Advertisement

Molecular Neurobiology

, Volume 56, Issue 7, pp 5032–5040 | Cite as

Local Application of Autologous Platelet-Rich Fibrin Patch (PRF-P) Suppresses Regulatory T Cell Recruitment in a Murine Glioma Model

  • Wojciech K. Panek
  • Katarzyna C. Pituch
  • Jason Miska
  • Julius W. Kim
  • Aida Rashidi
  • Deepak Kanojia
  • Aurora Lopez-Rosas
  • Yu Han
  • Dou Yu
  • Catalina Lee Chang
  • J. Robert Kane
  • Peng Zhang
  • Alex Cordero
  • Maciej S. LesniakEmail author
Article

Abstract

The immunosuppressive microenvironment is one of the major factors promoting the growth of glioblastoma multiforme (GBM). Infiltration of CD4+CD25+Foxp3+ regulatory T cells (Tregs) into the tumor microenvironment plays a significant role in the suppression of the anti-tumor immunity and portends a dismal prognosis for patients. Glioma-mediated secretion of chemo-attractant C-C motif ligand 2 and 22 (CCL2/22) has previously been shown by our group to promote Treg migration in vitro. In this study, we show that a local implantation of platelet-rich fibrin patch (PRF-P) into the brain of GL261 glioma-bearing mice prolonged the survival of affected animals by 42.85% (p = 0.0011). Analysis performed on brain tumor tissue harvested from PRF-P-treated mice revealed a specific decrease in intra-tumoral lymphocytes with a preferential depletion of immunosuppressive Tregs. Importantly, co-culture of GL261 or chemo-attractants (CCL2/22) with PRF-P abrogated Treg migration. Pharmacological blockade of the CCL2/22 interaction with their receptors potentiated the inhibitory effect of PRF-P on Tregs recruitment in culture. Moreover, our findings revealed the soluble CD40 ligand (sCD40L) as a major Treg inhibitory player produced by activated platelets entrapped within the fibrin matrix of the PRF-P. Blockade of sCD40L restored the migratory capacity of Tregs, emphasizing the role of PRF-P in preventing the Treg migration to glioma tissue. Our findings highlight autologous PRF-P as a personalized, Treg-selective suppression platform that can potentially supplement and enhance the efficacy of glioma therapies.

Keywords

Glioblastoma multiforme Immunosuppressive microenvironment Platelet-rich fibrin patch Regulatory T cells and glioma immune therapies 

Notes

Acknowledgements

The authors would like to thank Irina Balyasnikova and Atique U. Ahmed for their comments and suggestions.

Author Contributions

W.K.P., K.C.P., and M.S.L. conceived the study. W.K.P., K.C.P., J.M., J.W.K., A.R., D.K., D.Y., C.L.C., J.R.K., and A.C designed, performed, and analyzed the experiments. A.L.R. performed all animal breeding for the study. Y.H. and P.Z provided assistance with animal surgeries and reagent preparations. M.S.L. provided critical feedback, contributed to manuscript preparation, and oversaw the research program. All authors listed reviewed the manuscript and provided feedback with writing and revisions.

Funding Information

This work is supported by National Cancer Institute Outstanding Investigator Award from NIH/National Cancer Institute to M.S.L. (R35CA197725) and by a grant from NIH/National Cancer Institute to M.S.L. (R01 NS087990).

Supplementary material

12035_2018_1430_Fig7_ESM.png (136 kb)
Supplemental Figure 1

Schematics of the migration set up used for the Treg migration assay. FBS-fetal bovine serum, GL261-C57BL/6 syngeneic glioma cells. (PNG 136 kb)

12035_2018_1430_MOESM1_ESM.tif (2.4 mb)
High resolution image (TIF 2433 kb)
12035_2018_1430_Fig8_ESM.png (393 kb)
Supplemental Figure 2

Schematics showing experimental approach. (PNG 393 kb)

12035_2018_1430_MOESM2_ESM.tif (5 mb)
High resolution image (TIF 5071 kb)
12035_2018_1430_Fig9_ESM.png (21 kb)
Supplemental Figure 3

The change of tumor associated macrophages (TAMs) upon the PRF-P treatment. Percentage of M1-like (MHCII+) and M2-like (PD-L2+) TAMs was analyzed. Ratios of M1 and M2 TAMs (PRF-P treated/ PBS treated) were plotted (N = 3). (PNG 21 kb)

12035_2018_1430_MOESM3_ESM.tif (1.3 mb)
High resolution image (TIF 1306 kb)

References

  1. 1.
    Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, Meuli R, Janzer R et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol Off J Am Soc Clin Oncol 20(5):1375–1382.  https://doi.org/10.1200/jco.2002.20.5.1375 CrossRefGoogle Scholar
  2. 2.
    Pituch KC, Miska J, Krenciute G, Panek WK, Li G, Rodriguez-Cruz T, Wu M, Han Y et al (2018) Adoptive transfer of IL13Rα2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblastoma. Mol Ther 26(4):986–995.  https://doi.org/10.1016/j.ymthe.2018.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Panek WK, Kane JR, Young JS, Rashidi A, Kim JW, Kanojia D, Lesniak MS (2017) Hitting the nail on the head: combining oncolytic adenovirus-mediated virotherapy and immunomodulation for the treatment of glioma. Oncotarget 8(51):89391–89405.  https://doi.org/10.18632/oncotarget.20810 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol (Baltimore, Md: 1950) 189(1):444–453.  https://doi.org/10.4049/jimmunol.1103248 CrossRefGoogle Scholar
  5. 5.
    Crane CA, Ahn BJ, Han SJ, Parsa AT (2012) Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-Oncology 14(5):584–595.  https://doi.org/10.1093/neuonc/nos014 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682.  https://doi.org/10.1158/0008-5472.Can-16-0144 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57(1):123–131.  https://doi.org/10.1007/s00262-007-0336-x CrossRefPubMedGoogle Scholar
  8. 8.
    Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW et al (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 20(20):5290–5301.  https://doi.org/10.1158/1078-0432.Ccr-14-0514 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW, Nierkens S, Adema GJ (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122(8):1794–1802.  https://doi.org/10.1002/ijc.23284 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang C, Sun W, Ye Y, Hu Q, Bomba HN, Gu Z (2017) In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat Biomed Eng 1:0011.  https://doi.org/10.1038/s41551-016-0011 https://www.nature.com/articles/s41551-016-0011#supplementary-information CrossRefGoogle Scholar
  11. 11.
    Kral JB, Schrottmaier WC, Salzmann M, Assinger A (2016) Platelet interaction with innate immune cells. Transfus Med Hemother 43(2):78–88.  https://doi.org/10.1159/000444807 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moura R, Tjwa M (2010) Platelets suppress Treg recruitment. Blood 116(20):4035–4037.  https://doi.org/10.1182/blood-2010-09-303396 CrossRefPubMedGoogle Scholar
  13. 13.
    Chonan M, Saito R, Shoji T, Shibahara I, Kanamori M, Sonoda Y, Watanabe M, Kikuchi T et al (2015) CD40/CD40L expression correlates with the survival of patients with glioblastomas and an augmentation in CD40 signaling enhances the efficacy of vaccinations against glioma models. Neuro-Oncology 17(11):1453–1462.  https://doi.org/10.1093/neuonc/nov090 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shoji T, Saito R, Chonan M, Shibahara I, Sato A, Kanamori M, Sonoda Y, Kondo T et al (2016) Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models. Neuro-Oncology 18(8):1120–1128.  https://doi.org/10.1093/neuonc/now023 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moyano AL, Pituch K, Li G, van Breemen R, Mansson JE, Givogri MI (2013) Levels of plasma sulfatides C18 : 0 and C24 : 1 correlate with disease status in relapsing-remitting multiple sclerosis. J Neurochem 127(5):600–604.  https://doi.org/10.1111/jnc.12341 CrossRefPubMedGoogle Scholar
  16. 16.
    Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, Landes C, Sader R et al (2014) Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol 40(6):679–689.  https://doi.org/10.1563/aaid-joi-D-14-00138 CrossRefPubMedGoogle Scholar
  17. 17.
    Miska J, Rashidi A, Chang AL, Muroski ME, Han Y, Zhang L, Lesniak MS (2016) Anti-GITR therapy promotes immunity against malignant glioma in a murine model. Cancer Immunol Immunother 65(12):1555–1567.  https://doi.org/10.1007/s00262-016-1912-8 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim JW, Kane JR, Panek WK, Young JS, Rashidi A, Yu D, Kanojia D, Hasan T et al (2018) A dendritic cell-targeted adenoviral vector facilitates adaptive immune response against human glioma antigen (CMV-IE) and prolongs survival in a human glioma tumor model. Neurotherapeutics.  https://doi.org/10.1007/s13311-018-0650-3 CrossRefGoogle Scholar
  19. 19.
    Kim JW, Miska J, Young JS, Rashidi A, Kane JR, Panek WK, Kanojia D, Han Y et al (2017) A comparative study of replication-incompetent and -competent adenoviral therapy-mediated immune response in a murine glioma model. Mol Ther Oncolytics 5:97–104.  https://doi.org/10.1016/j.omto.2017.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Phipps RP, Kaufman J, Blumberg N (2001) Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion. Lancet (London, England) 357(9273):2023–2024CrossRefGoogle Scholar
  21. 21.
    Blumberg N, Gettings KF, Turner C, Heal JM, Phipps RP (2006) An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions. Transfusion 46(10):1813–1821.  https://doi.org/10.1111/j.1537-2995.2006.00979.x CrossRefPubMedGoogle Scholar
  22. 22.
    Blumberg N, Spinelli SL, Francis CW, Taubman MB, Phipps RP (2009) The platelet as an immune cell-CD40 ligand and transfusion immunomodulation. Immunol Res 45(2–3):251–260.  https://doi.org/10.1007/s12026-009-8106-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Winkels H, Meiler S, Lievens D, Engel D, Spitz C, Bürger C, Beckers L, Dandl A et al (2017) CD27 co-stimulation increases the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. Eur Heart J 38(48):3590–3599.  https://doi.org/10.1093/eurheartj/ehx517 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wojciech K. Panek
    • 1
  • Katarzyna C. Pituch
    • 1
  • Jason Miska
    • 1
  • Julius W. Kim
    • 1
  • Aida Rashidi
    • 1
  • Deepak Kanojia
    • 1
  • Aurora Lopez-Rosas
    • 1
  • Yu Han
    • 1
  • Dou Yu
    • 1
  • Catalina Lee Chang
    • 1
  • J. Robert Kane
    • 1
  • Peng Zhang
    • 1
  • Alex Cordero
    • 1
  • Maciej S. Lesniak
    • 1
    Email author
  1. 1.Department of Neurological Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations