Advertisement

A Targeted Mutation Disrupting Mitochondrial Complex IV Function in Primary Afferent Neurons Leads to Pain Hypersensitivity Through P2Y1 Receptor Activation

  • Rory Mitchell
  • Graham Campbell
  • Marta Mikolajczak
  • Katie McGill
  • Don Mahad
  • Sue M. Fleetwood-WalkerEmail author
Article

Abstract

As mitochondrial dysfunction is evident in neurodegenerative disorders that are accompanied by pain, we generated inducible mutant mice with disruption of mitochondrial respiratory chain complex IV, by COX10 deletion limited to sensory afferent neurons through the use of an Advillin Cre-reporter. COX10 deletion results in a selective energy-deficiency phenotype with minimal production of reactive oxygen species. Mutant mice showed reduced activity of mitochondrial respiratory chain complex IV in many sensory neurons, increased ADP/ATP ratios in dorsal root ganglia and dorsal spinal cord synaptoneurosomes, as well as impaired mitochondrial membrane potential, in these synaptoneurosome preparations. These changes were accompanied by marked pain hypersensitivity in mechanical and thermal (hot and cold) tests without altered motor function. To address the underlying basis, we measured Ca2+ fluorescence responses of dorsal spinal cord synaptoneurosomes to activation of the GluK1 (kainate) receptor, which we showed to be widely expressed in small but not large nociceptive afferents, and is minimally expressed elsewhere in the spinal cord. Synaptoneurosomes from mutant mice showed greatly increased responses to GluK1 agonist. To explore whether altered nucleotide levels may play a part in this hypersensitivity, we pharmacologically interrogated potential roles of AMP-kinase and ADP-sensitive purinergic receptors. The ADP-sensitive P2Y1 receptor was clearly implicated. Its expression in small nociceptive afferents was increased in mutants, whose in vivo pain hypersensitivity, in mechanical, thermal and cold tests, was reversed by a selective P2Y1 antagonist. Energy depletion and ADP elevation in sensory afferents, due to mitochondrial respiratory chain complex IV deficiency, appear sufficient to induce pain hypersensitivity, by ADP activation of P2Y1 receptors.

Keywords

Mitochondria Mutation Pain hypersensitivity Energy deficiency P2Y1 receptor 

Notes

Acknowledgments

We are grateful to Professors Carlos Moraes and John Wood FRS, for generously providing COX10flox/flox and Adv-CreERT2−/− mutants, respectively. Thanks to Anisha Kubasik-Thayil from the IMPACT Confocal Imaging facility at the University of Edinburgh for expert imaging assistance.

Funding Information

This work was supported by a Progressive Multiple Sclerosis Alliance Challenge Award to DJM (PA0051).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bennett GJ, Doyle T, Salvemini D (2014) Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10(6):326–336.  https://doi.org/10.1038/nrneurol.2014.77 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Flatters SJ, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain 122(3):245–257.  https://doi.org/10.1016/j.pain.2006.01.037 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Canta A, Pozzi E, Carozzi VA (2015) Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 3(2):198–223.  https://doi.org/10.3390/toxics3020198 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dalakas MC, Semino-Mora C, Leon-Monzon M (2001) Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2′3'-dideoxycytidine (ddC). Lab Investig 81(11):1537–1544CrossRefGoogle Scholar
  5. 5.
    Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, Calcutt NA, Fernyhough P (2010) Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59(4):1082–1091.  https://doi.org/10.2337/db09-1299 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hinder LM, Vincent AM, Burant CF, Pennathur S, Feldman EL (2012) Bioenergetics in diabetic neuropathy: What we need to know. J Peripher Nerv Syst 17(Suppl 2):10–14.  https://doi.org/10.1111/j.1529-8027.2012.00389.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lim TK, Rone MB, Lee S, Antel JP, Zhang J (2015) Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 11:58.  https://doi.org/10.1186/s12990-015-0057-7 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carter GT, Jensen MP, Galer BS, Kraft GH, Crabtree LD, Beardsley RM, Abresch RT, Bird TD (1998) Neuropathic pain in Charcot-Marie-tooth disease. Arch Phys Med Rehabil 79(12):1560–1564CrossRefGoogle Scholar
  9. 9.
    Foley PL, Vesterinen HM, Laird BJ, Sena ES, Colvin LA, Chandran S, MacLeod MR, Fallon MT (2013) Prevalence and natural history of pain in adults with multiple sclerosis: Systematic review and meta-analysis. Pain 154(5):632–642.  https://doi.org/10.1016/j.pain.2012.12.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Shy ME, Patzko A (2011) Axonal Charcot-Marie-tooth disease. Curr Opin Neurol 24(5):475–483.  https://doi.org/10.1097/WCO.0b013e32834aa331 CrossRefPubMedGoogle Scholar
  11. 11.
    Truini A, Barbanti P, Pozzilli C, Cruccu G (2013) A mechanism-based classification of pain in multiple sclerosis. J Neurol 260(2):351–367.  https://doi.org/10.1007/s00415-012-6579-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-tooth disease from mitofusin 2 mutations. J Neurosci 27(2):422–430.  https://doi.org/10.1523/JNEUROSCI.4798-06.2007 CrossRefPubMedGoogle Scholar
  13. 13.
    Kalman B, Laitinen K, Komoly S (2007) The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol 188(1–2):1–12.  https://doi.org/10.1016/j.jneuroim.2007.03.020 CrossRefPubMedGoogle Scholar
  14. 14.
    Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69(3):481–492.  https://doi.org/10.1002/ana.22109 CrossRefPubMedGoogle Scholar
  15. 15.
    Pareyson D, Saveri P, Sagnelli A, Piscosquito G (2015) Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 596:66–77.  https://doi.org/10.1016/j.neulet.2015.04.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Duggett NA, Griffiths LA, McKenna OE, de Santis V, Yongsanguanchai N, Mokori EB, Flatters SJ (2016) Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 333:13–26.  https://doi.org/10.1016/j.neuroscience.2016.06.050 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim HY, Lee I, Chun SW, Kim HK (2015) Reactive oxygen species donors increase the responsiveness of dorsal horn neurons and induce mechanical hyperalgesia in rats. Neural Plast 2015:293423.  https://doi.org/10.1155/2015/293423 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Duggett NA, Griffiths LA, Flatters SJL (2017) Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain 158(8):1499–1508.  https://doi.org/10.1097/j.pain.0000000000000939 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ferrari LF, Chum A, Bogen O, Reichling DB, Levine JD (2011) Role of Drp1, a key mitochondrial fission protein, in neuropathic pain. J Neurosci 31(31):11404–11410.  https://doi.org/10.1523/JNEUROSCI.2223-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Joseph EK, Levine JD (2006) Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain 121(1–2):105–114.  https://doi.org/10.1016/j.pain.2005.12.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee KY, Chung K, Chung JM (2010) Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol 103(1):382–391.  https://doi.org/10.1152/jn.90906.2008 CrossRefPubMedGoogle Scholar
  22. 22.
    Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, Wang YY, Yang YL (2013) Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J 89(1058):709–714.  https://doi.org/10.1136/postgradmedj-2012-131068 CrossRefPubMedGoogle Scholar
  23. 23.
    Xiao WH, Zheng H, Zheng FY, Nuydens R, Meert TF, Bennett GJ (2011) Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 199:461–469.  https://doi.org/10.1016/j.neuroscience.2011.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xiao WH, Bennett GJ (2012) Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153(3):704–709.  https://doi.org/10.1016/j.pain.2011.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lim TK, Shi XQ, Johnson JM, Rone MB, Antel JP, David S, Zhang J (2015) Peripheral nerve injury induces persistent vascular dysfunction and endoneurial hypoxia, contributing to the genesis of neuropathic pain. J Neurosci 35(8):3346–3359.  https://doi.org/10.1523/JNEUROSCI.4040-14.2015 CrossRefPubMedGoogle Scholar
  26. 26.
    Flatters SJ, Xiao WH, Bennett GJ (2006) Acetyl-L-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neurosci Lett 397(3):219–223.  https://doi.org/10.1016/j.neulet.2005.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Joseph EK, Chen X, Bogen O, Levine JD (2008) Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain 9(5):463–472.  https://doi.org/10.1016/j.jpain.2008.01.335 CrossRefPubMedGoogle Scholar
  28. 28.
    Joseph EK, Levine JD (2010) Multiple PKCepsilon-dependent mechanisms mediating mechanical hyperalgesia. Pain 150(1):17–21.  https://doi.org/10.1016/j.pain.2010.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Toyama S, Shimoyama N, Ishida Y, Koyasu T, Szeto HH, Shimoyama M (2014) Characterization of acute and chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted antioxidant on the neuropathies. Anesthesiology 120(2):459–473.  https://doi.org/10.1097/01.anes.0000435634.34709.65 CrossRefPubMedGoogle Scholar
  30. 30.
    Zheng H, Xiao WH, Bennett GJ (2011) Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 232(2):154–161.  https://doi.org/10.1016/j.expneurol.2011.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Torraco A, Diaz F, Vempati UD, Moraes CT (2009) Mouse models of oxidative phosphorylation defects: Powerful tools to study the pathobiology of mitochondrial diseases. Biochim Biophys Acta 1793(1):171–180.  https://doi.org/10.1016/j.bbamcr.2008.06.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Diaz F, Garcia S, Padgett KR, Moraes CT (2012) A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum Mol Genet 21(23):5066–5077.  https://doi.org/10.1093/hmg/dds350 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hasegawa H, Abbott S, Han BX, Qi Y, Wang F (2007) Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. J Neurosci 27(52):14404–14414.  https://doi.org/10.1523/JNEUROSCI.4908-07.2007 CrossRefPubMedGoogle Scholar
  34. 34.
    Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521.  https://doi.org/10.1038/nature11007 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757.  https://doi.org/10.1006/bbrc.1997.7124 CrossRefPubMedGoogle Scholar
  36. 36.
    Booker SA, Campbell GR, Mysiak KS, Brophy PJ, Kind PC, Mahad DJ, Wyllie DJ (2017) Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short-term facilitation at mossy fibre to CA3 pyramidal cell synapses. J Physiol 595(6):2147–2160.  https://doi.org/10.1113/JP273581 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, Wieckowski MR (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 542:243–262.  https://doi.org/10.1016/B978-0-12-416618-9.00013-3 CrossRefPubMedGoogle Scholar
  38. 38.
    Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 50(2):98–115.  https://doi.org/10.2144/000113610 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411(1):77–82CrossRefGoogle Scholar
  40. 40.
    Hollingsworth EB, McNeal ET, Burton JL, Williams RJ, Daly JW, Creveling CR (1985) Biochemical characterization of a filtered synaptoneurosome preparation from Guinea pig cerebral cortex: Cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J Neurosci 5(8):2240–2253CrossRefGoogle Scholar
  41. 41.
    Villasana LE, Klann E, Tejada-Simon MV (2006) Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J Neurosci Methods 158(1):30–36.  https://doi.org/10.1016/j.jneumeth.2006.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sun L, Gooding HL, Brunton PJ, Russell JA, Mitchell R, Fleetwood-Walker S (2013) Phospholipase D-mediated hypersensitivity at central synapses is associated with abnormal behaviours and pain sensitivity in rats exposed to prenatal stress. Int J Biochem Cell Biol 45(11):2706–2712.  https://doi.org/10.1016/j.biocel.2013.07.017 CrossRefPubMedGoogle Scholar
  43. 43.
    Vinuela-Fernandez I, Sun L, Jerina H, Curtis J, Allchorne A, Gooding H, Rosie R, Holland P et al (2014) The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity. Neuropharmacology 79:136–151.  https://doi.org/10.1016/j.neuropharm.2013.11.006 CrossRefPubMedGoogle Scholar
  44. 44.
    Huettner JE (1990) Glutamate receptor channels in rat DRG neurons: Activation by kainate and quisqualate and blockade of desensitization by con a. Neuron 5(3):255–266CrossRefGoogle Scholar
  45. 45.
    Partin KM, Patneau DK, Winters CA, Mayer ML, Buonanno A (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin a. Neuron 11(6):1069–1082CrossRefGoogle Scholar
  46. 46.
    Wong LA, Mayer ML, Jane DE, Watkins JC (1994) Willardiines differentiate agonist binding sites for kainate- versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons. J Neurosci 14(6):3881–3897CrossRefGoogle Scholar
  47. 47.
    Furuyama T, Kiyama H, Sato K, Park HT, Maeno H, Takagi H, Tohyama M (1993) Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and NMDA receptors) in the rat spinal cord with special reference to nociception. Brain Res Mol Brain Res 18(1–2):141–151CrossRefGoogle Scholar
  48. 48.
    Lee CJ, Kong H, Manzini MC, Albuquerque C, Chao MV, MacDermott AB (2001) Kainate receptors expressed by a subpopulation of developing nociceptors rapidly switch from high to low Ca2+ permeability. J Neurosci 21(13):4572–4581CrossRefGoogle Scholar
  49. 49.
    Sato K, Kiyama H, Park HT, Tohyama M (1993) AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. Neuroreport 4(11):1263–1265CrossRefGoogle Scholar
  50. 50.
    Tolle TR, Berthele A, Zieglgansberger W, Seeburg PH, Wisden W (1993) The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J Neurosci 13(12):5009–5028CrossRefGoogle Scholar
  51. 51.
    Kerchner GA, Wilding TJ, Huettner JE, Zhuo M (2002) Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. J Neurosci 22(18):8010–8017CrossRefGoogle Scholar
  52. 52.
    Mulle C, Sailer A, Swanson GT, Brana C, O'Gorman S, Bettler B, Heinemann SF (2000) Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28(2):475–484CrossRefGoogle Scholar
  53. 53.
    Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 106(22):9075–9080.  https://doi.org/10.1073/pnas.0901507106 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106(5):619–632CrossRefGoogle Scholar
  55. 55.
    Alt A, Weiss B, Ogden AM, Knauss JL, Oler J, Ho K, Large TH, Bleakman D (2004) Pharmacological characterization of glutamatergic agonists and antagonists at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacology 46(6):793–806.  https://doi.org/10.1016/j.neuropharm.2003.11.026 CrossRefPubMedGoogle Scholar
  56. 56.
    Patneau DK, Mayer ML, Jane DE, Watkins JC (1992) Activation and desensitization of AMPA/kainate receptors by novel derivatives of willardiine. J Neurosci 12(2):595–606CrossRefGoogle Scholar
  57. 57.
    Swanson GT, Green T, Heinemann SF (1998) Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine. Mol Pharmacol 53(5):942–949PubMedGoogle Scholar
  58. 58.
    Dolman NP, More JC, Alt A, Knauss JL, Pentikainen OT, Glasser CR, Bleakman D, Mayer ML et al (2007) Synthesis and pharmacological characterization of N3-substituted willardiine derivatives: Role of the substituent at the 5-position of the uracil ring in the development of highly potent and selective GLUK5 kainate receptor antagonists. J Med Chem 50(7):1558–1570.  https://doi.org/10.1021/jm061041u CrossRefPubMedGoogle Scholar
  59. 59.
    Verderio C, Coco S, Bacci A, Rossetto O, De Camilli P, Montecucco C, Matteoli M (1999) Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J Neurosci 19(16):6723–6732CrossRefGoogle Scholar
  60. 60.
    Kessler M, Rogers G, Arai A (2000) The norbornenyl moiety of cyclothiazide determines the preference for flip-flop variants of AMPA receptor subunits. Neurosci Lett 287(2):161–165CrossRefGoogle Scholar
  61. 61.
    Voitenko N, Gerber G, Youn D, Randic M (2004) Peripheral inflamation-induced increase of AMPA-mediated currents and Ca2+ transients in the presence of cyclothiazide in the rat substantia gelatinosa neurons. Cell Calcium 35(5):461–469.  https://doi.org/10.1016/j.ceca.2003.11.002 CrossRefPubMedGoogle Scholar
  62. 62.
    Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M et al (2006) International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341.  https://doi.org/10.1124/pr.58.3.3 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Leon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403(1):26–30CrossRefGoogle Scholar
  64. 64.
    Jankowski MP, Rau KK, Soneji DJ, Ekmann KM, Anderson CE, Molliver DC, Koerber HR (2012) Purinergic receptor P2Y1 regulates polymodal C-fiber thermal thresholds and sensory neuron phenotypic switching during peripheral inflammation. Pain 153(2):410–419.  https://doi.org/10.1016/j.pain.2011.10.042 CrossRefPubMedGoogle Scholar
  65. 65.
    Kobayashi K, Yamanaka H, Noguchi K (2013) Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat Sci Int 88(1):10–16.  https://doi.org/10.1007/s12565-012-0163-9 CrossRefPubMedGoogle Scholar
  66. 66.
    Molliver DC, Rau KK, McIlwrath SL, Jankowski MP, Koerber HR (2011) The ADP receptor P2Y1 is necessary for normal thermal sensitivity in cutaneous polymodal nociceptors. Mol Pain 7:13.  https://doi.org/10.1186/1744-8069-7-13 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ruan HZ, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120(5):415–426.  https://doi.org/10.1007/s00418-003-0579-3 CrossRefPubMedGoogle Scholar
  68. 68.
    Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5(1):75–89.  https://doi.org/10.1007/s11302-008-9106-2 CrossRefPubMedGoogle Scholar
  69. 69.
    von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110(3):415–432.  https://doi.org/10.1016/j.pharmthera.2005.08.014 CrossRefGoogle Scholar
  70. 70.
    Burton MD, Tillu DV, Mazhar K, Mejia GL, Asiedu MN, Inyang K, Hughes T, Lian B et al (2017) Pharmacological activation of AMPK inhibits incision-evoked mechanical hypersensitivity and the development of hyperalgesic priming in mice. Neuroscience 359:119–129.  https://doi.org/10.1016/j.neuroscience.2017.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hasanvand A, Amini-Khoei H, Hadian MR, Abdollahi A, Tavangar SM, Dehpour AR, Semiei E, Mehr SE (2016) Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology 24(5):207–219.  https://doi.org/10.1007/s10787-016-0275-2 CrossRefPubMedGoogle Scholar
  72. 72.
    Ling YZ, Li ZY, Ou-Yang HD, Ma C, Wu SL, Wei JY, Ding HH, Zhang XL et al (2017) The inhibition of spinal synaptic plasticity mediated by activation of AMP-activated protein kinase signaling alleviates the acute pain induced by oxaliplatin. Exp Neurol 288:85–93.  https://doi.org/10.1016/j.expneurol.2016.11.009 CrossRefPubMedGoogle Scholar
  73. 73.
    Maixner DW, Yan X, Gao M, Yadav R, Weng HR (2015) Adenosine monophosphate-activated protein kinase regulates interleukin-1beta expression and glial glutamate transporter function in rodents with neuropathic pain. Anesthesiology 122(6):1401–1413.  https://doi.org/10.1097/ALN.0000000000000619 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, Khoutorsky A, Johnson J et al (2011) Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain 7:70.  https://doi.org/10.1186/1744-8069-7-70 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Russe OQ, Moser CV, Kynast KL, King TS, Stephan H, Geisslinger G, Niederberger E (2013) Activation of the AMP-activated protein kinase reduces inflammatory nociception. J Pain 14(11):1330–1340.  https://doi.org/10.1016/j.jpain.2013.05.012 CrossRefPubMedGoogle Scholar
  76. 76.
    Song H, Han Y, Pan C, Deng X, Dai W, Hu L, Jiang C, Yang Y et al (2015) Activation of adenosine monophosphate-activated protein kinase suppresses Neuroinflammation and ameliorates bone Cancer pain: Involvement of inhibition on mitogen-activated protein kinase. Anesthesiology 123(5):1170–1185.  https://doi.org/10.1097/ALN.0000000000000856 CrossRefPubMedGoogle Scholar
  77. 77.
    Garrido N, Perez-Martos A, Faro M, Lou-Bonafonte JM, Fernandez-Silva P, Lopez-Perez MJ, Montoya J, Enriquez JA (2008) Cisplatin-mediated impairment of mitochondrial DNA metabolism inversely correlates with glutathione levels. Biochem J 414(1):93–102.  https://doi.org/10.1042/BJ20071615 CrossRefPubMedGoogle Scholar
  78. 78.
    Zheng H, Xiao WH, Bennett GJ (2012) Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol 238(2):225–234.  https://doi.org/10.1016/j.expneurol.2012.08.023 CrossRefPubMedGoogle Scholar
  79. 79.
    Fernyhough P (2015) Mitochondrial dysfunction in diabetic neuropathy: A series of unfortunate metabolic events. Curr Diab Rep 15(11):89.  https://doi.org/10.1007/s11892-015-0671-9 CrossRefPubMedGoogle Scholar
  80. 80.
    Carozzi VA, Canta A, Chiorazzi A (2015) Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett 596:90–107.  https://doi.org/10.1016/j.neulet.2014.10.014 CrossRefPubMedGoogle Scholar
  81. 81.
    Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8(11):e81162.  https://doi.org/10.1371/journal.pone.0081162 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fidanboylu M, Griffiths LA, Flatters SJ (2011) Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS One 6(9):e25212.  https://doi.org/10.1371/journal.pone.0025212 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Griffiths LA, Flatters SJ (2015) Pharmacological modulation of the mitochondrial Electron transport chain in paclitaxel-induced painful peripheral neuropathy. J Pain 16(10):981–994.  https://doi.org/10.1016/j.jpain.2015.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23):5411–5419.  https://doi.org/10.1242/jcs.02745 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156(4):825–835.  https://doi.org/10.1016/j.cell.2013.12.042 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bhangoo SK, Swanson GT (2013) Kainate receptor signaling in pain pathways. Mol Pharmacol 83(2):307–315.  https://doi.org/10.1124/mol.112.081398 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ruscheweyh R, Sandkuhler J (2002) Role of kainate receptors in nociception. Brain Res Brain Res Rev 40(1–3):215–222CrossRefGoogle Scholar
  88. 88.
    Wu LJ, Ko SW, Zhuo M (2007) Kainate receptors and pain: From dorsal root ganglion to the anterior cingulate cortex. Curr Pharm Des 13(15):1597–1605CrossRefGoogle Scholar
  89. 89.
    Gerevich Z, Illes P (2004) P2Y receptors and pain transmission. Purinergic Signal 1(1):3–10.  https://doi.org/10.1007/s11302-004-4740-9 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110(3):433–454.  https://doi.org/10.1016/j.pharmthera.2005.08.013 CrossRefPubMedGoogle Scholar
  91. 91.
    Burnstock G (2016) Purinergic mechanisms and pain. Adv Pharmacol 75:91–137.  https://doi.org/10.1016/bs.apha.2015.09.001 CrossRefPubMedGoogle Scholar
  92. 92.
    Latremoliere A, Woolf CJ (2009) Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895–926.  https://doi.org/10.1016/j.jpain.2009.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, Akude E, Morrow D et al (2012) Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135(Pt 6):1751–1766.  https://doi.org/10.1093/brain/aws097 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hwang SJ, Oh JM, Valtschanoff JG (2005) Expression of the vanilloid receptor TRPV1 in rat dorsal root ganglion neurons supports different roles of the receptor in visceral and cutaneous afferents. Brain Res 1047(2):261–266.  https://doi.org/10.1016/j.brainres.2005.04.036 CrossRefPubMedGoogle Scholar
  95. 95.
    Barragan-Iglesias P, Pineda-Farias JB, Bravo-Hernandez M, Cervantes-Duran C, Price TJ, Murbartian J, Granados-Soto V (2016) Predominant role of spinal P2Y1 receptors in the development of neuropathic pain in rats. Brain Res 1636:43–51.  https://doi.org/10.1016/j.brainres.2016.01.042 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lu P, Hudgins RC, Liu X, Ford ZK, Hofmann MC, Queme LF, Jankowski MP (2017) Upregulation of P2Y1 in neonatal nociceptors regulates heat and mechanical sensitization during cutaneous inflammation. Mol Pain 13:1744806917730255.  https://doi.org/10.1177/1744806917730255 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Wu J, Cheng Y, Zhang R, Liu D, Luo YM, Chen KL, Ren S, Zhang J (2017) P2Y1R is involved in visceral hypersensitivity in rats with experimental irritable bowel syndrome. World J Gastroenterol 23(34):6339–6349.  https://doi.org/10.3748/wjg.v23.i34.6339 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Hechler B, Nonne C, Roh EJ, Cattaneo M, Cazenave JP, Lanza F, Jacobson KA, Gachet C (2006) MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate], a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther 316(2):556–563.  https://doi.org/10.1124/jpet.105.094037 CrossRefPubMedGoogle Scholar
  99. 99.
    Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: Contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 93(19):10465–10470CrossRefGoogle Scholar
  100. 100.
    Malin SA, Molliver DC (2010) Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior. Mol Pain 6:21.  https://doi.org/10.1186/1744-8069-6-21 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Chen J, Wang L, Zhang Y, Yang J (2012) P2Y1 purinoceptor inhibition reduces extracellular signal-regulated protein kinase 1/2 phosphorylation in spinal cord and dorsal root ganglia: Implications for cancer-induced bone pain. Acta Biochim Biophys Sin Shanghai 44(4):367–372.  https://doi.org/10.1093/abbs/gms007 CrossRefPubMedGoogle Scholar
  102. 102.
    Kwon SG, Roh DH, Yoon SY, Moon JY, Choi SR, Choi HS, Kang SY, Han HJ et al (2014) Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: Involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology 79:368–379.  https://doi.org/10.1016/j.neuropharm.2013.12.005 CrossRefPubMedGoogle Scholar
  103. 103.
    Barragan-Iglesias P, Mendoza-Garces L, Pineda-Farias JB, Solano-Olivares V, Rodriguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, Rocha-Gonzalez HI (2015) Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav 128:23–32.  https://doi.org/10.1016/j.pbb.2014.11.001 CrossRefPubMedGoogle Scholar
  104. 104.
    Hockley JR, Tranter MM, McGuire C, Boundouki G, Cibert-Goton V, Thaha MA, Blackshaw LA, Michael GJ et al (2016) P2Y receptors sensitize mouse and human colonic nociceptors. J Neurosci 36(8):2364–2376.  https://doi.org/10.1523/JNEUROSCI.3369-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Queme LF, Ross JL, Lu P, Hudgins RC, Jankowski MP (2016) Dual modulation of nociception and cardiovascular reflexes during peripheral ischemia through P2Y1 receptor-dependent sensitization of muscle afferents. J Neurosci 36(1):19–30.  https://doi.org/10.1523/JNEUROSCI.2856-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lehmann HC, Chen W, Borzan J, Mankowski JL, Hoke A (2011) Mitochondrial dysfunction in distal axons contributes to human immunodeficiency virus sensory neuropathy. Ann Neurol 69(1):100–110.  https://doi.org/10.1002/ana.22150 CrossRefPubMedGoogle Scholar
  107. 107.
    Lax NZ, Whittaker RG, Hepplewhite PD, Reeve AK, Blakely EL, Jaros E, Ince PG, Taylor RW et al (2012) Sensory neuronopathy in patients harbouring recessive polymerase gamma mutations. Brain 135(Pt 1):62–71.  https://doi.org/10.1093/brain/awr326 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
  2. 2.Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations