Advertisement

Molecular Neurobiology

, Volume 56, Issue 7, pp 5009–5024 | Cite as

Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease

  • Anna Bartoletti-Stella
  • Patrizia Corrado
  • Nicola Mometto
  • Simone Baiardi
  • Pascal F. Durrenberger
  • Thomas Arzberger
  • Richard Reynolds
  • Hans Kretzschmar
  • Sabina CapellariEmail author
  • Piero ParchiEmail author
Article

Abstract

Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer’s and Parkinson’s, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases.

Keywords

Human prion Sporadic Creutzfeldt-Jakob disease Genome-wide expression Membrane trafficking Retromer VPS35 

Notes

Author Contributions

A.B.S. designed and supervised whole transcriptome analysis, performed and supervised mRNA studies, analyzed, interpreted the data, and wrote the manuscript. P.C. RNA designed and supervised extraction experiments and critically reviewed the manuscript. N.M. analyzed and interpreted the data and critically reviewed the manuscript. S.B. analyzed and interpreted the data and critically reviewed the manuscript. P.F.D. and R.R. designed and supervised the transcriptome analysis and critically reviewed the manuscript. T.A. selected and prepared the samples and critically reviewed the manuscript. H.K. participated in designing the project and provided some samples. S.C. designed and supervised the study and wrote the manuscript. P.P. collected and selected the brain samples, performed all histopathological analysis, supervised the overall study, and wrote the manuscript.

Funding Information

Supported by EU Grant FP6, BNEII No LSHM-CT-2004-503039, the University of Bologna (Grant RFO) and the Gino Galletti Foundation.

Compliance with Ethical Standard

The protocol of the study was approved by the Local Ethics Committee.

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12035_2018_1421_MOESM1_ESM.pdf (407 kb)
ESM 1 (PDF 406 kb)
12035_2018_1421_MOESM2_ESM.xlsx (364 kb)
ESM 2 (XLSX 363 kb)

References

  1. 1.
    Golde TE, Borchelt DR, Giasson BI, Lewis J (2013) Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 123:1847–1855.  https://doi.org/10.1172/JCI66029 CrossRefGoogle Scholar
  2. 2.
    Paulson HL (1999) Protein fate in neurodegenerative proteinopathies: Polyglutamine diseases join the (mis)fold. Am J Hum Genet 64:339–345.  https://doi.org/10.1086/302269 CrossRefGoogle Scholar
  3. 3.
    Capellari S, Strammiello R, Saverioni D, Kretzschmar H, Parchi P (2011) Genetic Creutzfeldt-Jakob disease and fatal familial insomnia: Insights into phenotypic variability and disease pathogenesis. Acta Neuropathol 121:21–37.  https://doi.org/10.1007/s00401-010-0760-4 CrossRefGoogle Scholar
  4. 4.
    Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, Klug GM, Sutcliffe T et al (2005) Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology 64:1586–1591.  https://doi.org/10.1212/01.WNL.0000160117.56690.B2 CrossRefGoogle Scholar
  5. 5.
    Brown P, Farrell M (2015) A practical approach to avoiding iatrogenic Creutzfeldt-Jakob disease (CJD) from invasive instruments. Infect Control Hosp Epidemiol 36:844–848.  https://doi.org/10.1017/ice.2015.53 CrossRefGoogle Scholar
  6. 6.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383CrossRefGoogle Scholar
  7. 7.
    Basu U, Guan LL, Moore SS (2012) Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 13:369–378.  https://doi.org/10.2174/138920212801619223 CrossRefGoogle Scholar
  8. 8.
    Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, Baxter D, Pitstick R et al (2009) A systems approach to prion disease. Mol Syst Biol 5:252.  https://doi.org/10.1038/msb.2009.10 CrossRefGoogle Scholar
  9. 9.
    Barbisin M, Vanni S, Schmädicke AC, Montag J, Motzkus D, Opitz L, Salinas-Riester G, Legname G (2014) Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques. BMC Genomics 5:434.  https://doi.org/10.1186/1471-2164-15-434 CrossRefGoogle Scholar
  10. 10.
    Xiang W, Windl O, Westner IM, Neumann M, Zerr I, Lederer RM, Kretzschmar HA (2005) Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Ann Neurol 58:242–257.  https://doi.org/10.1002/ana.20551 CrossRefGoogle Scholar
  11. 11.
    Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, López-González I, Blanco R, Carmona M et al (2013) PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 7:383–893.  https://doi.org/10.4161/pri.26416 CrossRefGoogle Scholar
  12. 12.
    López González I, Garcia-Esparcia P, Llorens F, Ferrer I (2016) Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and tauopathies. Int J Mol Sci 17:206.  https://doi.org/10.3390/ijms17020206 CrossRefGoogle Scholar
  13. 13.
    Burns TC, Li MD, Mehta S, Awad AJ, Morgan AA (2015) Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models. Eur J Pharmacol 759:101–117.  https://doi.org/10.1016/j.ejphar.2015.03.02. CrossRefGoogle Scholar
  14. 14.
    Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw JJ, Seilhean D, Smith C, Walker R et al (2010) Effects of antemortem and postmortem variables on human brain mRNA quality: A BrainNet Europe study. J Neuropathol Exp Neurol 69:70–81.  https://doi.org/10.1097/NEN.0b013e3181c7e32f CrossRefGoogle Scholar
  15. 15.
    Twine NA, Janitz K, Wilkins MR, Janitz M (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One 6:e16266.  https://doi.org/10.1371/journal.pone.0016266 CrossRefGoogle Scholar
  16. 16.
    Parchi P, de Boni L, Saverioni D, Cohen ML, Ferrer I, Gambetti P, Gelpi E, Giaccone G et al (2012) Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: An inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 124:517–529.  https://doi.org/10.1007/s00401-012-1002-8 CrossRefGoogle Scholar
  17. 17.
    Parchi P, Notari S, Weber P, Schimmel H, Budka H, Ferrer I, Haik S, Hauw JJ et al (2009) Inter-laboratory assessment of PrPSc typing in Creutzfeldt-Jakob disease: A Western blot study within the NeuroPrion Consortium. Brain Pathol 19:384–391.  https://doi.org/10.1111/j.1750-3639.2008.00187.x CrossRefGoogle Scholar
  18. 18.
    Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H et al (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233CrossRefGoogle Scholar
  19. 19.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol 123:1–11.  https://doi.org/10.1007/s00401-011-0910-3 CrossRefGoogle Scholar
  20. 20.
    Durrenberger PF, Fernando FS, Magliozzi R, Kashefi SN, Bonnert TP, Ferrer I, Seilhean D, Nait-Oumesmar B et al (2012) Selection of novel reference genes for use in the human central nervous system: A BrainNet Europe Study. Acta Neuropathol 124:893–903.  https://doi.org/10.1007/s00401-012-1027-z CrossRefGoogle Scholar
  21. 21.
    Bartoletti-Stella A, Gasparini L, Giacomini C, Corrado P, Terlizzi R, Giorgio E, Magini P, Seri M et al (2015) Messenger RNA processing is altered in autosomal dominant leukodystrophy. Hum Mol Genet 24:2746–2756.  https://doi.org/10.1093/hmg/ddv034 CrossRefGoogle Scholar
  22. 22.
    Mlecnik B, Galon J, Bindea G (2018) Comprehensive functional analysis of large lists of genes and proteins. J Proteome 171:2–10.  https://doi.org/10.1016/j.jprot.2017.03.016 CrossRefGoogle Scholar
  23. 23.
    Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:D183–D189.  https://doi.org/10.1093/nar/gkw1138. CrossRefGoogle Scholar
  24. 24.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.  https://doi.org/10.1038/nprot.2008.211 CrossRefGoogle Scholar
  25. 25.
    Davis MJ, Ragan MA (2013) Understanding cellular function and disease with comparative pathway analysis. Genome Med 5:64.  https://doi.org/10.1186/gm468 CrossRefGoogle Scholar
  26. 26.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL et al (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550.  https://doi.org/10.1073/pnas.0506580102 CrossRefGoogle Scholar
  27. 27.
    Shoemaker JE, Lopes TJS, Ghosh S, Matsuoka Y, Kawaoka Y, Kitano H et al (2012) CTen: A web-based platform for identifying enriched cell types from heterogeneous microarray data. BMC Genomics 13:460.  https://doi.org/10.1186/1471-2164-13-460 CrossRefGoogle Scholar
  28. 28.
    Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116.  https://doi.org/10.1038/srep37116 CrossRefGoogle Scholar
  29. 29.
    Millier MJ, Stamp LK, Hessian PA (2017) Digital-PCR for gene expression: Impact from inherent tissue RNA degradation. Sci Rep 7:17235.  https://doi.org/10.1038/s41598-017-17619-0 CrossRefGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  31. 31.
    Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445.  https://doi.org/10.1073/pnas.1530509100 CrossRefGoogle Scholar
  32. 32.
    Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res 8(44):W147–W153.  https://doi.org/10.1093/nar/gkw419. CrossRefGoogle Scholar
  33. 33.
    Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, Gertz J, Cartagena PM et al (2017) Post-mortem molecular profiling of three psychiatric disorders. Genome Med 9:72.  https://doi.org/10.1186/s13073-017-0458-5 CrossRefGoogle Scholar
  34. 34.
    Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden Gephart MG, Barres BA et al (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112:7285–7290.  https://doi.org/10.1073/pnas.1507125112 CrossRefGoogle Scholar
  35. 35.
    Bouzamondo-Bernstein E, Hopkins SD, Spilman P, Uyehara-Lock J, Deering C, Safar J, Prusiner SB, Ralston HJ III et al (2004) The neurodegeneration sequence in prion diseases: Evidence from functional, morphological and ultrastructural studies of the GABAergic system. J Neuropathol Exp Neurol 63:882–899CrossRefGoogle Scholar
  36. 36.
    Bombardier JP, Munson M (2015) Three steps forward, two steps back: Mechanistic insights into the assembly and disassembly of the SNARE complex. Curr Opin Chem Biol 29:66–71.  https://doi.org/10.1016/j.cbpa.2015.10.003 CrossRefGoogle Scholar
  37. 37.
    Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8:615–623CrossRefGoogle Scholar
  38. 38.
    Trifilo MJ, Sanchez-Alavez M, Solforosi L, Bernard-Trifilo J, Kunz S, McGavern D, Oldstone MBA (2008) Scrapie-induced defects in learning and memory of transgenic mice expressing anchorless prion protein are associated with alterations in the gamma aminobutyric acid-ergic pathway. J Virol 82:9890–9899.  https://doi.org/10.1128/JVI.00486-08 CrossRefGoogle Scholar
  39. 39.
    Aguzzi A, Zhu C (2017) Microglia in prion diseases. J Clin Invest 127:3230–3239.  https://doi.org/10.1172/JCI90605 CrossRefGoogle Scholar
  40. 40.
    Gehlenborg N, Hwang D, Lee IY, Yoo H, Baxter D, Petritis B et al (2009) The Prion Disease Database: a comprehensive transcriptome resource for systems biology research in prion diseases. Database (Oxford) 2009:bap011.  https://doi.org/10.1093/database/bap011 CrossRefGoogle Scholar
  41. 41.
    Uchiyama K, Muramatsu N, Yano M, Usui T, Miyata H, Sakaguchi S (2013) Prions disturb post-Golgi trafficking of membrane proteins. Nat Commun 4:1846.  https://doi.org/10.1038/ncomms2873 CrossRefGoogle Scholar
  42. 42.
    Shim SY, Karri S, Law S, Schatzl HM, Gilch S (2016) Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells. Sci Rep 6:21658.  https://doi.org/10.1038/srep21658 CrossRefGoogle Scholar
  43. 43.
    MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77:425–439.  https://doi.org/10.1016/j.neuron.2012.11.033 CrossRefGoogle Scholar
  44. 44.
    Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU et al (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195:765–779.  https://doi.org/10.1083/jcb.201105109 CrossRefGoogle Scholar
  45. 45.
    Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L et al (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci U S A 105:7327–7332.  https://doi.org/10.1073/pnas.0802545105 CrossRefGoogle Scholar
  46. 46.
    Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP et al (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58:909–919CrossRefGoogle Scholar
  47. 47.
    Goold R, McKinnon C, Rabbanian S, Collinge J, Schiavo G, Tabrizi SJ (2013) Alternative fates of newly formed PrPSc upon prion conversion on the plasma membrane. J Cell Sci 126:3552–3562.  https://doi.org/10.1242/jcs.120477 CrossRefGoogle Scholar
  48. 48.
    Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128:1434–1443.  https://doi.org/10.1242/jcs.165472 CrossRefGoogle Scholar
  49. 49.
    Zhao H, Wang C, Yao L, Lin Q, Xu X, Hu L, Li W (2017) Identification of aged bloodstains through mRNA profiling: Experiments results on selected markers of 30- and 50-year-old samples. Forensic Sci Int 272:e1–e6.  https://doi.org/10.1016/j.forsciint.2017.01.006 CrossRefGoogle Scholar
  50. 50.
    Takada LT, Geschwind MD (2013) Prion diseases. Semin Neurol 33:348–856.  https://doi.org/10.1055/s-0033-1359314 CrossRefGoogle Scholar
  51. 51.
    Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16:126–132.  https://doi.org/10.1038/nrn3896 CrossRefGoogle Scholar
  52. 52.
    Sharief MK, Green A, Dick JP, Gawler J, Thompson EJ (1999) Heightened intrathecal release of proinflammatory cytokines in Creutzfeldt-Jakob disease. Neurology 52:1289–1291CrossRefGoogle Scholar
  53. 53.
    Stoeck K, Bodemer M, Zerr I (2006) Pro- and anti-inflammatory cytokines in the CSF of patients with Creutzfeldt-Jakob disease. J Neuroimmunol 172:175–181.  https://doi.org/10.1016/j.jneuroim.2005.10.008 CrossRefGoogle Scholar
  54. 54.
    Llorens F, López-González I, Thüne K, Carmona M, Zafar S, Andréoletti O et al (2014) Subtype and regional-specific neuroinflammation in sporadic Creutzfeldt-Jakob disease. Front Aging Neurosci 6:198.  https://doi.org/10.3389/fnagi.2014.00198 CrossRefGoogle Scholar
  55. 55.
    Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W, Chen C, Zhang XM, Tian C et al (2015) Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 14:854–869.  https://doi.org/10.1074/mcp.M114.038018
  56. 56.
    Booth S, Bowman C, Baumgartner R, Sorensen G, Robertson C, Coulthart M et al (2004) Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J Gen Virol 85:3459–3471CrossRefGoogle Scholar
  57. 57.
    Xiang W, Hummel M, Mitteregger G, Pace C, Windl O, Mansmann U, Kretzschmar HA (2007) Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model. J Neurochem 102:834–847.  https://doi.org/10.1111/j.1471-4159.2007.04566.x CrossRefGoogle Scholar
  58. 58.
    Vanni S, Moda F, Zattoni M, Bistaffa E, De Cecco E, Rossi M et al (2017) Differential overexpression of SERPINA3 in human prion diseases. Sci Rep 7:15637.  https://doi.org/10.1038/s41598-017-157788.
  59. 59.
    Heit C, Jackson BC, McAndrews M, Wright MW, Thompson DC, Silverman GA, Nebert DW, Vasiliou V (2013) Update of the human and mouse SERPIN gene superfamily. Hum Genomics 7:22.  https://doi.org/10.1186/1479-7364-7-22 CrossRefGoogle Scholar
  60. 60.
    Cardone F, Pocchiari M (2001) A role for complement in transmissible spongiform encephalopathies. Nat Med 7:410–411.  https://doi.org/10.1038/86469 CrossRefGoogle Scholar
  61. 61.
    Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM (2001) Complement facilitates early prion pathogenesis. Nat Med 7:488–492.  https://doi.org/10.1038/86567 CrossRefGoogle Scholar
  62. 62.
    Mitchell DA, Kirby L, Paulin SM, Villiers CL, Sim RB (2007) Prion protein activates and fixes complement directly via the classical pathway: Implications for the mechanism of scrapie agent propagation in lymphoid tissue. Mol Immunol 44:2997–3004.  https://doi.org/10.1016/j.molimm.2006.12.027 CrossRefGoogle Scholar
  63. 63.
    Kovacs GG, Gasque P, Ströbel T, Lindeck-Pozza E, Strohschneider M, Ironside JW, Budka H, Guentchev M (2004) Complement activation in human prion disease. Neurobiol Dis 15:21–28CrossRefGoogle Scholar
  64. 64.
    Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44:999–1010CrossRefGoogle Scholar
  65. 65.
    Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB (2001) Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat Med 7:485–487.  https://doi.org/10.1038/86562 CrossRefGoogle Scholar
  66. 66.
    Anisman H, Gibb J, Hayley S (2008) Influence of continuous infusion of interleukin-1beta on depression-related processes in mice: Corticosterone, circulating cytokines, brain monoamines, and cytokine mRNA expression. Psychopharmacology 199:231–244.  https://doi.org/10.1007/s00213-008-1166-z CrossRefGoogle Scholar
  67. 67.
    Frankola KA, Greig NH, Luo W, Tweedie D (2011) Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets 10:391–403.  https://doi.org/10.2174/187152711794653751 CrossRefGoogle Scholar
  68. 68.
    Mallucci GR, Ratté S, Asante EA, Linehan J, Gowland I, Jefferys JG et al (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210.  https://doi.org/10.1093/emboj/21.3.202 CrossRefGoogle Scholar
  69. 69.
    Rangel A, Madroñal N, Gruart A, Gavín R, Llorens F, Sumoy L et al (2009) Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 4:e7592.  https://doi.org/10.1371/journal.pone.0007592 CrossRefGoogle Scholar
  70. 70.
    Rincon-Limas DE, Casas-Tinto S, Fernandez-Funez P (2010) Exploring prion protein biology in flies: Genetics and beyond. Prion 4:1–8CrossRefGoogle Scholar
  71. 71.
    Robinson SW, Nugent ML, Dinsdale D, Steinert JR (2014) Prion protein facilitates synaptic vesicle release by enhancing release probability. Hum Mol Genet 23:4581–4596.  https://doi.org/10.1093/hmg/ddu17. CrossRefGoogle Scholar
  72. 72.
    Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1:213–222.  https://doi.org/10.1080/14734220260418448 CrossRefGoogle Scholar
  73. 73.
    Senatore A, Restelli E, Chiesa R (2013) Synaptic dysfunction in prion diseases: A trafficking problem? Int J Cell Biol 2013:543803.  https://doi.org/10.1155/2013/543803 CrossRefGoogle Scholar
  74. 74.
    Ferrer I, Puig B (2003) GluR2/3, NMDAepsilon1 and GABAA receptors in Creutzfeldt-Jakob disease. Acta Neuropathol 106:311–318.  https://doi.org/10.1007/s00401-003-0732-z CrossRefGoogle Scholar
  75. 75.
    Sanchez-Juan P, Bishop MT, Kovacs GG, Calero M, Aulchenko YS, Ladogana A, Boyd A, Lewis V et al (2015) A genome wide association study links glutamate receptor pathway to sporadic Creutzfeldt-Jakob disease risk. PLoS One 10:e0123654.  https://doi.org/10.1371/journal.pone.0123654 CrossRefGoogle Scholar
  76. 76.
    Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A et al (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 79:887–902.  https://doi.org/10.1016/j.neuron.2013.06.036 CrossRefGoogle Scholar
  77. 77.
    Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, Hajj GN, Lee KS, Magalhães AC et al (2011) Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin γ1 chain. FASEB J 25:265–279.  https://doi.org/10.1096/fj.10-161653 CrossRefGoogle Scholar
  78. 78.
    Kimura T, Ishikawa K, Sakasegawa Y, Teruya K, Sata T, Schätzl H, Doh-ura K (2010) GABAA receptor subunit beta1 is involved in the formation of protease-resistant prion protein in prion-infected neuroblastoma cells. FEBS Lett 584:1193–1198.  https://doi.org/10.1016/j.febslet.2010.02.029 CrossRefGoogle Scholar
  79. 79.
    Pocchiari M, Masullo C, Lust WD, Gibbs CJ Jr, Gajdusek DC (1985) Isonicotinic hydrazide causes seizures in scrapie-infected hamsters with shorter latency than in control animals: A possible GABAergic defect. Brain Res 326:117–1123CrossRefGoogle Scholar
  80. 80.
    Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539:207–216.  https://doi.org/10.1038/nature20414 CrossRefGoogle Scholar
  81. 81.
    Schreij AM, Fon EA, McPherson PS (2016) Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 73:1529–1545.  https://doi.org/10.1007/s00018-015-2105-x CrossRefGoogle Scholar
  82. 82.
    Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15:102–111.  https://doi.org/10.1016/j.tcb.2004.12.002 CrossRefGoogle Scholar
  83. 83.
    Béranger F, Mangé A, Goud B, Lehmann S (2002) Stimulation of PrP(C) retrograde transport toward the endoplasmic reticulum increases accumulation of PrP (Sc) in prion-infected cells. J Biol Chem 277:38972–38977.  https://doi.org/10.1074/jbc.M205110200
  84. 84.
    Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188–16199Google Scholar
  85. 85.
    Magalhães AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MA, Caughey B (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25:5207–5216.  https://doi.org/10.1523/JNEUROSCI.0653-05.2005 CrossRefGoogle Scholar
  86. 86.
    Marijanovic Z, Caputo A, Campana V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathog 5:e1000426.  https://doi.org/10.1371/journal.ppat.1000426 CrossRefGoogle Scholar
  87. 87.
    Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790.  https://doi.org/10.1016/j.neuron.2009.12.016 CrossRefGoogle Scholar
  88. 88.
    Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11:155–159.  https://doi.org/10.1038/nrn2786 CrossRefGoogle Scholar
  89. 89.
    Liu S, Hossinger A, Göbbels S, Vorberg IM (2017) Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates. Prion 11:98–112.  https://doi.org/10.1080/19336896.2017.1306162 CrossRefGoogle Scholar
  90. 90.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 200:373–383.  https://doi.org/10.1083/jcb.201211138 CrossRefGoogle Scholar
  91. 91.
    Hu YB, Dammer EB, Ren RJ, Wang G (2015) The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration. Transl Neurodegener 4:18.  https://doi.org/10.1186/s40035-015-0041-1 CrossRefGoogle Scholar
  92. 92.
    Boellaard JW, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Acta Neuropathol 82:225–228CrossRefGoogle Scholar
  93. 93.
    Kovács GG, Gelpi E, Ströbel T, Ricken G, Nyengaard JR, Bernheimer H, Budka H (2007) Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 66:628–636CrossRefGoogle Scholar
  94. 94.
    Liberski PP, Sikorska B, Hauw JJ, Kopp N, Streichenberger N, Giraud P, Boellaard J, Budka H et al (2010) Ultrastructural characteristics (or evaluation) of Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies or prion diseases. Ultrastruct Pathol 34:351–361.  https://doi.org/10.3109/01913123.2010.491175 CrossRefGoogle Scholar
  95. 95.
    Zafar S, Younas N, Correia S, Shafiq M, Tahir W, Schmitz M (2017) Strain-specific altered regulatory response of Rab7a and tau in Creutzfeldt-Jakob disease and Alzheimer’s disease. Mol Neurobiol 54:697–709.  https://doi.org/10.1007/s12035-016-9694-8 CrossRefGoogle Scholar
  96. 96.
    Gouras GK (2013) Convergence of synapses, endosomes, and prions in the biology of neurodegenerative diseases. Int J Cell Biol 2013:141083.  https://doi.org/10.1155/2013/14108 CrossRefGoogle Scholar
  97. 97.
    Guo BB, Bellingham SA, Hill AF (2016) Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem 291:5128–5137.  https://doi.org/10.1074/jbc.M115.684258.
  98. 98.
    Hasegawa T, Sugeno N, Kikuchi A, Baba T, Aoki M (2017) Membrane trafficking illuminates a path to Parkinson’s disease. Tohoku J Exp Med 242:63–76.  https://doi.org/10.1620/tjem.242.63 CrossRefGoogle Scholar
  99. 99.
    Aulić S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, Pastore B, de Cecco E et al (2017) α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci Rep 7:10050.  https://doi.org/10.1038/s41598-017-10236-x CrossRefGoogle Scholar
  100. 100.
    Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, la Vitola P, Messa M et al (2013) An N-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo. J Biol Chem 288:7857–7866.  https://doi.org/10.1074/jbc.M112.423954
  101. 101.
    Resenberger UK, Winklhofer KF, Tatzelt J (2011) Neuroprotective and neurotoxic signaling by the prion. Protein 305:101–119.  https://doi.org/10.1007/128_2011_160. Google Scholar
  102. 102.
    Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K et al (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 110:E3138–E3147.  https://doi.org/10.1073/pnas.1301440110 CrossRefGoogle Scholar
  103. 103.
    Ballmer BA, Moos R, Liberali P, Pelkmans L, Hornemann S, Aguzzi A (2017) Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. J Biol Chem 292:8356–8368.  https://doi.org/10.1074/jbc.M116.773283
  104. 104.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 1:983–997.  https://doi.org/10.1038/nm.3232 CrossRefGoogle Scholar
  105. 105.
    Schneider JL, Cuervo AM (2014) Autophagy and human disease: Emerging themes. Curr Opin Genet Dev 26:16–23.  https://doi.org/10.1016/j.gde.2014.04.00. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRCCS Istituto delle Scienze Neurologiche di BolognaOspedale BellariaBolognaItaly
  2. 2.Department of Biomedical and NeuroMotor Sciences, DIBINEMUniversity of BolognaBolognaItaly
  3. 3.Centre for Inflammation and Tissue Repair, UCL RespiratoryUniversity College LondonLondonUK
  4. 4.Department of Psychiatry and PsychotherapyLudwig-Maximilians-University MunichMunichGermany
  5. 5.Center for Neuropathology and Prion ResearchLudwig-Maximilians-University MunichMunichGermany
  6. 6.Division of Brain SciencesImperial College LondonLondonUK
  7. 7.Department of Experimental, Diagnostic and Specialty Medicine, DIMESUniversity of BolognaBolognaItaly

Personalised recommendations