Advertisement

Palmitate-Induced SREBP1 Expression and Activation Underlies the Increased BACE 1 Activity and Amyloid Beta Genesis

  • Gurdeep Marwarha
  • Kate Claycombe-Larson
  • Jonah Lund
  • Othman GhribiEmail author
Article
  • 161 Downloads

Abstract

Numerous cross-sectional and longitudinal studies have implicated saturated fat-enriched diets in the etio-pathogenesis of Alzheimer’s disease (AD). Emerging evidence shows that saturated fat-enriched diets, such as palmitate-enriched diets, increase amyloid-beta (Aβ) production, the histopathological hallmark of AD. However, the molecular mechanisms that underlie the deleterious effects of palmitate-enriched diets in the augmentation of Aβ genesis are yet to be characterized. Sterol response element binding protein 1 (SREBP1) is a transcription factor that is modulated by saturated fatty acids, such as palmitate, and consequently regulates the expression of genes that code for proteins involved in almost all facets of lipid metabolism. Herein, we determined the role of changes in SREBP1 expression and transcriptional activity in the palmitate-induced effects on Aβ genesis and BACE1 expression, the enzyme that catalyzes the rate-limiting step in Aβ biosynthesis. We demonstrate that palmitate-induced SREBP1 activation directly regulates BACE1 expression at the transcriptional level in the mouse hippocampus and mouse Neuro-2a (N2a) neuroblastoma cells. Chromatin immunoprecipitation (ChIP) studies show that palmitate increases the binding of SREBP1 to the Bace1 promoter region in the mouse hippocampus and mouse N2a neuroblastoma cells. Ectopic expression of the dominant negative SREBP1 mutant and knocking-down SREBP1 expression significantly reduced the palmitate-induced increase in BACE1 expression and subsequent Aβ genesis in mouse N2a neuroblastoma cells. Our study unveils SREBP1 activation as a novel molecular player in the palmitate-induced upregulation of BACE1 expression and subsequent Aβ genesis.

Keywords

Aβ Alzheimer’s disease BACE 1 Palmitate Saturated free fatty acids SREBP1 

Abbreviations

amyloid beta

AβPP

amyloid beta precursor protein

AD

Alzheimer’s disease

BACE1

β-site AβPP cleaving enzyme 1

CHOP

C/EBP homologous protein

ChIP

chromatin immunoprecipitation

ER

endoplasmic reticulum

LXRα

liver X receptor alpha

N2a

Neuro-2a mouse neuroblastoma cells

NCoA

nuclear receptor coactivator

NFT

neurofibrillary tangles

PA

palmitic acid

sFFA

saturated free fatty acids

SRC

steroid receptor coactivator

SRE

sterol response element

SREBP

sterol response element binding protein

WB

western blotting

Notes

Funding Information

This work was supported by a Grant from the National Institute of Health (R01AG045264) to Dr. Othman Ghribi.

Compliance with Ethical Standards

Ethical Approval of Animal Studies

All animal procedures and studies carried out were approved by the Institutional Animal Care and Use Committee at the University of North Dakota. All animal procedures and studies were carried out in accordance with the U.S Public Health Service’s “Policy on Humane Care and Use of Laboratory Animals” and “Guide for the Care and Use of Laboratory Animals”. All animal procedures and studies carried out are in compliance with the U.S National Research Council’s “Guide for the Care and Use of Laboratory Animals.”

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741.  https://doi.org/10.1126/science.286.5440.735 CrossRefPubMedGoogle Scholar
  2. 2.
    Hardy J, Higgins G (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185.  https://doi.org/10.1126/science.1566067 CrossRefPubMedGoogle Scholar
  3. 3.
    Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) Β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59(9):1381–1389.  https://doi.org/10.1001/archneur.59.9.1381 CrossRefPubMedGoogle Scholar
  4. 4.
    Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51(6):783–786.  https://doi.org/10.1002/ana.10208 CrossRefPubMedGoogle Scholar
  5. 5.
    Busquets O, Ettcheto M, Pallàs M, Beas-Zarate C, Verdaguer E, Auladell C, Folch J, Camins A (2017) Long-term exposition to a high fat diet favors the appearance of β-amyloid depositions in the brain of C57BL/6J mice. A potential model of sporadic Alzheimer’s disease. Mech Ageing Dev 162:38–45.  https://doi.org/10.1016/j.mad.2016.11.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Thériault P, ElAli A, Rivest S (2016) High fat diet exacerbates Alzheimer’s disease-related pathology in APPswe/PS1 mice. Oncotarget 7(42):67808–67827.  https://doi.org/10.18632/oncotarget.12179 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR (2017) High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis 1863(2):499–508.  https://doi.org/10.1016/j.bbadis.2016.10.006 CrossRefPubMedGoogle Scholar
  8. 8.
    Janssen CI, Jansen D, Mutsaers MP, Dederen PJ, Geenen B, Mulder MT, Kiliaan AJ (2016) The effect of a high-fat diet on brain plasticity, inflammation and cognition in female ApoE4-knockin and ApoE-knockout mice. PLoS One 11(5):e0155307.  https://doi.org/10.1371/journal.pone.0155307 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grant WB (1999) Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis 1(4–5):197–201.  https://doi.org/10.3233/JAD-1999-14-501 CrossRefPubMedGoogle Scholar
  10. 10.
    Solfrizzi V, D’Introno A, Colacicco AM, Capurso C, Del Parigi A, Capurso S, Gadaleta A, Capurso A et al (2005) Dietary fatty acids intake: possible role in cognitive decline and dementia. Exp Gerontol 40(4):257–270.  https://doi.org/10.1016/j.exger.2005.01.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Ulmann L, Mimouni V, Roux S, Porsolt R, Poisson JP (2001) Brain and hippocampus fatty acid composition in phospholipid classes of aged-relative cognitive deficit rats. Prostaglandins Leukot Essent Fat Acids 64(3):189–195.  https://doi.org/10.1054/plef.2001.0260 CrossRefGoogle Scholar
  12. 12.
    Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP, Denkins YM, Rood JC et al (2002) Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 25(8):1283–1288.  https://doi.org/10.2337/diacare.25.8.1283 CrossRefPubMedGoogle Scholar
  13. 13.
    Hamilton JA, Brunaldi K (2007) A model for fatty acid transport into the brain. J Mol Neurosci 33(1):12–17.  https://doi.org/10.1007/s12031-007-0050-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Rapoport SI (2001) In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 16(2–3):243–261; discussion 279–284.  https://doi.org/10.1385/JMN:16:2-3:243 CrossRefPubMedGoogle Scholar
  15. 15.
    Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131.  https://doi.org/10.1172/JCI15593 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3):331–340.  https://doi.org/10.1016/S0092-8674(00)80213-5 CrossRefPubMedGoogle Scholar
  17. 17.
    Kato T, Shimano H, Yamamoto T, Ishikawa M, Kumadaki S, Matsuzaka T, Nakagawa Y, Yahagi N et al (2008) Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation of SREBP-1c in pancreatic islets. Diabetes 57(9):2382–2392.  https://doi.org/10.2337/db06-1806 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Natalicchio A, Biondi G, Marrano N, Labarbuta R, Tortosa F, Spagnuolo R, D'Oria R, Carchia E et al (2016) Long-term exposure of pancreatic beta-cells to palmitate results in SREBP-1C-dependent decreases in GLP-1 receptor signaling via CREB and AKT and insulin secretory response. Endocrinology 157(6):2243–2258.  https://doi.org/10.1210/en.2015-2003 CrossRefPubMedGoogle Scholar
  19. 19.
    Vallim T, Salter AM (2010) Regulation of hepatic gene expression by saturated fatty acids. Prostaglandins Leukot Essent Fat Acids 82(4–6):211–218.  https://doi.org/10.1016/j.plefa.2010.02.016 CrossRefGoogle Scholar
  20. 20.
    Mastrocola R, Guglielmotto M, Medana C, Catalano MG, Cutrupi S, Borghi R, Tamagno E, Boccuzzi G et al (2011) Dysregulation of SREBP2 induces BACE1 expression. Neurobiol Dis 44(1):116–124.  https://doi.org/10.1016/j.nbd.2011.06.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Marwarha G, Schommer J, Lund J, Schommer T, Ghribi O (2018) Palmitate-induced C/EBP homologous protein activation leads to NF-κB-mediated increase in BACE1 activity and amyloid beta genesis. J Neurochem 144(6):761–779.  https://doi.org/10.1111/jnc.14292 CrossRefPubMedGoogle Scholar
  22. 22.
    Marwarha G, Rostad S, Lilek J, Kleinjan M, Schommer J, Ghribi O (2017) Palmitate increases beta-site AbetaPP-cleavage enzyme 1 activity and amyloid-beta genesis by evoking endoplasmic reticulum stress and subsequent C/EBP homologous protein activation. J Alzheimers Dis 57(3):907–925.  https://doi.org/10.3233/JAD-161130 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rishi V, Gal J, Krylov D, Fridriksson J, Boysen MS, Mandrup S, Vinson C (2004) SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative. J Biol Chem 279(12):11863–11874.  https://doi.org/10.1074/jbc.M308000200 CrossRefPubMedGoogle Scholar
  24. 24.
    Marwarha G, Claycombe K, Schommer J, Collins D, Ghribi O (2016) Palmitate-induced endoplasmic reticulum stress and subsequent C/EBPalpha homologous protein activation attenuates leptin and insulin-like growth factor 1 expression in the brain. Cell Signal 28(11):1789–1805.  https://doi.org/10.1016/j.cellsig.2016.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marwarha G, Dasari B, Prasanthi JR, Schommer J, Ghribi O (2010) Leptin reduces the accumulation of Abeta and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis 19(3):1007–1019.  https://doi.org/10.3233/JAD-2010-1298 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marwarha G, Dasari B, Prabhakara JP, Schommer J, Ghribi O (2010) beta-Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway. J Neurochem 115(2):373–384.  https://doi.org/10.1111/j.1471-4159.2010.06929.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marwarha G, Raza S, Prasanthi JR, Ghribi O (2013) Gadd153 and NF-kappaB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and beta-amyloid production in human neuroblastoma SH-SY5Y cells. PLoS One 8(8):e70773.  https://doi.org/10.1371/journal.pone.0070773 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Marwarha G, Prasanthi JR, Schommer J, Dasari B, Ghribi O (2011) Molecular interplay between leptin, insulin-like growth factor-1, and beta-amyloid in organotypic slices from rabbit hippocampus. Mol Neurodegener 6(1):41.  https://doi.org/10.1186/1750-1326-6-41 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marwarha G, Dasari B, Ghribi O (2012) Endoplasmic reticulum stress-induced CHOP activation mediates the down-regulation of leptin in human neuroblastoma SH-SY5Y cells treated with the oxysterol 27-hydroxycholesterol. Cell Signal 24(2):484–492.  https://doi.org/10.1016/j.cellsig.2011.09.029 CrossRefPubMedGoogle Scholar
  30. 30.
    Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS et al (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14(22):2819–2830.  https://doi.org/10.1101/gad.844900 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marwarha G, Raza S, Meiers C, Ghribi O (2014) Leptin attenuates BACE1 expression and amyloid-beta genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta 1842(9):1587–1595.  https://doi.org/10.1016/j.bbadis.2014.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marwarha G, Claycombe-Larson K, Schommer J, Ghribi O (2017) Maternal low-protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring. J Nutr Biochem 45:54–66.  https://doi.org/10.1016/j.jnutbio.2017.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer's disease. Hum Mol Genet 22(17):3460–3476.  https://doi.org/10.1093/hmg/ddt201 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marwarha G, Ghribi O (2017) Palmitate-enriched diet-induced ER stress and CHOP activation causes tau hyperphosphorylation in the cultured human neuroblatoma cells and the mouse brain. Alzheimers Dement 13(7):P326.  https://doi.org/10.1016/j.jalz.2017.06.036 CrossRefGoogle Scholar
  35. 35.
    Liu L, Martin R, Chan C (2013) Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol Aging 34(2):540–550.  https://doi.org/10.1016/j.neurobiolaging.2012.05.017 CrossRefPubMedGoogle Scholar
  36. 36.
    Liu L, Martin R, Kohler G, Chan C (2013) Palmitate induces transcriptional regulation of BACE1 and presenilin by STAT3 in neurons mediated by astrocytes. Exp Neurol 248:482–490.  https://doi.org/10.1016/j.expneurol.2013.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Patil S, Melrose J, Chan C (2007) Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. Eur J Neurosci 26(8):2131–2141.  https://doi.org/10.1111/j.1460-9568.2007.05797.x CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Patil S, Sheng L, Masserang A, Chan C (2006) Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neurosci Lett 406(1–2):55–59.  https://doi.org/10.1016/j.neulet.2006.07.015 CrossRefPubMedGoogle Scholar
  39. 39.
    Cao D, Lu H, Lewis TL, Li L (2007) Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 282(50):36275–36282.  https://doi.org/10.1074/jbc.M703561200 CrossRefPubMedGoogle Scholar
  40. 40.
    Julien C, Tremblay C, Phivilay A, Berthiaume L, Emond V, Julien P, Calon F (2010) High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 31(9):1516–1531.  https://doi.org/10.1016/j.neurobiolaging.2008.08.022 CrossRefPubMedGoogle Scholar
  41. 41.
    Maesako M, Uemura K, Kubota M, Kuzuya A, Sasaki K, Asada M, Watanabe K, Hayashida N et al (2012) Environmental enrichment ameliorated high-fat diet-induced Abeta deposition and memory deficit in APP transgenic mice. Neurobiol Aging 33(5):1011 e1011–1011 e1023.  https://doi.org/10.1016/j.neurobiolaging.2011.10.028 CrossRefGoogle Scholar
  42. 42.
    Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K et al (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7(4):321–331.  https://doi.org/10.1006/nbdi.2000.0304 CrossRefPubMedGoogle Scholar
  43. 43.
    Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106(1):475–485.  https://doi.org/10.1111/j.1471-4159.2008.05415.x CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrancois D, Virgili J et al (2014) Insulin reverses the high-fat diet-induced increase in brain Abeta and improves memory in an animal model of Alzheimer disease. Diabetes 63(12):4291–4301.  https://doi.org/10.2337/db14-0375 CrossRefPubMedGoogle Scholar
  45. 45.
    Ghribi O (2008) Potential mechanisms linking cholesterol to Alzheimer’s disease-like pathology in rabbit brain, hippocampal organotypic slices, and skeletal muscle. J Alzheimers Dis 15(4):673–684.  https://doi.org/10.3233/JAD-2008-15412 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Marwarha G, Ghribi O (2015) Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease-Parkinson’s disease overlap? Exp Gerontol 68:13–18.  https://doi.org/10.1016/j.exger.2014.09.013 CrossRefPubMedGoogle Scholar
  47. 47.
    Selvi Y, Gergerlioglu HS, Akbaba N, Oz M, Kandeger A, Demir EA, Yerlikaya FH, Nurullahoglu-Atalik KE (2016) Impact of enriched environment on production of tau, amyloid precursor protein and, amyloid-beta peptide in high-fat and high-sucrose-fed rats. Acta Neuropsychiatr 1–8. doi: https://doi.org/10.1017/neu.2016.63
  48. 48.
    Ghribi O, Marwarha G (2010) Cholesterol causes Alzheimer pathology through Akt/mTOR inhibition. Alzheimers Dement 6(4):S402–S403.  https://doi.org/10.1016/j.jalz.2010.05.1355 CrossRefGoogle Scholar
  49. 49.
    Marwarha G, Raza S, Hammer K, Ghribi O (2017) 27-hydroxycholesterol: a novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids.  https://doi.org/10.1016/j.chemphyslip.2017.05.012
  50. 50.
    Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS (2001) Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem 276(6):4365–4372CrossRefGoogle Scholar
  51. 51.
    Russo GL (2009) Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77(6):937–946CrossRefGoogle Scholar
  52. 52.
    Barnard ND, Bunner AE, Agarwal U (2014) Saturated and trans fats and dementia: a systematic review. Neurobiol Aging 35(Suppl 2):S65–S73.  https://doi.org/10.1016/j.neurobiolaging.2014.02.030 CrossRefPubMedGoogle Scholar
  53. 53.
    Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42(5):776–782.  https://doi.org/10.1002/ana.410420514 CrossRefPubMedGoogle Scholar
  54. 54.
    Laitinen MH, Ngandu T, Rovio S, Helkala EL, Uusitalo U, Viitanen M, Nissinen A, Tuomilehto J et al (2006) Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord 22(1):99–107.  https://doi.org/10.1159/000093478 CrossRefPubMedGoogle Scholar
  55. 55.
    Luchsinger JA, Tang MX, Shea S, Mayeux R (2002) Caloric intake and the risk of Alzheimer disease. Arch Neurol 59(8):1258–1263.  https://doi.org/10.1001/archneur.59.8.1258 CrossRefPubMedGoogle Scholar
  56. 56.
    Parrott MD, Greenwood CE (2007) Dietary influences on cognitive function with aging: from high-fat diets to healthful eating. Ann N Y Acad Sci 1114:389–397.  https://doi.org/10.1196/annals.1396.028 CrossRefPubMedGoogle Scholar
  57. 57.
    Winocur G, Greenwood CE (1999) The effects of high fat diets and environmental influences on cognitive performance in rats. Behav Brain Res 101(2):153–161.  https://doi.org/10.1016/S0166-4328(98)00147-8 CrossRefPubMedGoogle Scholar
  58. 58.
    Winocur G, Greenwood CE (2005) Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging 26(Suppl 1):46–49.  https://doi.org/10.1016/j.neurobiolaging.2005.09.003 CrossRefPubMedGoogle Scholar
  59. 59.
    Wang H, Kouri G, Wollheim CB (2005) ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 118(Pt 17):3905–3915.  https://doi.org/10.1242/jcs.02513 CrossRefPubMedGoogle Scholar
  60. 60.
    Basseri S, Austin RC (2012) Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int 2012:841362.  https://doi.org/10.1155/2012/841362 CrossRefPubMedGoogle Scholar
  61. 61.
    Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferre P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119(5):1201–1215.  https://doi.org/10.1172/JCI37007 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Marwarha G, Ghribi O (2018) Saturated fat-enriched diet decreases SIRT1 expression in the mouse hippocampus - the SIRTain effects of saturated fat in the brain. FASEB J 32(1_supplement):lb7.  https://doi.org/10.1096/fasebj.2018.32.1_supplement.lb7 CrossRefGoogle Scholar
  63. 63.
    Ponugoti B, Kim D-H, Xiao Z, Smith Z, Miao J, Zang M, Wu S-Y, Chiang C-M et al (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285(44):33959–33970.  https://doi.org/10.1074/jbc.M110.122978 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Marwarha G, Ghribi O (2018) Leptin alleviates the saturated fatty acid-induced increase in BACE1 expression and amyloid-β production - relevance to Alzheimer’s disease pathogenesis. FASEB J 32(1_supplement):659.652.  https://doi.org/10.1096/fasebj.2018.32.1_supplement.659.2 CrossRefGoogle Scholar
  65. 65.
    Marwarha G, Ghribi O (2012) Leptin signaling and Alzheimer’s disease. Am J Neurodegener Dis 1(3):245–265PubMedPubMedCentralGoogle Scholar
  66. 66.
    Marwarha G, Ghribi O (2012) Cellular model of Alzheimer’s disease--relevance to therapeutic testing. Exp Neurol 233(2):733–739.  https://doi.org/10.1016/j.expneurol.2011.11.011 CrossRefPubMedGoogle Scholar
  67. 67.
    Marwarha GSA (2011) Leptin expression and signaling at the confluence of neurodegenerative mechanisms in Alzheimer disease. The University of North Dakota ProQuest Dissertations Publishing 3515504Google Scholar
  68. 68.
    Marwarha G (2011) Mutual upregulation of IGF-1 and leptin expression prevents their β-amyloid-induced down regulation. Alzheimers Dement 7(4):S586.  https://doi.org/10.1016/j.jalz.2011.05.1659 CrossRefGoogle Scholar
  69. 69.
    Nogalska A, Sucajtys-Szulc E, Swierczynski J (2005) Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats. Metabolism 54(8):1041–1047.  https://doi.org/10.1016/j.metabol.2005.03.007 CrossRefPubMedGoogle Scholar
  70. 70.
    Bedi S, Hines GV, Lozada-Fernandez VV, de Jesus Piva C, Kaliappan A, Rider SD Jr, Hostetler HA (2017) Fatty acid binding profile of the liver X receptor alpha. J Lipid Res 58(2):393–402.  https://doi.org/10.1194/jlr.M072447 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tobin KA, Steineger HH, Alberti S, Spydevold O, Auwerx J, Gustafsson JA, Nebb HI (2000) Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol Endocrinol 14(5):741–752.  https://doi.org/10.1210/mend.14.5.0459 CrossRefPubMedGoogle Scholar
  72. 72.
    Hong C, Tontonoz P (2014) Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 13(6):433–444.  https://doi.org/10.1038/nrd4280 CrossRefPubMedGoogle Scholar
  73. 73.
    Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13(4):213–224.  https://doi.org/10.1038/nrm3312 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Marwarha G, Ghribi O (2017) Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) – a friend, a foe, or a bystander - in the neurodegenerative cascade and pathogenesis of Alzheimer’s disease. CNS Neurol Disord Drug Targets 16(10):1050–1065.  https://doi.org/10.2174/1871527316666170725114652 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, School of Medicine & Health SciencesUniversity of North DakotaGrand ForksUSA
  2. 2.U.S. Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksUSA

Personalised recommendations