Advertisement

Cellular and Molecular Aspects of Parkinson Treatment: Future Therapeutic Perspectives

  • Khosro Jamebozorgi
  • Eskandar Taghizadeh
  • Daryoush Rostami
  • Hosein Pormasoumi
  • George E. Barreto
  • Seyed Mohammad Gheibi Hayat
  • Amirhossein Sahebkar
Article
  • 319 Downloads

Abstract

Parkinson’s disease is a neurodegenerative disorder accompanied by depletion of dopamine and loss of dopaminergic neurons in the brain that is believed to be responsible for the motor and non-motor symptoms in this disease. The main drug prescribed for Parkinsonian patients is l-dopa, which can be converted to dopamine by passing through the blood-brain barrier. Although l-dopa is able to improve motor function and improve the quality of life in the patients, there is inter-individual variability and some patients do not achieve the therapeutic effect. Variations in treatment response and side effects of current drugs have convinced scientists to think of treating Parkinson’s disease at the cellular and molecular level. Molecular and cellular therapy for Parkinson’s disease include (i) cell transplantation therapy with human embryonic stem (ES) cells, human induced pluripotent stem (iPS) cells and human fetal mesencephalic tissue, (ii) immunological and inflammatory therapy which is done using antibodies, and (iii) gene therapy with AADC-TH-GCH gene therapy, viral vector-mediated gene delivery, RNA interference-based therapy, CRISPR-Cas9 gene editing system, and alternative methods such as optogenetics and chemogenetics. Although these methods currently have a series of challenges, they seem to be promising techniques for Parkinson’s treatment in future. In this study, these prospective therapeutic approaches are reviewed.

Keywords

Parkinson’s disease Transplantation therapy Molecular mechanisms l-dopa Gene therapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535PubMedCrossRefGoogle Scholar
  2. 2.
    Marin B, Couratier P, Lannuzel A, Logroscino G (2018) Other neurocognitive disorders in tropical health (amyotrophic lateral sclerosis and Parkinson’s disease). In: Neuroepidemiology in tropical health. Elsevier, pp. 167–183Google Scholar
  3. 3.
    Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95(11):6469–6473PubMedCrossRefGoogle Scholar
  5. 5.
    Obeso J, Stamelou M, Goetz C, Poewe W, Lang A, Weintraub D, Burn D, Halliday G et al (2017) Past, present, and future of Parkinson's disease: a special essay on the 200th anniversary of the Shaking Palsy. Mov Disord 32(9):1264–1310PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Davie CA (2008) A review of Parkinson's disease. Br Med Bull 86(1):109–127PubMedCrossRefGoogle Scholar
  8. 8.
    Hauser RA, Lew MF, Hurtig HI, Ondo WG, Wojcieszek J, Fitzer-Attas CJ, Group TOlS (2009) Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord 24(4):564–573PubMedCrossRefGoogle Scholar
  9. 9.
    Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Translational Neurodegeneration 6(1):28PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Pont-Sunyer C, Hotter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D et al (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30(2):229–237PubMedCrossRefGoogle Scholar
  11. 11.
    Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P et al (2015) Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord 30(7):919–927PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(S1):318–324PubMedCrossRefGoogle Scholar
  13. 13.
    Alam M, Schmidt W (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324PubMedCrossRefGoogle Scholar
  14. 14.
    Hoang QQ (2014) Pathway for Parkinson disease. Proc Natl Acad Sci 111(7):2402–2403PubMedCrossRefGoogle Scholar
  15. 15.
    Gibb W, Lees A (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 51(6):745–752PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, Bouzrou M, Grinberg LT et al (2015) The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol 25(2):121–135PubMedCrossRefGoogle Scholar
  17. 17.
    Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9(1):13–24PubMedCrossRefGoogle Scholar
  18. 18.
    Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(S1):325–337PubMedCrossRefGoogle Scholar
  19. 19.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909PubMedCrossRefGoogle Scholar
  20. 20.
    Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:24–34PubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang YX, Wood NW, Latchman DS (2009) Molecular basis of Parkinson’s disease. Neuroreport 20(2):150–156PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jain S, Wood NW, Healy DG (2005) Molecular genetic pathways in Parkinson’s disease: a review. Clin Sci 109(4):355–364PubMedCrossRefGoogle Scholar
  23. 23.
    Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53(S3):S16–S25PubMedCrossRefGoogle Scholar
  24. 24.
    Delamarre A, Meissner WG (2017) Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med 46(2):175–181PubMedCrossRefGoogle Scholar
  25. 25.
    Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326PubMedCrossRefGoogle Scholar
  26. 26.
    Tambasco N, Nigro P, Romoli M, Prontera P, Simoni S, Calabresi P (2016) A53T in a parkinsonian family: a clinical update of the SNCA phenotypes. J Neural Transm 123(11):1301–1307PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mastrangelo L (2017) The genetics of Parkinson disease. In: Adv Genet, vol 98. Elsevier, pp 43–62Google Scholar
  28. 28.
    Reichmann H (2016) Modern treatment in Parkinson’s disease, a personal approach. J Neural Transm 123(1):73–80PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Peschanski M, Defer G, N'guyen J, Ricolfi F, Monfort J, Remy P, Geny C, Samson Y et al (1994) Bilateral motor improvement and alteration of l-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117(3):487–499PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord 20(5):523–539PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. Jama 311(16):1670–1683PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chan AK, McGovern RA, Brown LT, Sheehy JP, Zacharia BE, Mikell CB, Bruce SS, Ford B et al (2014) Disparities in access to deep brain stimulation surgery for Parkinson disease: interaction between African American race and Medicaid use. JAMA Neurol 71(3):291–299PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nature reviews. Disease Primers 3:17013PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pinna A, Bonaventura J, Farré D, Sánchez M, Simola N, Mallol J, Lluís C, Costa G et al (2014) L-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. Exp Neurol 253:180–191PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41(11):1431–1441PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hornykiewicz O (1975) The mechanisms of action of l-dopa in Parkinson’s disease. In: Minireviews of the neurosciences from life sciences. Elsevier, pp. 421–431Google Scholar
  37. 37.
    Wade LA, Katzman R (1975) 3-0-Methyldopa uptake and inhibition of l-dopa at the blood-brain barrier. Life Sci 17(1):131–136PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Godwin-Austen R, Frears C, Tomlinson E, Kok H (1969) Effects of l-dopa in Parkinson’s disease. Lancet 294(7613):165–168CrossRefGoogle Scholar
  39. 39.
    Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mazo NA, Echeverria V, Cabezas R, Avila-Rodriguez M, Tarasov VV, Yarla NS, Aliev G, Barreto GE (2017) Medicinal plants as protective strategies against Parkinson’s disease. Curr Pharm Des 23(28):4180–4188.  https://doi.org/10.2174/1381612823666170316142803 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Santos G, Giraldez-Alvarez LD, Avila-Rodriguez M, Capani F, Galembeck E, Neto AG, Barreto GE, Andrade B (2016) SUR1 receptor interaction with hesperidin and linarin predicts possible mechanisms of action of valeriana officinalis in Parkinson. Front Aging Neurosci 8:97.  https://doi.org/10.3389/fnagi.2016.00097 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jurado-Coronel JC, Avila-Rodriguez M, Echeverria V, Hidalgo OA, Gonzalez J, Aliev G, Barreto GE (2016) Implication of green tea as a possible therapeutic approach for Parkinson disease. CNS Neurol Disord Drug Targets 15(3):292–300PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sutachan JJ, Casas Z, Albarracin SL, Stab BR 2nd, Samudio I, Gonzalez J, Morales L, Barreto GE (2012) Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 15(3):120–126.  https://doi.org/10.1179/1476830511Y.0000000033 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, Gonzalo L, Capani F et al (2012) Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 15(1):1–9.  https://doi.org/10.1179/1476830511Y.0000000028 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    de Oliveria DM, Barreto G, De Andrade DV, Saraceno E, Aon-Bertolino L, Capani F, Dos Santos El Bacha R, Giraldez LD (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34(2):215–220.  https://doi.org/10.1007/s11064-008-9749-y CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Valverde GDAD, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD (2008) Effects of the extract of Anemopaegma mirandum (Catuaba) on rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res 1198:188–196.  https://doi.org/10.1016/j.brainres.2008.01.006 CrossRefGoogle Scholar
  47. 47.
    Solayman M, Islam M, Alam F, Ibrahim Khalil M, Amjad Kamal M, Hua Gan S (2017) Natural products combating neurodegeneration: Parkinson’s disease. Curr Drug Metab 18(1):50–61PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ríos J-L, Onteniente M, Picazo D, Montesinos M-C (2016) Medicinal plants and natural products as potential sources for antiparkinson drugs. Planta Med 82(11/12):942–951PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhang H, Bai L, He J, Zhong L, Duan X, Ouyang L, Zhu Y, Zhang Y et al (2017) Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur J Med Chem 141:257–272PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, Giraldez L, Echeverria V, Barrera-Bailon B, Aliev G, Sahebkar A et al (2018) Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Front Chem 6:276.  https://doi.org/10.3389/fchem.2018.00276 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Backlund E-O, Granberg P-O, Hamberger B, Knutsson E, Mårtensson A, Sedvall G, Seiger Å, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism: first clinical trials. J Neurosurg 62(2):169–173PubMedCrossRefGoogle Scholar
  52. 52.
    Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger Å et al (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22(4):457–468PubMedCrossRefGoogle Scholar
  53. 53.
    Freed CR, Greene PE, Breeze RE, Tsai W-Y, DuMouchel W, Kao R, Dillon S, Winfield H et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344(10):710–719PubMedCrossRefGoogle Scholar
  54. 54.
    Lindvall O (2015) Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc B 370(1680):20140370CrossRefGoogle Scholar
  55. 55.
    Kim J-H, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56PubMedCrossRefGoogle Scholar
  56. 56.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  57. 57.
    Kim H-J (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta (BBA) – Mol Basis Dis 1812(1):1–11CrossRefGoogle Scholar
  58. 58.
    Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1(6):703–714PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fu M-H, Li C-L, Lin H-L, Chen P-C, Calkins MJ, Chang Y-F, Cheng P-H, Yang S-H (2015) Stem cell transplantation therapy in Parkinson’s disease. SpringerPlus 4(1):597PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, Yi SH, Lee SH (2015) Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med e201404610Google Scholar
  61. 61.
    Roybon L, Christophersen NS, Brundin P, Li J-Y (2004) Stem cell therapy for Parkinson’s disease: where do we stand? Cell Tissue Res 318(1):261–273PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zhang S-C, Li X-J, Johnson MA, Pankratz MT (2008) Human embryonic stem cells for brain repair? Philos Trans R Soc Lond B Biol Sci 363(1489):87–99PubMedCrossRefGoogle Scholar
  63. 63.
    Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fitzpatrick KM, Raschke J, Emborg ME (2009) Cell-based therapies for Parkinson’s disease: past, present, and future. Antioxid Redox Signal 11(9):2189–2208PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL et al (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15(5):653–665PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, Trounson A, Turner D et al (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384PubMedCrossRefGoogle Scholar
  67. 67.
    Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Development 10(4):622–640Google Scholar
  68. 68.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089PubMedCrossRefGoogle Scholar
  69. 69.
    Parmar M, Torper O, Drouin-Ouellet J (2018) Cell-based therapy for Parkinson’s disease: a journey through decades towards the light side of the force. Eur J NeurosciGoogle Scholar
  70. 70.
    Masserdotti G, Gascón S, Götz M (2016) Direct neuronal reprogramming: learning from and for development. Development 143(14):2494–2510PubMedCrossRefGoogle Scholar
  71. 71.
    Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108(25):10343–10348PubMedCrossRefGoogle Scholar
  72. 72.
    Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Sundberg M, Moore MA et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350CrossRefGoogle Scholar
  74. 74.
    Kikuchi T, Morizane A, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J (2011) Survival of human induced pluripotent stem cell–derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinson’s Disease 1(4):395–412Google Scholar
  75. 75.
    Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, Moore M, Osborn T et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31(8):1548–1562PubMedCrossRefGoogle Scholar
  76. 76.
    Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S et al (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548(7669):592–596PubMedCrossRefGoogle Scholar
  77. 77.
    Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152PubMedCrossRefGoogle Scholar
  78. 78.
    Marro S, Pang ZP, Yang N, Tsai M-C, Qu K, Chang HY, Südhof TC, Wernig M (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9(4):374–382PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lindvall O (2013) Developing dopaminergic cell therapy for Parkinson’s disease—give up or move forward? Mov Disord 28(3):268–273PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    González C, Bonilla S, Isabel Flores A, Cano E, Liste I (2016) An update on human stem cell-based therapy in Parkinson’s disease. Curr Stem Cell Res Ther 11(7):561–568PubMedCrossRefGoogle Scholar
  81. 81.
    Barker RA, Barrett J, Mason SL, Björklund A (2013) Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 12(1):84–91PubMedCrossRefGoogle Scholar
  82. 82.
    Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202PubMedCrossRefGoogle Scholar
  83. 83.
    Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH et al (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327(22):1541–1548PubMedCrossRefGoogle Scholar
  84. 84.
    Lindvall O, Sawle G, Widner H, Rothwell JC, Björklund A, Brooks D, Brundin P, Frackowiak R et al (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35(2):172–180PubMedCrossRefGoogle Scholar
  85. 85.
    Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2(12):1137–1140PubMedCrossRefGoogle Scholar
  86. 86.
    Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O (2014) Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep 7(6):1755–1761PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5(7):627–628PubMedCrossRefGoogle Scholar
  88. 88.
    Freed CR, Zhou W, Breeze RE (2011) Dopamine cell transplantation for Parkinson’s disease: the importance of controlled clinical trials. Neurotherapeutics 8(4):549–561PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Carta M, Carlsson T, Muñoz A, Kirik D, Björklund A (2008) Serotonin–dopamine interaction in the induction and maintenance of l-DOPA-induced dyskinesias. Prog Brain Res 172:465–478PubMedCrossRefGoogle Scholar
  90. 90.
    Politis M, Wu K, Loane C, Turkheimer F, Molloy S, Brooks D, Piccini P (2010) Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75(21):1920–1927PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rath A, Klein A, Papazoglou A, Pruszak J, Garcia J, Krause M, Maciaczyk J, Dunnett SB et al (2013) Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson’s disease. Cell Transplant 22(7):1281–1293PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Parashar A, Udayabanu M (2017) Gut microbiota: Implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Marizzoni M, Provasi S, Cattaneo A, Frisoni GB (2017) Microbiota and neurodegenerative diseases. Curr Opin Neurol 30(6):630–638PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, Fujita K, Ji A, Takahashi H et al (2017) Microglia may compensate for dopaminergic neuron loss in experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia 65(11):1833–1847PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Blaylock RL (2017) Parkinson’s disease: microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 8:65PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C et al (2017) Erratum: T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 549(7671):292PubMedCrossRefGoogle Scholar
  97. 97.
    Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Holmans P, Moskvina V, Jones L, Sharma M, Consortium IPsDG, Vedernikov A, Buchel F, Sadd M et al (2012) A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum Mol Genet 22(5):1039–1049PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Jankovic J (2018) Immunologic treatment of Parkinson’s disease. Future MedGoogle Scholar
  100. 100.
    Witoelar A, Jansen IE, Wang Y, Desikan RS, Gibbs JR, Blauwendraat C, Thompson WK, Hernandez DG et al (2017) Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol 74(7):780–792PubMedPubMedCentralGoogle Scholar
  101. 101.
    Li C, Guo Y, Xie W, Li X, Janokovic J, Le W (2010) Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson’s disease. Neurochem Res 35(10):1546–1556PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut PO, Tamburrino A, Bassil F, Meissner WG et al (2016) Targeting α-synuclein: therapeutic options. Mov Disord 31(6):882–888PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lawand NB, Saadé NE, El-Agnaf OM, Safieh-Garabedian B (2015) Targeting α-synuclein as a therapeutic strategy for Parkinson’s disease. Expert Opin Ther Targets 19(10):1351–1360PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW et al (2015) Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14(8):855–866PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Spencer B, Valera E, Rockenstein E, Overk C, Mante M, Adame A, Zago W, Seubert P et al (2017) Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathol Commun 5(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jankovic J, Goodman I, Safirstein B, Schenk D, Kinney G, Koller M, Ness D, Griffith S et al (2018) Results from a phase 1b multiple ascending-dose study of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with Parkinson’s disease. Parkinsonism Relat Disord 46:e25CrossRefGoogle Scholar
  107. 107.
    Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K et al (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Sahin C, Lorenzen N, Lemminger L, Christiansen G, Møller IM, Vesterager LB, Pedersen LØ, Fog K et al (2017) Antibodies against the C-terminus of α-synuclein modulate its fibrillation. Biophys Chem 220:34–41PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Weihofen A, Patel H, Huy C, Liu C, Combaluzier I, Mueller-Steiner S, Cavegn N, Strobel L, Kuznetsov G, Engber T (2017) Binding and functional characterization of human-derived anti-alpha-synuclein antibody BIIB054. Neurodegener DisGoogle Scholar
  110. 110.
    Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W, Soto J, Atiee G et al (2017) First-in-human assessment of PRX002, an anti–α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 32(2):211–218PubMedCrossRefGoogle Scholar
  111. 111.
    Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C, Adame A, Santic R, Meindl S et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175(4025):949–955PubMedCrossRefGoogle Scholar
  113. 113.
    Axelsen TM, Woldbye DP (2018) Gene therapy for Parkinson’s disease, an update. J Parkinson's disease (Preprint) 1–21Google Scholar
  114. 114.
    Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A, Barreto GE (2018) Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol.  https://doi.org/10.1007/s12035-018-1203-9
  115. 115.
    Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211.  https://doi.org/10.3389/fncel.2014.00211 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Cabezas R, Avila-Rodriguez M, Vega-Vela NE, Echeverria V, Gonzalez J, Hidalgo OA, Santos AB, Aliev G et al (2016) Growth factors and astrocytes metabolism: possible roles for platelet derived growth factor. Med Chem 12(3):204–210PubMedCrossRefGoogle Scholar
  117. 117.
    Cabezas R, El-Bacha RS, Gonzalez J, Barreto GE (2012) Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 74(2):80–90.  https://doi.org/10.1016/j.neures.2012.07.008 CrossRefPubMedGoogle Scholar
  118. 118.
    Coune PG, Schneider BL, Aebischer P (2012) Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med 2(4):a009431PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Belin AC, Westerlund M (2008) Parkinson’s disease: a genetic perspective. FEBS J 275(7):1377–1383PubMedCrossRefGoogle Scholar
  120. 120.
    Bartus RT, Weinberg MS, Samulski RJ (2014) Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 22(3):487–497PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11(1):34PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hutz MH, Rieder CR (2018) The future of pharmacogenetics in Parkinson's disease treatment. Future MedGoogle Scholar
  123. 123.
    Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB, Kingsman SM, Kingsman AJ et al (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J Neurosci 22(23):10302–10312PubMedCrossRefGoogle Scholar
  124. 124.
    Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, Cunningham J, Bankiewicz KS (2006) A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 14(4):571–577PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18(8):1458–1461PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Eberling J, Jagust W, Christine C, Starr P, Larson P, Bankiewicz K, Aminoff M (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983PubMedCrossRefGoogle Scholar
  127. 127.
    Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23(4):377–381PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383(9923):1138–1146PubMedCrossRefGoogle Scholar
  129. 129.
    Jarraya B, Boulet S, Ralph GS, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M et al (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1(2):2ra4–2ra4PubMedCrossRefGoogle Scholar
  130. 130.
    Muramatsu S-i (2010) The current status of gene therapy for Parkinson’s disease. Ann Neurosci 17(2):92–95PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Caudle WM, Colebrooke RE, Emson PC, Miller GW (2008) Altered vesicular dopamine storage in Parkinson’s disease: a premature demise. Trends Neurosci 31(6):303–308PubMedCrossRefGoogle Scholar
  132. 132.
    Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ et al (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28(2):425–433PubMedCrossRefGoogle Scholar
  133. 133.
    Man JH, Groenink L, Caiazzo M (2018) Cell reprogramming approaches in gene-and cell-based therapies for Parkinson’s disease. J Control Release 286:114–124PubMedCrossRefGoogle Scholar
  134. 134.
    Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175PubMedCrossRefGoogle Scholar
  135. 135.
    d’Anglemont de Tassigny X, Pascual A, López-Barneo J (2015) GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson’s disease. Front Neuroanat 9:10PubMedPubMedCentralGoogle Scholar
  136. 136.
    Kirik D, Cederfjäll E, Halliday G, Petersén Å (2017) Gene therapy for Parkinson's disease: disease modification by GDNF family of ligands. Neurobiol Dis 97:179–188PubMedCrossRefGoogle Scholar
  137. 137.
    Eberling JL, Kells AP, Pivirotto P, Beyer J, Bringas J, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Functional effects of AAV2-GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum Gene Ther 20(5):511–518PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Warren Olanow C, Bartus RT, Baumann TL, Factor S, Boulis N, Stacy M, Turner DA, Marks W et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78(2):248–257PubMedCrossRefGoogle Scholar
  139. 139.
    Brantl S (2002) Antisense-RNA regulation and RNA interference. Biochim Biophys Acta Gene Struct Expr 1575(1–3):15–25CrossRefGoogle Scholar
  140. 140.
    Agrawal N, Dasaradhi P, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Häbig K, Walter M, Poths S, Riess O, Bonin M (2008) RNA interference of LRRK2–microarray expression analysis of a Parkinson’s disease key player. Neurogenetics 9(2):83–94PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, Fietz SA, Aigner A et al (2017) Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-Synuclein expression in a model of Parkinson’s disease. Mol Ther Nucleic Acids 9:57–68PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Liu YY, Yang XY, Li Z, Liu ZL, Cheng D, Wang Y, Wen XJ, Hu JY et al (2014) Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson’s disease. CNS Neurosci Ther 20(1):76–85PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Hoepken H-H, Gispert S, Azizov M, Klinkenberg M, Ricciardi F, Kurz A, Morales-Gordo B, Bonin M et al (2008) Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp Neurol 212(2):307–313PubMedCrossRefGoogle Scholar
  145. 145.
    Haussecker D (2014) Current issues of RNAi therapeutics delivery and development. J Control Release 195:49–54PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    McSwiggen J, Haeberli P, Chowrira B (2004) RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA). Google PatentsGoogle Scholar
  147. 147.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Basu S, Adams L, Guhathakurta S, Kim Y-S (2017) A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3′ end using CRISPR-Cas9 genome editing technique. Sci Rep 7:45883PubMedCentralCrossRefPubMedGoogle Scholar
  151. 151.
    Cui Z, Renfu Q, Jinfu W (2018) Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol GenetGoogle Scholar
  152. 152.
    Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14(3):387–397PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Sanders TH, Jaeger D (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 95:225–237PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Pienaar IS, Gartside SE, Sharma P, De Paola V, Gretenkord S, Withers D, Elson JL, Dexter DT (2015) Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease. Mol Neurodegener 10(1):47PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK, Dexter DT (2015) An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson’s disease. Brain Struct Funct 220(1):479–500PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Lee JS, Lee S-J (2016) Mechanism of anti-α-synuclein immunotherapy. J Mov Disord 9(1):14–19PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Khosro Jamebozorgi
    • 1
  • Eskandar Taghizadeh
    • 2
    • 3
  • Daryoush Rostami
    • 4
  • Hosein Pormasoumi
    • 1
  • George E. Barreto
    • 5
    • 6
  • Seyed Mohammad Gheibi Hayat
    • 7
  • Amirhossein Sahebkar
    • 8
    • 9
    • 10
    • 11
  1. 1.Faculty of MedicineZabol University of Medical SciencesZabolIran
  2. 2.Cellular and Molecular Research CenterYasuj University of Medical SciencesYasujIran
  3. 3.Departments of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  4. 4.Department of School AlliedZabol University of Medical SciencesZabolIran
  5. 5.Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotá D.C.Colombia
  6. 6.Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile
  7. 7.Department of Genetics, School of MedicineShahid Sadoughi University of Medical SciencesYazdIran
  8. 8.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  9. 9.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  10. 10.School of PharmacyMashhad University of Medical SciencesMashhadIran
  11. 11.Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations