Molecular Neurobiology

, Volume 56, Issue 7, pp 4960–4979 | Cite as

Development of Cortical Pyramidal Cell and Interneuronal Dendrites: a Role for Kainate Receptor Subunits and NETO1

  • Alexander Jack
  • Mohammad I. K. Hamad
  • Steffen Gonda
  • Sebastian Gralla
  • Steffen Pahl
  • Michael Hollmann
  • Petra WahleEmail author


During neuronal development, AMPA receptors (AMPARs) and NMDA receptors (NMDARs) are important for neuronal differentiation. Kainate receptors (KARs) are closely related to AMPARs and involved in the regulation of cortical network activity. However, their role for neurite growth and differentiation of cortical neurons is unclear. Here, we used KAR agonists and overexpression of selected KAR subunits and their auxiliary neuropilin and tolloid-like proteins, NETOs, to investigate their influence on dendritic growth and network activity in organotypic cultures of rat visual cortex. Kainate at 500 nM enhanced network activity and promoted development of dendrites in layer II/III pyramidal cells, but not interneurons. GluK2 overexpression promoted dendritic growth in pyramidal cells and interneurons. GluK2 transfectants were highly active and acted as drivers for network activity. GluK1 and NETO1 specifically promoted dendritic growth of interneurons. Our study provides new insights for the roles of KARs and NETOs in the morphological and physiological development of the visual cortex.


Rat neocortex Postnatal development Dendritogenesis Glutamate receptors GluK2 NETO 



We thank Andrea Räk, Sabine Schönfelder, and Christian Riedel for technical support. We thank Prof. Nathalie Strutz-Seebohm, University Münster, for providing the TTBK2-KD plasmid. We thank Prof. Andreas Reiner, Ruhr University Bochum, for discussion. We thank Bente Janssen-Weets and Felix Burgmann for help with reconstructions during their BSc thesis work.

Author Contribution

AJ, MIKH, and PW designed experiments. AJ, MIKH, SG, SG, SP, and PW performed experiments. AJ and PW did the data management and interpretation. AJ and PW wrote the manuscript. MH commented on the manuscript. All authors approved the final version.

Funding Information

Supported by Deutsche Forschungsgemeinschaft grants WA 541/9-1 and 541/9-2.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they do not have any conflict of interest.

Supplementary material

12035_2018_1414_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 18 kb)
12035_2018_1414_Fig8_ESM.png (612 kb)
Supplementary Fig. 1

(PNG 611 kb)

12035_2018_1414_MOESM2_ESM.tif (2 mb)
High Resolution (TIF 2068 kb)
12035_2018_1414_Fig9_ESM.png (3 mb)
Supplementary Fig. 2

(PNG 3022 kb)

12035_2018_1414_MOESM3_ESM.tif (12.6 mb)
High Resolution (TIF 12867 kb)
12035_2018_1414_Fig10_ESM.png (633 kb)
Supplementary Fig. 3

(PNG 633 kb)

12035_2018_1414_MOESM4_ESM.tif (1.9 mb)
High Resolution (TIF 1990 kb)
12035_2018_1414_Fig11_ESM.png (569 kb)
Supplementary Fig. 4

(PNG 568 kb)

12035_2018_1414_MOESM5_ESM.tif (8.8 mb)
High Resolution (TIF 8967 kb)


  1. 1.
    Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108. CrossRefPubMedGoogle Scholar
  2. 2.
    Lodge D (2009) The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 56:6–21. CrossRefPubMedGoogle Scholar
  3. 3.
    Wu GY, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226. CrossRefPubMedGoogle Scholar
  4. 4.
    Rajan I, Cline HT (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18:7836–7846. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:475–480. CrossRefPubMedGoogle Scholar
  6. 6.
    Iwasato T, Datwani A, Wolf AM, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu RS et al (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726–731. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee L-J, Lo F-S, Erzurumlu RS (2005) NMDA receptor-dependent regulation of axonal and dendritic branching. J Neurosci 25:2304–2311. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Haas K, Li J, Cline HT (2006) AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proc Natl Acad Sci U S A 103:12127–12131. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hamad MIK, Ma-Högemeier Z-L, Riedel C, Conrads C, Veitinger T, Habijan T, Schulz J-N, Krause M et al (2011) Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development 138:4301–4313. CrossRefPubMedGoogle Scholar
  10. 10.
    Hamad MIK, Jack A, Klatt O, Lorkowski M, Strasdeit T, Kott S, Sager C, Hollmann M et al (2014) Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures. Development 141:1737–1748. CrossRefPubMedGoogle Scholar
  11. 11.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H et al (2010) Glutamate receptor ion channels. Pharmacol Rev 62:405–496. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992) The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8:775–785. CrossRefPubMedGoogle Scholar
  13. 13.
    Contractor A, Mulle C, Swanson GT (2011) Kainate receptors coming of age. Trends Neurosci 34:154–163. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hadzic M, Jack A, Wahle P (2017) Ionotropic glutamate receptors. J Comp Neurol 525:976–1033. CrossRefPubMedGoogle Scholar
  15. 15.
    Wisden W, Seeburg PH (1993) A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13:3582–3598. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M (1999) Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro. Eur J Neurosci 11:604–616. CrossRefPubMedGoogle Scholar
  17. 17.
    Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525–5547. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Paschen W, Dux E, Djuricic B (1994) Developmental changes in the extent of RNA editing of glutamate receptor subunit GluR5 in rat brain. Neurosci Lett 174:109–112. CrossRefPubMedGoogle Scholar
  19. 19.
    Paschen W, Schmitt J, Gissel C, Dux E (1997) Developmental changes of RNA editing of glutamate receptor subunits GluR5 and GluR6. Brain research. Dev Brain Res 98:271–280. CrossRefGoogle Scholar
  20. 20.
    Valbuena S, Lerma J (2016) Non-canonical signaling, the hidden life of ligand-gated ion channels. Neuron 92:316–329. CrossRefPubMedGoogle Scholar
  21. 21.
    Sihra TS, Rodriguez-Moreno A (2013) Presynaptic kainate receptor mediated bidirectional modulatory actions: mechanisms. Neurochem Int 62:982–987. CrossRefPubMedGoogle Scholar
  22. 22.
    Negrete-Díaz JV, Sihra TS, Flores G, Rodríguez-Moreno A (2018) Non-canonical mechanisms of presynaptic kainate receptors controlling glutamate release. Front Mol Neurosci 11:128. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Monnerie H, Le Roux PD (2006) Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. J Neurosci Res 83:944–956. CrossRefPubMedGoogle Scholar
  24. 24.
    Marques JM, Rodrigues RJ, Valbuena S, Rozas JL, Selak S, Marin P, Aller MI, Lerma J (2013) CRMP2 tethers kainate receptor activity to cytoskeleton dynamics during neuronal maturation. J Neurosci 33:18298–18310. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Joseph DJ, Williams DJ, MacDermott AB (2011) Modulation of neurite outgrowth by activation of calcium-permeable kainate receptors expressed by rat nociceptive-like dorsal root ganglion neurons. Dev Neurobiol 71:818–835. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Campbell SL, Mathew SS, Hablitz JJ (2007) Pre- and postsynaptic effects of kainate on layer II/III pyramidal cells in rat neocortex. Neuropharmacology 53:37–47. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nasu-Nishimura Y, Jaffe H, Isaac JTR, Roche KW (2010) Differential regulation of kainate receptor trafficking by phosphorylation of distinct sites on GluR6. J Biol Chem 285:2847–2856. CrossRefPubMedGoogle Scholar
  28. 28.
    Park Y, Jo J, Isaac JTR, Cho K (2006) Long-term depression of kainate receptor-mediated synaptic transmission. Neuron 49:95–106. CrossRefPubMedGoogle Scholar
  29. 29.
    Petrovic MM, Viana da Silva S, Clement JP, Vyklicky L, Mulle C, González-González IM, Henley JM (2017) Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation. Nat Neurosci 20:529–539. CrossRefPubMedGoogle Scholar
  30. 30.
    Juuri J, Clarke VRJ, Lauri SE, Taira T (2010) Kainate receptor-induced ectopic spiking of CA3 pyramidal neurons initiates network bursts in neonatal hippocampus. J Neurophysiol 104:1696–1706. CrossRefPubMedGoogle Scholar
  31. 31.
    Orav, E., Atanasova, T., Shintyapina, A., Kesaf, S., Kokko, M., Partanen, J., Taira, T., Lauri, S.E. (2017). NETO1 guides development of glutamatergic connectivity in the hippocampus by regulating axonal kainate receptors. eNeuro 4. CrossRefGoogle Scholar
  32. 32.
    Vernon CG, Swanson GT (2017) Neto2 assembles with kainate receptors in DRG neurons during development and modulates neurite outgrowth in adult sensory neurons. J Neurosci 37:3352–3363. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wirth MJ, Wahle P (2003) Biolistic transfection of organotypic cultures of rat visual cortex using a handheld device. J Neurosci Methods 125:45–54. CrossRefPubMedGoogle Scholar
  34. 34.
    Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, Cantley LC, Prescott A et al (2011) TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochem J 437:157–167. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, Shah S, Cai L et al (2014) 808 Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158(4):945–958. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hamad MIK, Krause M, Wahle P (2015) Improving AM ester calcium dye loading efficiency. J Neurosci Methods 240:48–60. CrossRefPubMedGoogle Scholar
  38. 38.
    Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage. Biomed Eng Online 2:13. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rasband WS (1997–2012) ImageJ. National Institutes of Health, Bethesda, MD, USA. Available online at:
  40. 40.
    Hoerder-Suabedissen A, Paulsen O, Molnar Z (2008) Thalamocortical maturation in mice is influenced by body weight. J Comp Neurol 511:415–420. CrossRefPubMedGoogle Scholar
  41. 41.
    Oh E, Maejima T, Liu C, Deneris E, Herlitze S (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285:30825–30836. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lauri SE, Taira T (2011) Role of kainate receptors in network activity during development. Adv Exp Med Biol 717:81–91. CrossRefPubMedGoogle Scholar
  43. 43.
    Beed PS, Salmen B, Schmitz D (2009) GluK2-mediated excitability within the superficial layers of the entorhinal cortex. PLoS One 4:e5576. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Clarke VR, Ballyk BA, Hoo KH, Mandelzys A, Pellizzari A, Bath CP, Thomas J, Sharpe EF et al (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389:599–603. CrossRefPubMedGoogle Scholar
  45. 45.
    Cossart R, Esclapez M, Hirsch JC, Bernard C, Ben-Ari Y (1998) GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1:470–478. CrossRefPubMedGoogle Scholar
  46. 46.
    Frerking M, Malenka RC, Nicoll RA (1998) Synaptic activation of kainate receptors on hippocampal interneurons. Nat Neurosci 1:479–486. CrossRefPubMedGoogle Scholar
  47. 47.
    Khalilov I, Hirsch J, Cossart R, Ben-Ari Y (2002) Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol 88:523–527. CrossRefPubMedGoogle Scholar
  48. 48.
    Rodríguez-Moreno A, López-García JC, Lerma J (2000) Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc Natl Acad Sci U S A 97:1293–1298. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cunningham MO, Davies CH, Buhl EH, Kopell N, Whittington MA (2003) Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J Neurosci 23:9761–9769. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fisahn A, Contractor A, Traub RD, Buhl EH, Heinemann SF, McBain CJ (2004) Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J Neurosci 24:9658–9668. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Melyan Z, Wheal HV, Lancaster B (2002) Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 34:107–114. CrossRefPubMedGoogle Scholar
  52. 52.
    Melyan Z, Lancaster B, Wheal HV (2004) Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 24:4530–4534. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mulle C, Sailer A, Pérez-Otaño I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH et al (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601–605. CrossRefPubMedGoogle Scholar
  54. 54.
    Nieding K, Matschke V, Meuth SG, Lang F, Seebohm G, Strutz-Seebohm N (2016) Tau tubulin kinase TTBK2 sensitivity of glutamate receptor GluK2. Cell Physiol Biochem 39:1444–1452. CrossRefPubMedGoogle Scholar
  55. 55.
    Fièvre S, Carta M, Chamma I, Labrousse V, Thoumine O, Mulle C (2016) Molecular determinants for the strictly compartmentalized expression of kainate receptors in CA3 pyramidal cells. Nat Commun 7:12738. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bureau I, Bischoff S, Heinemann SF, Mulle C (1999) Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci 19:653–663. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Petralia RS, Wang YX, Wenthold RJ (1994) Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J Comp Neurol 349:85–110. CrossRefPubMedGoogle Scholar
  58. 58.
    Copits BA, Swanson GT (2012) Dancing partners at the synapse. Nat Rev Neurosci 13:675–686. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang W, St-Gelais F, Grabner CP, Trinidad JC, Sumioka A, Morimoto-Tomita M, Kim KS, Straub C et al (2009) A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61:385–396. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Palacios-Filardo J, Aller MI, Lerma J (2016) Synaptic targeting of kainate receptors. Cereb Cortex 26:1464–1472. CrossRefPubMedGoogle Scholar
  61. 61.
    Wyeth MS, Pelkey KA, Yuan X, Vargish G, Johnston AD, Hunt S, Fang C, Abebe D et al (2017) Neto auxiliary subunits regulate interneuron somatodendritic and presynaptic kainate receptors to control network inhibition. Cell Rep 20:2156–2168. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fisher JL, Mott DD (2011) Distinct functional roles of subunits within the heteromeric kainate receptor. J Neurosci 31:17113–17122. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Paternain AV, Rodríguez-Moreno A, Villarroel A, Lerma J (1998) Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 37:1249–1259. CrossRefPubMedGoogle Scholar
  64. 64.
    Fernandes HB, Catches JS, Petralia RS, Copits BA, Xu J, Russell TA, Swanson GT, Contractor A (2009) High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling. Neuron 63:818–829. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Barberis A, Sachidhanandam S, Mulle C (2008) GluR6/KA2 kainate receptors mediate slow-deactivating currents. J Neurosci 28:6402–6406. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ibarretxe G, Perrais D, Jaskolski F, Vimeney A, Mulle C (2007) Fast regulation of axonal growth cone motility by electrical activity. J Neurosci 27:7684–7695. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tashiro A, Dunaevsky A, Blazeski R, Mason CA, Yuste R (2003) Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors. Neuron 38:773–784. CrossRefPubMedGoogle Scholar
  68. 68.
    Dai W-M, Christensen KV, Egebjerg J, Ebert B, Lambert JDC (2002) Correlation of the expression of kainate receptor subtypes to responses evoked in cultured cortical and spinal cord neurones. Brain Res 926:94–107. CrossRefPubMedGoogle Scholar
  69. 69.
    Paternain AV, Herrera MT, Nieto MA, Lerma J (2000) GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 20:196–205. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Eder M, Becker K, Rammes G, Schierloh A, Azad SC, Zieglgänsberger W, Dodt H-U (2003) Distribution and properties of functional postsynaptic kainate receptors on neocortical layer V pyramidal neurons. J Neurosci 23:6660–6670. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585. CrossRefPubMedGoogle Scholar
  72. 72.
    Ali AB (2003) Involvement of post-synaptic kainate receptors during synaptic transmission between unitary connections in rat neocortex. Eur J Neurosci 17:2344–2350. CrossRefPubMedGoogle Scholar
  73. 73.
    Swanson GT, Feldmeyer D, Kaneda M, Cull-Candy SG (1996) Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol 492:129–142. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chow DK, Groszer M, Pribadi M, Machniki M, Carmichael ST, Liu X, Trachtenberg JT (2009) Laminar and compartmental regulation of dendritic growth in mature cortex. Nat Neurosci 12:116–118. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Romand S, Wang Y, Toledo-Rodriguez M, Markram H (2011) Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex. Front Neuroanat 5:5. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Han Y, Wang C, Park JS, Niu L (2012) Channel-opening kinetic mechanism of wild-type GluK1 kainate receptors and a C-terminal mutant. Biochemistry 51:761–768. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Salmen B, Beed PS, Ozdogan T, Maier N, Johenning FW, Winterer J, Breustedt J, Schmitz D (2012) GluK1 inhibits calcium dependent and independent transmitter release at associational/commissural synapses in area CA3 of the hippocampus. Hippocampus 22:57–68. CrossRefPubMedGoogle Scholar
  78. 78.
    Vignes M, Clarke VR, Parry MJ, Bleakman D, Lodge D, Ornstein PL, Collingridge GL (1998) The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 37:1269–1277. CrossRefPubMedGoogle Scholar
  79. 79.
    Wu L-J, Xu H, Ren M, Zhuo M (2007) Genetic and pharmacological studies of GluR5 modulation of inhibitory synaptic transmission in the anterior cingulate cortex of adult mice. Dev Neurobiol 67:146–157. CrossRefPubMedGoogle Scholar
  80. 80.
    Wu L-J, Zhao M-G, Toyoda H, Ko SW, Zhuo M (2005) Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex. J Neurophysiol 94:1805–1813. CrossRefPubMedGoogle Scholar
  81. 81.
    Andrade-Talavera Y, Duque-Feria P, Negrete-Díaz JV, Sihra TS, Flores G, Rodríguez-Moreno A (2012) Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+-calmodulin at mossy fiber-CA3 synapses. J Neurochem 122:891–899. CrossRefPubMedGoogle Scholar
  82. 82.
    Rodríguez-Moreno A, Sihra TS (2013) Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+-calmodulin and PKA in cerebrocortical synaptosomes. FEBS Lett 587:788–792. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty for Biology and Biotechnology ND 6/72, Developmental NeurobiologyRuhr University BochumBochumGermany
  2. 2.Medical Faculty, Neuroanatomy and Molecular Brain ResearchRuhr University BochumBochumGermany
  3. 3.Faculty of Chemistry and Biochemistry, Biochemistry I—Receptor BiochemistryRuhr University BochumBochumGermany

Personalised recommendations