Advertisement

Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective

  • Marta Conde-Sieira
  • Valentina Capelli
  • Rosa Álvarez-Otero
  • Sara Comesaña
  • Laura Liñares-Pose
  • Cristina Velasco
  • Miguel López
  • José L. SoengasEmail author
Article
  • 85 Downloads

Abstract

In mammals, hypothalamic AMP-activated protein kinase (AMPK) α1 and α2 isoforms mainly relate to regulation of thermogenesis/liver metabolism and food intake, respectively. Since both isoforms are present in fish, which do not thermoregulate, we assessed their role(s) in hypothalamus regarding control of food intake and energy homeostasis. Since many fish species are carnivorous and mostly mammals are omnivorous, assessing if the role of hypothalamic AMPK is different is also an open question. Using the rainbow trout as a fish model, we first observed that food deprivation for 5 days did not significantly increase phosphorylation status of AMPKα in hypothalamus. Then, we administered adenoviral vectors that express dominant negative (DN) AMPKα1 or AMPKα2 isoforms. The inhibition of AMPKα2 (but not AMPKα1) led to decreased food intake. The central inhibition of AMPKα2 resulted in liver with decreased capacity of use and synthesis of glucose, lipids, and amino acids suggesting that a signal of nutrient abundance flows from hypothalamus to the liver, thus suggesting a role for central AMPKα2 in the regulation of peripheral metabolism in fishes. The central inhibition of AMPKα1 induced comparable changes in liver metabolism though at a lower extent. From an evolutionary point of view, it is of interest that the function of central AMPKα2 remained similar throughout the vertebrate lineage. In contrast, the function of central AMPKα1 in fish relates to modulation of liver metabolism whereas in mammals modulates not only liver metabolism but also brown adipose tissue and thermogenesis.

Keywords

Trout Hypothalamus AMPK isoforms Food intake Hepatic metabolism 

Notes

Author’s Contributions

ML and JLS conceived the experiments. MC-S, SC, and CV conducted the experiments and carried out the assessment of mRNA abundance, enzyme activities, and metabolite levels. RA-O carried out the histochemical procedures. V.C and LL-P carried out Western blots. MC-S, VC, ML, and JLS analyzed the results. MC-S, ML, and JLS wrote the manuscript. All authors reviewed the manuscript.

Funding

This study was supported by research grants from Spanish Agencia Estatal de Investigación (AEI) and European Fund of Regional Development (FEDER) to JLS (AGL2016-74857-C3-1-R) and ML (SAF2015-71026-R). M.C-S was recipient of a postdoctoral fellowship (Program Juan de la Cierva-Incorporación) from AEI (IJCI-2016-30499). S.C. was recipient of a predoctoral fellowship (Program FPU) from Spanish Ministerio de Educación, Cultura y Deporte (FPU16/00045).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The experiments described comply with the Guidelines of the European Union Council (2010/63/UE) and of the Spanish Government (RD53/2013) for the use of animals in research and were approved by the Ethics Committee of the Universidade de Vigo.

References

  1. 1.
    López M (2017) Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol 176(5):R235–R246.  https://doi.org/10.1530/EJE-16-0927 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    López M, Nogueiras R, Tena-Sempere M, Diéguez C (2016) Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Rev Endocrinol 12(7):421–432.  https://doi.org/10.1038/nrendo.2016.67 CrossRefGoogle Scholar
  3. 3.
    Martínez de Morentin PB, González CR, Saha AK, Martins L, Diéguez C, Vidal-Puig A, Tena-Sempere M, López M (2011) Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev Endocr Metab Disord 2(3):127–140.  https://doi.org/10.1007/s11154-011-9165-5 CrossRefGoogle Scholar
  4. 4.
    Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279(13):12005–12008.  https://doi.org/10.1074/jbc.C300557200 CrossRefPubMedGoogle Scholar
  5. 5.
    Minokoshi Y, Alquier T, Furukawa H, Kim YB, Lee A, Xue B, Mu J, Foufelle F et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982):569–574.  https://doi.org/10.1038/nature02440 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S et al (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7(5):389–399.  https://doi.org/10.1016/j.cmet.2008.03.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M (2016) Hypothalamus and thermogenesis: heating the BAT, browning the WAT. Mol Cell Endocrinol 438:107–115.  https://doi.org/10.1016/j.mce.2016.08.002 CrossRefPubMedGoogle Scholar
  8. 8.
    López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E et al (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Med 16(9):1001–1008.  https://doi.org/10.1038/nm.2207 CrossRefPubMedGoogle Scholar
  9. 9.
    Martins L, Seoane-Collazo P, Contreras C, González-García I, Martínez-Sánchez N, González F, Zalvide J, Gallego R et al (2016) A Functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep 16(8):2231–2242.  https://doi.org/10.1016/j.celrep.2016.07.045 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jorgensen SB, Rose AJ (2008) How is AMPK activity regulated in skeletal muscles during exercise? Front Biosci 13:5589–5604.  https://doi.org/10.2741/3102 CrossRefPubMedGoogle Scholar
  11. 11.
    Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC et al (2003) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 31(1):216–219.  https://doi.org/10.1042/BST0310216 CrossRefPubMedGoogle Scholar
  12. 12.
    O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B et al (2011) AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–16097.  https://doi.org/10.1073/pnas.1105062108 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Martínez-Sánchez N, Seoane-Collazo P, Contreras C, Varela L, Villaroya J, Rial-Pensado E, Buqué X, Aurrekoetxea I et al (2017) Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab 26(1):212–229.  https://doi.org/10.1016/j.cmet.2017.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rutter GA, da Silva Xavier GA, Leclerc I (2003) Roles of 5’AMP activated protein kinase (AMPK) in mammalian glucose homeostasis. Biochem J 375(1):1–16.  https://doi.org/10.1042/BJ20030048 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    McCrimmon RJ, Fan X, Cheng H, McNay E, Chan O, Shaw M, Ding Y, Zhu W et al (2006) Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55(6):1755–1760.  https://doi.org/10.2337/db05-1359 CrossRefPubMedGoogle Scholar
  16. 16.
    Yang CS, Lam CKL, Chari M, Cheung GWC, Kokorovic A, Gao S, Leclerc I, Rutter G et al (2010) Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes 59(10):2435–2443.  https://doi.org/10.2337/db10-0221 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kinote A, Faria JA, Roman EA, Solon C, Razolli DS, Ignacio-Souza LM, Sollon CS, Nascimento LF et al (2012) Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology 153(8):3633–3645.  https://doi.org/10.1210/en.2012-1341 CrossRefPubMedGoogle Scholar
  18. 18.
    Santos GA, Pereira VD, Roman EAFR, Ignacio-Souza L, Vitorino DC, Ferreira de Moura R, Razolli DS, Torsoni AS et al (2013) Hypothalamic inhibition of acetyl-CoA carboxylase stimulates hepatic counter-regulatory response independent of AMPK activation in rats. PLoS One 8:e62669.  https://doi.org/10.1371/journal.pone.0062669 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Craig PM, Moon TW (2011) Fasted zebrafish mimic genetic and physiological responses in mammals: a model for obesity and diabetes? Zebrafish 8(3):109–117.  https://doi.org/10.1089/zeb.2011.0702 CrossRefPubMedGoogle Scholar
  20. 20.
    Fuentes EN, Safian D, Einarsdottir IE, Valdés JA, Elorza AA, Molina A, Björnsson BT (2013) Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis: implications for cell metabolism and growth in skeletal muscle of the fine flounder. Gen Comp Endocrinol 186:172–180.  https://doi.org/10.1016/j.ygcen.2013.02.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Polakof S, Panserat S, Craig PM, Martyres DJ, Plagnes-Juan E, Savari S, Aris-Brosou S, Moon TW (2011) The metabolic consequences of hepatic AMP-kinase phosphorylation in rainbow trout. PLoS One 6:e20228.  https://doi.org/10.1371/journal.pone.0020228 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kamalam BS, Medale F, Kaushik S, Polakof S, Skiba-Cassy S, Panserat S (2012) Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J Exp Biol 215(15):2567–2578.  https://doi.org/10.1242/jeb.070581 CrossRefPubMedGoogle Scholar
  23. 23.
    Jin J, Médale F, Kamalam BS, Aguirre P, Véron V, Panserat S (2014) Comparison of glucose and lipid metabolic gene expressions between fat and lean lines of rainbow trout after a glucose load. PLoS One 9:e105548.  https://doi.org/10.1371/journal.pone.0105548 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Craig PM, Moon TW (2013) Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets. Br J Nutr 109(3):402–412.  https://doi.org/10.1017/S0007114512001663 CrossRefPubMedGoogle Scholar
  25. 25.
    Wei C-C, Wu K, Gao Y, Zhang L-H, Li D-D, Luo Z (2017) Magnesium reduces hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARα, JAK-STAT, and AMPK pathways in hepatocytes. J Nutr 147(6):1070–1078.  https://doi.org/10.3945/jn.116.245852 CrossRefPubMedGoogle Scholar
  26. 26.
    Xu C, Liu WB, Zhang D-D, Cao X-F, Shi H-J, Li X-F (2018) Interactions between dietary carbohydrate and metformin: implications on energy sensing, insulin signaling pathway, glycolipid metabolism and glucose tolerance in blunt snout bream Megalobrama amblycephala. Aquaculture 483:183–195.  https://doi.org/10.1016/j.aquaculture.2017.10.022 CrossRefGoogle Scholar
  27. 27.
    Velasco C, Comesaña S, Conde-Sieira M, Míguez JM, Soengas JL (2018) The short-term presence of oleate or octanoate alters the phosphorylation status of Akt, AMPK, mTOR, CREB, and FoxO1 in liver of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 219–220:17–25.  https://doi.org/10.1016/j.cbpb.2018.03.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Magnoni LJ, Palstra AP, Planas JV (2014) Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming. J Exp Biol 217(10):1649–1652.  https://doi.org/10.1242/jeb.099192 CrossRefPubMedGoogle Scholar
  29. 29.
    Morash AJ, Vanderveken M, McClelland GB (2014) Muscle metabolic remodeling in response to endurance exercise in salmonids. Frontiers Physiol 5:452.  https://doi.org/10.3389/fphys.2014.00452 CrossRefGoogle Scholar
  30. 30.
    Rovira M, Arrey G, Planas JV (2017) Exercise-induced hypertrophic and oxidative signaling pathways and myokine expression in fast muscle of adult zebrafish. Frontiers Physiol 8:1063.  https://doi.org/10.3389/fphys.2017.01063 CrossRefGoogle Scholar
  31. 31.
    Jibb L, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211(19):3111–3122.  https://doi.org/10.1242/jeb.019117 CrossRefPubMedGoogle Scholar
  32. 32.
    Stensløkken K-O, Ellefsen S, Stecyk JAW, Dahl MB, Nilsson GE, Vaage J (2008) Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am J Physiol Regul Integr Comp Physiol 295(6):R1803–R1814.  https://doi.org/10.1152/ajpregu.90590.2008 CrossRefPubMedGoogle Scholar
  33. 33.
    Callaghan NI, Tunnah L, Currie S, MacCormack TJ (2016) Metabolic adjustments to short-term diurnal temperature fluctuation in the rainbow trout (Oncorhynchus mykiss). Physiol Biochem Zool 89(6):498–510.  https://doi.org/10.1086/688680 CrossRefPubMedGoogle Scholar
  34. 34.
    Zeng L, Liu B, Wu CW, Lei JL, Xu MY, Zhu AY, Zhang JS, Hong WS (2016) Molecular characterization and expression analysis of AMPK α subunit isoform genes from Scophthalmus maximus responding to salinity stress. Fish Physiol Biochem 42(6):1595–1607.  https://doi.org/10.1007/s10695-016-0243-1 CrossRefPubMedGoogle Scholar
  35. 35.
    Gilmour KM, Craig PM, Dhillon RS, Lau GY, Richards JG (2017) Regulation of energy metabolism during social interactions in rainbow trout: a role for AMP-activated protein kinase. Am J Physiol Regul Integr Comp Physiol 313(5):R549–R559.  https://doi.org/10.1152/ajpregu.00341.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu Z, Li E, Xu C, Gan L, Qin JG, Chen L (2016) Response of AMP-activated protein kinase and energy metabolism to acute nitrite exposure in the Nile tilapia Oreochromis niloticus. Aquat Toxicol 177:86–97.  https://doi.org/10.1016/j.aquatox.2016.05.020 CrossRefPubMedGoogle Scholar
  37. 37.
    Librán-Pérez M, Geurden I, Dias K, Corraze G, Panserat S, Soengas JL (2015) Feeding rainbow trout with a lipid-enriched diet: effects on fatty acid sensing, regulation of food intake and cellular signaling pathways. J Exp Biol 218(16):2610–2619.  https://doi.org/10.1242/jeb.123802 CrossRefPubMedGoogle Scholar
  38. 38.
    Velasco C, Otero-Rodiño C, Comesana S, Miguez JM, Soengas JL (2017) Hypothalamic mechanisms linking fatty acid sensing and food intake regulation in rainbow trout. J Mol Endocrinol 59(4):377–390.  https://doi.org/10.1530/JME-17-0148 CrossRefPubMedGoogle Scholar
  39. 39.
    Otero-Rodiño C, Velasco C, Álvarez-Otero R, López-Patino MA, Miguez JM, Soengas JL (2017) Changes in the levels and phosphorylation status of Akt, AMPK, CREB and FoxO1 in hypothalamus of rainbow trout under conditions of enhanced glucosensing activity. J Exp Biol 220(23):4410–4417.  https://doi.org/10.1242/jeb.165159 CrossRefPubMedGoogle Scholar
  40. 40.
    Lin S-C, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27(2):299–313.  https://doi.org/10.1016/j.cmet.2017.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Craig PM, Moyes CD, LeMoine CMR (2018) Sensing and responding to energetic stress: evolution of the AMPK network. Comp Biochem Physiol B Biochem Mol Biol 224:156–169.  https://doi.org/10.1016/j.cbpb.2017.11.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H et al (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117(8):2325–2336.  https://doi.org/10.1172/JCI31516 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tanida M, Yamamoto N, Shibamoto T, Rahmouni K (2013) Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8:e56660.  https://doi.org/10.1371/journal.pone.0056660 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu C, Liu WB, Zhang DD, Wang KZ, Xia SL, Li XF (2017) Molecular characterization of AMP-activated protein kinase α2 from herbivorous fish Megalobrama amblycephala and responsiveness to glucose loading and dietary carbohydrate levels. Comp Biochem Physiol A Mol Integr Physiol 208:24–34.  https://doi.org/10.1016/j.cbpa.2017.03.008 CrossRefPubMedGoogle Scholar
  45. 45.
    Polakof S, Mommsen TP, Soengas JL (2011) Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol 160:123–149.  https://doi.org/10.1016/j.cbpb.2011.07.006 CrossRefPubMedGoogle Scholar
  46. 46.
    Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: A review. J Comp Physiol B 182(8):1015–1045.  https://doi.org/10.1007/s00360-012-0658-7 CrossRefPubMedGoogle Scholar
  47. 47.
    Conde-Sieira M, Soengas JL (2017) Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci 10:603.  https://doi.org/10.3389/fnins.2016.00603 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    van de Pol I, Flik G, Gorissen M (2017) Comparative physiology of energy metabolism: fishing for endocrine signals in the early vertebrate pool. Frontiers Endocrinol 8:36.  https://doi.org/10.3389/fendo.2017.00036 CrossRefGoogle Scholar
  49. 49.
    Polakof S, Soengas JL (2008) Involvement of lactate in glucose metabolism and glucosensing function in selected tissues of rainbow trout. J Exp Biol 211(7):1075–1086.  https://doi.org/10.1242/jeb.014050 CrossRefPubMedGoogle Scholar
  50. 50.
    Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferré P, Foufelle F, Carling D (2000) Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20(18):6704–6711.  https://doi.org/10.1128/MCB.20.18.6704-6711.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Martínez de Morentin PB, Whittle AJ, Fernø J, Nogueiras R, Diéguez C, Vidal-Puig A, López M (2012) Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61(4):807–817.  https://doi.org/10.2337/db11-1079 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149(4):871–885.  https://doi.org/10.1016/j.cell.2012.02.066 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Martínez de Morentin PB, González-García I, Martins L, Lage R, Fernández-Mallo D, Martínez-Sánchez N, Ruíz-Pino F, Liu J et al (2014) Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 20(1):41–53.  https://doi.org/10.1016/j.cmet.2014.03.031 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Fernø J et al (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63(10):3346–3358.  https://doi.org/10.2337/db14-0302 CrossRefPubMedGoogle Scholar
  55. 55.
    Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real JM et al (2017) Thyroid hormones induce browning of white fat. J Endocrinol 232(2):351–362.  https://doi.org/10.1530/JOE-16-0425 CrossRefPubMedGoogle Scholar
  56. 56.
    Seoane-Collazo P, Roa J, Rial-Pensado E, Liñares-Pose L, Beiroa D, Ruíz-Pino F, López-González T, Morgan DA et al (2018) SF1-specific AMPKα1 deletion protects against diet-induced obesity. Diabetes 67(11):2213–2226.  https://doi.org/10.2337/db17-1538 CrossRefPubMedGoogle Scholar
  57. 57.
    Polakof S, Míguez JM, Soengas JL (2008) Dietary carbohydrates induce changes in glucosensing capacity and food intake in rainbow trout. Am J Physiol Regul Integr Comp Physiol 295(2):R478–R489.  https://doi.org/10.1152/ajpregu.00176.2008 CrossRefPubMedGoogle Scholar
  58. 58.
    Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 243(23):6281–6283PubMedGoogle Scholar
  59. 59.
    Keppler D, Decker K (1974) Glycogen determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp. 1127–1131Google Scholar
  60. 60.
    Polakof S, Míguez JM, Moon TW, Soengas JL (2007) Evidence for the presence of a glucosensor in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 292(4):R1657–R1666.  https://doi.org/10.1152/ajpregu.00525.2006 CrossRefPubMedGoogle Scholar
  61. 61.
    Polakof S, Álvarez R, Soengas JL (2010) Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol Regul Integr Comp Physiol 299(1):R19–R32.  https://doi.org/10.1152/ajpregu.00005.2010 CrossRefPubMedGoogle Scholar
  62. 62.
    Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL (2012) Evidence of a metabolic fatty acid-sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation. Am J Physiol Reg Integr Comp Physiol 302(11):R1340–R1350.  https://doi.org/10.1152/ajpregu.00070.2012 CrossRefGoogle Scholar
  63. 63.
    Velasco C, Libran-Perez M, Otero-Rodiño C, Lopez-Patino MA, Miguez JM, Soengas JL (2016) Ceramides are involved in the regulation of food intake in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 311(4):R658–R668.  https://doi.org/10.1152/ajpregu.00201.2016 CrossRefPubMedGoogle Scholar
  64. 64.
    Panserat S, Blin C, Médale F, Plagnes-Juan E, Brèque J, Krishnamoorthy J, Kaushik S (2000) Molecular cloning, tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream (Sparus aurata), rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Biochim Biophys Acta 1474(1):61–69.  https://doi.org/10.1016/S0304-4165(99)00213-5 CrossRefPubMedGoogle Scholar
  65. 65.
    Geurden I, Aramendi M, Zambonino-Infante J, Panserat S (2007) Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. Am J Physiol Regul Integr Comp Physiol 292(6):R2275–R2283.  https://doi.org/10.1152/ajpregu.00444.2006 CrossRefPubMedGoogle Scholar
  66. 66.
    Kolditz C, Borthaire M, Richard N, Corraze G, Panserat S, Vachot C, Lefevre F, Médale F (2008) Liver and muscle metabolic changes induced by dietary energy content and genetic selection in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 294(4):R1154–R1164.  https://doi.org/10.1152/ajpregu.00766.2007 CrossRefPubMedGoogle Scholar
  67. 67.
    Lansard M, Panserat S, Seiliez I, Polakof S, Plagnes-Juan E, Geurden I, Médale F, Kaushik S et al (2009) Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets. Br J Nutr 102(11):1564–1573.  https://doi.org/10.1017/S000711450999095X CrossRefPubMedGoogle Scholar
  68. 68.
    Wacyk J, Powell M, Rodnick KJ, Overturf K, Hill RA, Hardy R (2012) Dietary protein source significantly alters growth performance, plasma variables and hepatic gene expression in rainbow trout (Oncorhynchus mykiss) fed amino acid balanced diets. Aquaculture 356-357:223–234.  https://doi.org/10.1016/j.aquaculture.2012.05.013 CrossRefGoogle Scholar
  69. 69.
    Magnoni LJ, Vraskou Y, Palstra A, Planas JV (2012) AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One 7:e31219.  https://doi.org/10.1371/journal.pone.0031219 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefGoogle Scholar
  71. 71.
    Delgado MJ, Cerdá-Reverter JM, Soengas JL (2017) Hypothalamic integration of metabolic, endocrine, and circadian signals in fish: involvement in the control of food intake. Front Neurosci 11:354.  https://doi.org/10.3389/fnins.2017.00354 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Soengas JL, Cerdá-Reverter JM, Delgado MJ (2018) Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 60(4):R171–R199.  https://doi.org/10.1530/JME-17-0320 CrossRefPubMedGoogle Scholar
  73. 73.
    Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2014) Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav 129:272–279.  https://doi.org/10.1016/j.physbeh.2014.02.061 CrossRefPubMedGoogle Scholar
  74. 74.
    Velasco C, Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Cerdá-Reverter JM, Soengas JL (2016) Ghrelin modulates hypothalamic fatty acid-sensing and control of food intake in rainbow trout. J Endocrinol 228(1):25–37.  https://doi.org/10.1530/JOE-15-0391 CrossRefPubMedGoogle Scholar
  75. 75.
    Burnstock G (1959) The innervation of the gut of the brown trout Salmo trutta. Q J Microsc Sci 100:199–220Google Scholar
  76. 76.
    Seth H, Axelsson M (2010) Sympathetic, parasympathetic and enteric regulation of the gastrointestinal vasculature in rainbow trout (Oncorhynchus mykiss) under normal and postprandial conditions. J Exp Biol 213(18):3118–3126.  https://doi.org/10.1242/jeb.043612 CrossRefPubMedGoogle Scholar
  77. 77.
    Velasco C, Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2016) Intracerebroventricular ghrelin treatment affects lipid metabolism in liver of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 228:33–39.  https://doi.org/10.1016/j.ygcen.2016.01.016 CrossRefPubMedGoogle Scholar
  78. 78.
    Park S, Sol Kim D, Kang S, Keun Shin B (2014) Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res Bull 108:18–26.  https://doi.org/10.1016/j.brainresbull.2014.08.002 CrossRefPubMedGoogle Scholar
  79. 79.
    McCrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ, Sherwin RS (2004) Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53(8):1953–1958.  https://doi.org/10.2337/diabetes.53.8.1953 CrossRefPubMedGoogle Scholar
  80. 80.
    Perin C, Knauf C, Burcelin R (2004) Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 145(9):4025–4033.  https://doi.org/10.1210/en.2004-0270 CrossRefGoogle Scholar
  81. 81.
    Claret M, Smith MA, Knauf C, Al-Qassab H, Woods A, Heslegrave A, Piipari K, Emmanuel JJ et al Deletion of LKB1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes 60(3):735–745.  https://doi.org/10.2337/db10-1055 CrossRefGoogle Scholar
  82. 82.
    Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2015) Effects of intracerebroventricular treatment with oleate or octanoate on fatty acid metabolism in Brockmann bodies and liver of rainbow trout. Aquaculture Nutr 21(2):194–205.  https://doi.org/10.1111/anu.12158 CrossRefGoogle Scholar
  83. 83.
    Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51(2):271–275.  https://doi.org/10.2337/diabetes.51.2.271 CrossRefPubMedGoogle Scholar
  84. 84.
    Han S-M, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW et al (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48(10):2170–2178.  https://doi.org/10.1007/s00125-005-1913-1 CrossRefPubMedGoogle Scholar
  85. 85.
    Fabbri E, Moon TW (2016) Adrenergic signaling in teleost fish liver, a challenging path. Comp Biochem Physiol B Biochem Mol Biol 199:74–86.  https://doi.org/10.1016/j.cbpb.2015.10.002 CrossRefPubMedGoogle Scholar
  86. 86.
    Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisheries 9(3):211–268.  https://doi.org/10.1023/A:100892441872 CrossRefGoogle Scholar
  87. 87.
    Comesaña S, Velasco C, Ceinos RM, López-Patiño MA, Míguez JM, Morais S, Soengas JL (2018) Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake. Am J Physiol Regul Integr Comp Physiol 314(2):R201–R215.  https://doi.org/10.1152/ajpregu.00283.2017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marta Conde-Sieira
    • 1
  • Valentina Capelli
    • 2
  • Rosa Álvarez-Otero
    • 1
  • Sara Comesaña
    • 1
  • Laura Liñares-Pose
    • 2
  • Cristina Velasco
    • 1
  • Miguel López
    • 2
  • José L. Soengas
    • 1
    Email author return OK on get
  1. 1.Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Edificio de Ciencias ExperimentaisUniversidade de VigoVigoSpain
  2. 2.Departamento de Fisiología, Grupo NeurObesity, CIMUSUniversidade de Santiago de Compostela-Instituto de Investigación Sanitaria and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de CompostelaSpain

Personalised recommendations