disease transgenic mouse. Neurosci Lett 551:12–16.  https://doi.org/10.1016/j.neulet.2013.06.026 CrossRefPubMedGoogle Scholar
  127. 127.
    Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49(11):5136–5143.  https://doi.org/10.1167/iovs.08-1849 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S (2018) Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis 9(6):685.  https://doi.org/10.1038/s41419-018-0740-5 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Edwards MM, Rodriguez JJ, Gutierrez-Lanza R, Yates J, Verkhratsky A, Lutty GA (2014) Retinal macroglia changes in a triple transgenic mouse model of Alzheimer’s disease. Exp Eye Res 127:252–260.  https://doi.org/10.1016/j.exer.2014.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Park SW, Kim JH, Mook-Jung I, Kim KW, Park WJ, Park KH, Kim JH (2014) Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 35(9):2013–2020.  https://doi.org/10.1016/j.neurobiolaging.2014.03.008 CrossRefPubMedGoogle Scholar
  131. 131.
    Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32(3):419–433.  https://doi.org/10.1016/j.neurobiolaging.2009.03.002 CrossRefPubMedGoogle Scholar
  132. 132.
    Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175(5):2099–2110.  https://doi.org/10.2353/ajpath.2009.090159 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, Sengupta U, Castillo-Carranza DL et al (2017) Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimers Dis 55(3):1083–1099.  https://doi.org/10.3233/JAD-160912 CrossRefPubMedGoogle Scholar
  134. 134.
    Oliveira-Souza FG, DeRamus ML, van Groen T, Lambert AE, Bolding MS, Strang CE (2017) Retinal changes in the Tg-SwDI mouse model of Alzheimer’s disease. Neuroscience 354:43–53.  https://doi.org/10.1016/j.neuroscience.2017.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Moon M, Hong HS, Nam DW, Baik SH, Song H, Kook SY, Kim YS, Lee J et al (2012) Intracellular amyloid-beta accumulation in calcium-binding protein-deficient neurons leads to amyloid-beta plaque formation in animal model of Alzheimer’s disease. J Alzheimers Dis 29(3):615–628.  https://doi.org/10.3233/JAD-2011-111778 CrossRefPubMedGoogle Scholar
  136. 136.
    LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509.  https://doi.org/10.1038/nrn2168 CrossRefPubMedGoogle Scholar
  137. 137.
    Alexandrov PN, Pogue A, Bhattacharjee S, Lukiw WJ (2011) Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport 22(12):623–627.  https://doi.org/10.1097/WNR.0b013e3283497334 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384.  https://doi.org/10.1152/physrev.00024.2003 CrossRefPubMedGoogle Scholar
  139. 139.
    Rodriguez L, Mdzomba JB, Joly S, Boudreau-Laprise M, Planel E, Pernet V (2018) Human tau expression does not induce mouse retina neurodegeneration, suggesting differential toxicity of tau in Brain vs. retinal neurons. Front Mol Neurosci 11:293.  https://doi.org/10.3389/fnmol.2018.00293 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10(2):263–276.  https://doi.org/10.1111/j.1474-9726.2010.00660.x CrossRefPubMedGoogle Scholar
  141. 141.
    Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40.  https://doi.org/10.1016/j.preteyeres.2015.06.003 CrossRefPubMedGoogle Scholar
  142. 142.
    Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY, Wen CY (2007) Reactive changes of retinal astrocytes and Muller glial cells in kainate-induced neuroexcitotoxicity. J Anat 210(1):54–65.  https://doi.org/10.1111/j.1469-7580.2006.00671.x CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Niikura T, Tajima H, Kita Y (2006) Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 4(2):139–147CrossRefGoogle Scholar
  144. 144.
    Campbell M, Humphries P (2012) The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol 763:70–84PubMedGoogle Scholar
  145. 145.
    Chidlow G, Wood JP, Manavis J, Finnie J, Casson RJ (2017) Investigations into retinal pathology in the early stages of a mouse model of Alzheimer’s disease. J Alzheimers Dis 56(2):655–675.  https://doi.org/10.3233/JAD-160823 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol 247(9):1213–1221.  https://doi.org/10.1007/s00417-009-1060-3 CrossRefPubMedGoogle Scholar
  147. 147.
    Li L, Luo J, Chen D, Tong JB, Zeng LP, Cao YQ, Xiang J, Luo XG et al (2016) BACE1 in the retina: a sensitive biomarker for monitoring early pathological changes in Alzheimer’s disease. Neural Regen Res 11(3):447–453.  https://doi.org/10.4103/1673-5374.179057 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, Vande Velde C, Panayi F et al (2017) Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener 12(1):58.  https://doi.org/10.1186/s13024-017-0199-3 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Pogue AI, Dua P, Hill JM, Lukiw WJ (2015) Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem 152:206–209.  https://doi.org/10.1016/j.jinorgbio.2015.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Williams PA, Thirgood RA, Oliphant H, Frizzati A, Littlewood E, Votruba M, Good MA, Williams J et al (2013) Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(7):1799–1806.  https://doi.org/10.1016/j.neurobiolaging.2013.01.006 CrossRefPubMedGoogle Scholar
  151. 151.
    Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Samuel Chiquita
    • 1
    • 2
  • Ana C. Rodrigues-Neves
    • 1
    • 2
  • Filipa I. Baptista
    • 1
    • 2
  • Rafael Carecho
    • 1
    • 2
  • Paula I. Moreira
    • 2
    • 3
    • 4
  • Miguel Castelo-Branco
    • 2
    • 5
  • António F. Ambrósio
    • 1
    • 2
    Email author return OK on get
  1. 1.iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.CNC.IBILI ConsortiumUniversity of CoimbraCoimbraPortugal
  3. 3.CNC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  4. 4.Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  5. 5.CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, ICNAS, Institute of Nuclear Sciences Applied to HealthUniversity of CoimbraCoimbraPortugal

Personalised recommendations