Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study

Abstract

Carbon monoxide (CO) is an endogenous gasotransmitter that limits inflammation and prevents apoptosis in several tissues, including the brain. Low concentrations of CO are cytoprotective in astrocytes, neurons, and microglia, but the underlying molecular mechanisms remain poorly understood. This work aims at identification of alterations in gene expression conferred by CO in primary cultures of cortical astrocytes, for further disclosure of the molecular mechanism of action of the gasotransmitter. Astrocytes were treated with the CO-releasing molecule CORM-A1 for 40 min, and transcriptional changes were analyzed using RNASeq. A total of 162 genes were differentially expressed in response to CO treatment, and 7 of these genes were selected for further analysis: FosB, Scand1, Rgs10, Actg1, Panx1, Pcbdh21, and Rn18s. The alterations in their expression were further validated using qRT-PCR. An increase in FosB protein expression was also observed after 40 min of CORM-A1 treatment, as determined by a western blot. CO-induced FosB expression and cytoprotection were both abrogated in the presence of the P2X7 receptor antagonist A-438079. Furthermore, CORM-A1 increased phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII), which is a downstream event of P2X7R activation. The functional importance of FosB in CO-induced survival was assessed by knocking down its expression with FosB siRNA. Astrocytes were challenged to death with oxidative stress and cell viability was assessed 24 h later. Downregulation of FosB did not prevent the effects of CO in the inhibition of astrocytic cell death. Nevertheless, the transcriptomic changes observed upon treatment of astrocytes with CO open new opportunities for further studies on CO cytoprotective pathways.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

Actg1:

Actin gamma 1

AP-1:

Activator protein 1

ATF:

Activating transcription factor

Bcl-2:

B cell leukemia/lymphoma 2

BDNF:

Brain-derived neurotrophic factor

CBP:

CREB binding protein

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CO:

Carbon monoxide

CORM-A1:

Carbon monoxide-releasing molecule A1

CREB:

cAMP-response element-binding protein

DEGs:

Differentially expressed genes

ERK:

Extracellular signal-regulated kinase

FRK:

Fos-regulating kinase

Gapdh:

Glyceraldehyde-3-phosphate dehydrogenase

HO-1:

Haem oxygenase-1

Hprt1:

Hypoxanthine guanine phosphoribosyl transferase I

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MMP:

Mitochondria membrane potential

NAC:

N-acetylcysteine

Ppia:

Peptidylprolyl isomerase A

PPARɣ:

Peroxisome proliferator-activated receptor gamma

PI:

Propidium iodide

P2X7R:

P2X7 receptor

qRT-PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

Rn18s:

18S rRNA

Sdha:

Succinate dehydrogenase complex, subunit A

sGC:

Soluble guanylyl cyclase

siRNA:

Small interfering RNA

SRE:

Serum response element

t-BHP:

tert-Butyl hydroperoxide

TCF:

Ternary complex factor

TRE:

12-O-Tetradecanoylphorbol-13-acetate (TPA) response element (consensus sequence 5′-TGAG/CTCA-3′)

References

  1. 1.

    Wegiel B, Hanto DW, Otterbein LE (2013) The social network of carbon monoxide in medicine. Trends Mol Med 19:3–11. https://doi.org/10.1016/j.molmed.2012.10.001

  2. 2.

    Queiroga CSF, Vercelli A, Vieira HLA (2015) Carbon monoxide and the CNS: challenges and achievements. Br J Pharmacol 172:1533–1545. https://doi.org/10.1111/bph.12729

  3. 3.

    Schallner N, Romão CC, Biermann J et al (2013) Carbon Monoxide Abrogates Ischemic Insult to Neuronal Cells via the Soluble Guanylate Cyclase-cGMP Pathway. PLoS One 8. https://doi.org/10.1371/journal.pone.0060672

  4. 4.

    Vieira HLA, Queiroga CSF, Alves PM (2008) Pre-conditioning induced by carbon monoxide provides neuronal protection against apoptosis. J Neurochem 107:375–384. https://doi.org/10.1111/j.1471-4159.2008.05610.x

  5. 5.

    Queiroga CSF, Almeida AS, Martel C et al (2010) Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285:17077–17088. https://doi.org/10.1074/jbc.M109.065052

  6. 6.

    Almeida AS, Queiroga CSF, Sousa MFQ et al (2012) Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: Role of Bcl-2. J Biol Chem 287:10761–10770. https://doi.org/10.1074/jbc.M111.306738

  7. 7.

    Almeida AS, Soares NLNL, Vieira M et al (2016) Carbon monoxide releasing molecule-A1 (CORM-A1) improves neurogenesis: increase of neuronal differentiation yield by preventing cell death. PLoS One 11:e0154781. https://doi.org/10.1371/journal.pone.0154781

  8. 8.

    Bani-Hani MG, Greenstein D, Mann BE et al (2006) Modulation of thrombin-induced neuroinflammation in BV-2 microglia by carbon monoxide-releasing molecule 3. J Pharmacol Exp Ther 318:1315–1322. https://doi.org/10.1124/jpet.106.104729

  9. 9.

    Foresti R, Bains SK, Pitchumony TS et al (2013) Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res 76:132–148. https://doi.org/10.1016/j.phrs.2013.07.010

  10. 10.

    Ulbrich F, Goebel U, Böhringer D et al (2016) Carbon monoxide treatment reduces microglial activation in the ischemic rat retina. Graefes Arch Clin Exp Ophthalmol 254:1967–1976. https://doi.org/10.1007/s00417-016-3435-6

  11. 11.

    Wilson JLJL, Bouillaud F, Almeida AS et al (2017) Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus. Free Radic Biol Med 104:311–323. https://doi.org/10.1016/j.freeradbiomed.2017.01.022

  12. 12.

    Wang B, Cao W, Biswal S, Doré S (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42:2605–2610. https://doi.org/10.1161/STROKEAHA.110.607101

  13. 13.

    Queiroga CSF, Tomasi S, Widerøe M et al (2012) Preconditioning triggered by carbon monoxide (co) provides neuronal protection following perinatal hypoxia-ischemia. PLoS One 7. https://doi.org/10.1371/journal.pone.0042632

  14. 14.

    Yabluchanskiy A, Sawle P, Homer-Vanniasinkam S et al (2012) CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit Care Med 40:544–552. https://doi.org/10.1097/CCM.0b013e31822f0d64

  15. 15.

    Chora ÂA, Fontoura P, Cunha A et al (2007) Heme oxygenase–1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 117:438–447. https://doi.org/10.1172/JCI28844

  16. 16.

    Fagone P, Mangano K, Quattrocchi C et al (2011) Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin Exp Immunol 163:368–374. https://doi.org/10.1111/j.1365-2249.2010.04303.x

  17. 17.

    Motterlini R, Clark JE, Foresti R et al (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90:e17–e24. https://doi.org/10.1161/hh0202.104530

  18. 18.

    Romão CC, Blättler WA, Seixas JD, Bernardes GJL (2012) Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev 41:3571. https://doi.org/10.1039/c2cs15317c

  19. 19.

    Motterlini R, Sawle P, Hammad J et al (2005) CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 19:284–286. https://doi.org/10.1096/fj.04-2169fje

  20. 20.

    Allaman I, Be M, Magistretti PJ (2011) Astrocyte – neuron metabolic relationships: for better and for worse. Trends Neurosci 34. https://doi.org/10.1016/j.tins.2010.12.001

  21. 21.

    Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

  22. 22.

    Dulak J, Józkowicz A (2003) Carbon monoxide — a “new” gaseous modulator of gene expression. Acta Biochim Pol 50:31–47

  23. 23.

    Ryter SW, Choi AMK (2016) Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7–34

  24. 24.

    Ryter SW, Morse D, Choi AMK (2004) Carbon monoxide: to boldly go where NO has gone before. Sci STKE 27:3145–3165. https://doi.org/10.1002/cpe.3463

  25. 25.

    Schallner N, Fuchs M, Schwer CI et al (2012) Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 7. https://doi.org/10.1371/journal.pone.0046479

  26. 26.

    Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166. https://doi.org/10.1038/jcbfm.2011.149

  27. 27.

    Almeida AS, Sonnewald U, Alves PM, Vieira HLA (2016) Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria. J Neurochem 138:423–435. https://doi.org/10.1111/jnc.13653

  28. 28.

    Wegiel B, Gallo D, Csizmadia E et al (2013) Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res 73:7009–7021. https://doi.org/10.1158/0008-5472.CAN-13-1075

  29. 29.

    Queiroga CSF, Alves RMA, Conde SV et al (2016) Paracrine effect of carbon monoxide: astrocytes promote neuroprotection via purinergic signaling. J Cell Sci 129:jcs.187260. https://doi.org/10.1242/jcs.187260

  30. 30.

    Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A (1989) Preparation of primary cultures of mouse (rat) astrocytes. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual for the nervous system, Alan R. Liss, New York, pp 105–108

  31. 31.

    Oliveira SR, Vieira HLA, Duarte CB (2015) Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR. Nitric Oxide Biol Chem 49:80–89. https://doi.org/10.1016/j.niox.2015.07.003

  32. 32.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2^(-2ΔΔCt) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

  33. 33.

    Ficker C, Rozmer K, Kató E et al (2014) Astrocyte-neuron interaction in the substantia gelatinosa of the spinal cord dorsal horn via P2X7 receptor-mediated release of glutamate and reactive oxygen species. Glia 62:1671–1686. https://doi.org/10.1002/glia.22707

  34. 34.

    Leichsenring A, Riedel T, Qin Y et al (2013) Anoxic depolarization of hippocampal astrocytes: possible modulation by P2X7 receptors. Neurochem Int 62:15–22. https://doi.org/10.1016/j.neuint.2012.11.002

  35. 35.

    Motterlini R, Foresti R (2014) Heme oxygenase-1 as a target for drug discovery. Antioxid Redox Signal 20:1810–1826. https://doi.org/10.1089/ars.2013.5658

  36. 36.

    Agarwal A, Bolisetty S (2013) Adaptive responses to tissue injury: role of heme oxygenase-1. Trans Am Clin Climatol Assoc 124:111–122

  37. 37.

    Nikolic I, Vujicic M, Stojanovic I et al (2014) Carbon monoxide-releasing molecule-A1 inhibits Th1/Th17 and stimulates Th2 differentiation in vitro. Scand J Immunol 80:95–100. https://doi.org/10.1111/sji.12189

  38. 38.

    Suliman HB, Zobi F, Piantadosi CA (2016) Heme oxygenase-1/carbon monoxide system and embryonic stem cell differentiation and maturation into cardiomyocytes. Antioxid Redox Signal 24:345–360. https://doi.org/10.1089/ars.2015.6342

  39. 39.

    Oliveira SR, Queiroga CSF, Vieira HLA et al (2016) Mitochondria and carbon monoxide: cytoprotection and control of cell metabolism - a role for Ca 2+ ? J Physiol 00:6–8. https://doi.org/10.1113/JP270955

  40. 40.

    Chinenov Y, Kerppola TK (2001) Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20:2438–2452. https://doi.org/10.1038/sj.onc.1204385

  41. 41.

    Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. https://doi.org/10.1038/ncb0502-e131

  42. 42.

    Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973. https://doi.org/10.1242/jcs.01589

  43. 43.

    Vesely PW, Staber PB, Hoefler G, Kenner L (2009) Translational regulation mechanisms of AP-1 proteins. Mutat Res Rev Mutat Res 682:7–12. https://doi.org/10.1016/j.mrrev.2009.01.001

  44. 44.

    Wang Q, Li W, Liu XS et al (2011) ERK-associated changes of AP-1 proteins during fear extinction. Mol Cell Neurosci 47:137–144. https://doi.org/10.1016/j.molcel.2007.05.041.A

  45. 45.

    Pruunsild P, Orav E, Esvald E (2013) AP-1 transcription factors mediate BDNF-Positive Feedback Loop in Cortical Neurons. J Neurosci 36:1290–1305. https://doi.org/10.1523/JNEUROSCI.3360-15.2016

  46. 46.

    Hu S, Zhang Y, Zhang M et al (2015) Aloperine protects mice against ischemia-reperfusion (IR)-induced renal injury by regulating PI3K/AKT/mTOR signaling and AP-1 Activity. Mol Med 21:912–923. https://doi.org/10.2119/molmed.2015.00056

  47. 47.

    Melo CV, Okumoto S, Gomes JR et al (2013) Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 237:66–86. https://doi.org/10.1016/j.neuroscience.2013.01.054

  48. 48.

    Jonas EA, Porter GA, Alavian KN (2014) Bcl-xL in neuroprotection and plasticity. Front Physiol 5:355. https://doi.org/10.3389/fphys.2014.00355

  49. 49.

    Van Damme P, Bogaert E, Dewil M et al (2007) Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci U S A 104:14825–14830. https://doi.org/10.1073/pnas.0705046104

  50. 50.

    Xu Y, Xue H, Zhao P (et al, 2016) Isoflurane postconditioning induces concentration- and timing-dependent neuroprotection partly mediated by the GluR2 AMPA receptor in neonatal rats after brain hypoxia–ischemia. J Anesth:1–10. https://doi.org/10.1007/s00540-015-2132-7

  51. 51.

    Wang H, Luo M, Li C, Wang G (2011) Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem 119:210–219. https://doi.org/10.1111/j.1471-4159.2011.07400.x

  52. 52.

    Bhola PD, Letai A (2016) Mitochondria—Judges and executioners of cell death sentences. Mol Cell 61:695–704. https://doi.org/10.1016/j.molcel.2016.02.019

  53. 53.

    Yonutas HM, Vekaria HJ, Sullivan PG (2016) Mitochondrial specific therapeutic targets following brain injury. Brain Res 1640:77–93. https://doi.org/10.1016/j.brainres.2016.02.007

  54. 54.

    Almeida AS, Figueiredo-Pereira C, Vieira HLA (2015) Carbon monoxide and mitochondria - modulation of cell metabolism, redox response and cell death. Front Physiol 6:1–6. https://doi.org/10.3389/fphys.2015.00033

  55. 55.

    Queiroga CSF, Almeida AS, Vieira HLA (2012, 2012) Carbon monoxide targeting mitochondria. Biochem Res Int:1–9. https://doi.org/10.1155/2012/749845

  56. 56.

    Dröse S (2013) Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim Biophys Acta Bioenerg 1827:578–587. https://doi.org/10.1016/j.bbabio.2013.01.004

  57. 57.

    Grimm S (2013) Respiratory chain complex II as general sensor for apoptosis. Biochim Biophys Acta 1827:565–572. https://doi.org/10.1016/j.bbabio.2012.09.009

  58. 58.

    Hoshi A, Nakahara T, Ogata M, Yamamoto T (2005) The critical threshold of 3-nitropropionic acid-induced ischemic tolerance in the rat. Brain Res 1050:33–39. https://doi.org/10.1016/j.brainres.2005.05.028

  59. 59.

    Gavala ML, Hill LM, Lenertz LY et al (2010) Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells. J Biol Chem 285:34288–34298. https://doi.org/10.1074/jbc.M110.142091

  60. 60.

    Lenertz LY, Gavala ML, Zhu Y, Bertics PJ (2011) Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic and neurologic functions. Immunol Res 50:22–38. https://doi.org/10.1007/s12026-011-8203-4.Transcriptional

  61. 61.

    Hirayama Y, Ikeda-Matsuo Y, Notomi S et al (2015) Astrocyte-mediated ischemic tolerance. J Neurosci 35:3794–3805. https://doi.org/10.1523/JNEUROSCI.4218-14.2015

  62. 62.

    León D, Hervás C, Miras-Portugal MT (2006) P2Y 1 and P2X 7 receptors induce calcium/calmodulin-dependent protein kinase II phosphorylation in cerebellar granule neurons. Eur J Neurosci 23:2999–3013. https://doi.org/10.1111/j.1460-9568.2006.04832.x

  63. 63.

    Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

  64. 64.

    Kuroda KO, Ornthanalai VG, Kato T, Murphy NP (2010) FosB null mutant mice show enhanced methamphetamine neurotoxicity: potential involvement of FosB in intracellular feedback signaling and astroglial function. Neuropsychopharmacology 35:641–655. https://doi.org/10.1038/npp.2009.169

  65. 65.

    Peng L, Li B, Du T et al (2010) Astrocytic transactivation by alpha2A-adrenergic and 5-HT2B serotonergic signaling. Neurochem Int 57:421–431. https://doi.org/10.1016/j.neuint.2010.04.018

  66. 66.

    Li B, Du T, Li H et al (2008) Signalling pathways for transactivation by dexmedetomidine of epidermal growth factor receptors in astrocytes and its paracrine effect on neurons. Br J Pharmacol 154:191–203. https://doi.org/10.1038/bjp.2008.58

  67. 67.

    Yutsudo N, Kamada T, Kajitani K et al (2013) fosB-Null Mice Display Impaired Adult Hippocampal Neurogenesis and Spontaneous Epilepsy with Depressive Behavior. Neuropsychopharmacology 38:895–906. https://doi.org/10.1038/npp.2012.260

  68. 68.

    Zerial M, Toschi L, Ryseck RP et al (1989) The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J 8:805–813

  69. 69.

    Alibhai IN, Green TA, Potashkin JA, Nestler EJ (2007) Regulation of fosB and ΔfosB mRNA expression: in vivo and in vitro studies. Brain Res 1143:22–33. https://doi.org/10.1016/j.brainres.2007.01.069

  70. 70.

    Carle TL, Ohnishi YN, Ohnishi YH et al (2007) Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for ΔFosB stability. Eur J Neurosci 25:3009–3019. https://doi.org/10.1111/j.1460-9568.2007.05575.x

  71. 71.

    Nestler EJ (2012) Transcriptional mechanisms of drug addiction. Clin Psychopharmacol Neurosci 10:136–143. https://doi.org/10.9758/cpn.2012.10.3.136

  72. 72.

    Kim HS, Loughran PA, Billiar TR (2008) Carbon monoxide decreases the level of iNOS protein and active dimer in IL-1beta-stimulated hepatocytes. Nitric Oxide 18:256–265. https://doi.org/10.1016/j.niox.2008.02.002

  73. 73.

    Wickert LE, Blanchette JB, Waldschmidt NV et al (2013) The C-terminus of human nucleotide receptor P2X7 is critical for receptor oligomerization and N-linked glycosylation. PLoS One 8. https://doi.org/10.1371/journal.pone.0063789

  74. 74.

    Salas E, Carrasquero LMG, Olivos-Oré LA et al (2013) Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture. J Pharmacol Exp Ther 347:802–815. https://doi.org/10.1124/jpet.113.209452

  75. 75.

    Gandelman M, Peluffo H, Beckman JS et al (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33. https://doi.org/10.1186/1742-2094-7-33

  76. 76.

    Chu K, Yin B, Wang J et al (2012) Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation 9:69

  77. 77.

    Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45:954–961. https://doi.org/10.1016/j.nbd.2011.12.014

  78. 78.

    Alloisio S, Aiello R, Ferroni S, Nobile M (2006) Potentiation of native and recombinant P2X7-mediated calcium signaling by arachidonic acid in cultured cortical astrocytes and human embryonic kidney 293 cells. Mol Pharmacol 69:1975–1983. https://doi.org/10.1124/mol.105.020164

  79. 79.

    Nobile M, Monaldi I, Alloisio S et al (2003) ATP-induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non-capacitative, P2X7-like-mediated calcium entry. FEBS Lett 538:71–76

  80. 80.

    Nagasawa K, Escartin C, Swanson RA (2009) Astrocyte cultures exhibit P2X7 receptor channel opening in the absence of exogenous ligands. Glia 57:622–633. https://doi.org/10.1002/glia.20791

  81. 81.

    Franke H, Illes P (2014) Nucleotide signaling in astrogliosis. Neurosci Lett 565:14–22. https://doi.org/10.1016/j.neulet.2013.09.056

  82. 82.

    Giordano C, Vinet J, Curia G, Biagini G (2015) Repeated 6-Hz corneal stimulation progressively increases FosB/δFosB levels in the lateral amygdala and induces seizure generalization to the Hippocampus. PLoS One 10:1–21. https://doi.org/10.1371/journal.pone.0141221

  83. 83.

    Kurushima H, Ohno M, Miura T et al (2005) Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of DeltaFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ 12:1078–1096. https://doi.org/10.1038/sj.cdd.4401648

  84. 84.

    Alfonso-Jaume MA, Bergman MR, Mahimkar R et al (2006) Cardiac ischemia-reperfusion injury induces matrix metalloproteinase-2 expression through the AP-1 components FosB and JunB. Am J Physiol Heart Circ Physiol 291:H1838–H1846. https://doi.org/10.1152/ajpheart.00026.2006

  85. 85.

    Butler TL, Pennypacker KR (2004) Temporal and regional expression of Fos-related proteins in response to ischemic injury. Brain Res Bull 63:65–73. https://doi.org/10.1016/j.brainresbull.2003.12.005

  86. 86.

    Al-Noori S, Sanders NM, Taborsky GJ et al (2008) Recurrent hypoglycemia alters hypothalamic expression of the regulatory proteins FosB and synaptophysin. Am J Phys Regul Integr Comp Phys 295:R1446–R1454. https://doi.org/10.1152/ajpregu.90511.2008

  87. 87.

    Brown JR, Ye H, Bronson RT et al (1996) A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86:297–309. https://doi.org/10.1016/S0092-8674(00)80101-4

  88. 88.

    Kuroda KO, Meaney MJ, Uetani N, Kato T (2008) Neurobehavioral basis of the impaired nurturing in mice lacking the immediate early gene FosB. Brain Res 1211:57–71. https://doi.org/10.1016/j.brainres.2008.02.100

  89. 89.

    Pavón N, Martín AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59:64–74. https://doi.org/10.1016/j.biopsych.2005.05.044

  90. 90.

    Morse D, Pischke SE, Zhou Z et al (2003) Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 278:36993–36998. https://doi.org/10.1074/jbc.M302942200

  91. 91.

    Choi BM, Pae HO, Kim YM, Chung HT (2003) Nitric oxide-mediated cytoprotection of hepatocytes from glucose deprivation-induced cytotoxicity: Involvement of heme oxygenase-1. Hepatology 37:810–823. https://doi.org/10.1053/jhep.2003.50114

  92. 92.

    Serizawa F, Patterson E, Potter RF et al (2015) Pretreatment of human cerebrovascular endothelial cells with CO-releasing molecule-3 interferes with JNK/AP-1 signaling and suppresses LPS-induced proadhesive phenotype. Microcirculation 22:28–36. https://doi.org/10.1111/micc.12161

  93. 93.

    Cheng P-Y, Lee Y-M, Shih N-L et al (2006) Heme oxygenase-1 contributes to the cytoprotection of alpha-lipoic acid via activation of p44/42 mitogen-activated protein kinase in vascular smooth muscle cells. Free Radic Biol Med 40:1313–1322. https://doi.org/10.1016/j.freeradbiomed.2005.11.024

  94. 94.

    Yamamura Y, Hua X, Bergelson S, Lodish HF (2000) Critical role of Smads and AP-1 complex in transforming growth factor--dependent apoptosis. J Biol Chem 275:36295–36302. https://doi.org/10.1074/jbc.M006023200

  95. 95.

    Chi P-L, Lin C-C, Chen Y-W et al (2014) CO Induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol Neurobiol. https://doi.org/10.1007/s12035-014-8869-4

  96. 96.

    Condorelli DF, Dell’Albani P, Amico C et al (1993) Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures. J Neurochem 60:877–885. https://doi.org/10.1111/j.1471-4159.1993.tb03232.x

  97. 97.

    Hung S-YS, Liou H-CH, Fu W-MW (2010) The mechanism of heme oxygenase-1 action involved in the enhancement of neurotrophic factor expression. Neuropharmacology 58:321–329. https://doi.org/10.1016/j.neuropharm.2009.11.003

  98. 98.

    Sener A, Tran KC, Deng JP et al (2013) Carbon monoxide releasing molecules inhibit cell death resulting from renal transplantation related stress. J Urol 190:772–778. https://doi.org/10.1016/j.juro.2012.12.020

Download references

Acknowledgements

We thank Pedro Fernandes for his support and expertise on RNAseq data analysis and Miranda Mele for helping in RNA processing and analysis. SRO was supported by a fellowship from Fundação para a Ciência e a Tecnologia (FCT) with reference SFRH/BD/51969/2012 and CFP’s fct supported by a fellowship with reference PD/BD/106057/2015. HLAV’s FCT support IF/00185/2012.

Funding

This work was supported by FEDER (QREN) through Programa Mais Centro, under projects CENTRO-07-ST24-FEDER-002002, CENTRO-07-ST24-FEDER-002006 and CENTRO-07-ST24-FEDER-002008, through Programa Operacional Factores de Competitividade—COMPETE 2020 and National funds via FCT—Fundação para a Ciência e a Tecnologia under projects COMPETE: POCI-01-0145-FEDER-007440, Pest-C/SAU/LA0001/2013-2014, PTDC/SAU-NMC/120144/2010, PTDC/NEU-NMC/0198/2012 and FCT-ANR/NEU-NMC/0022/2012.

Author information

SRO performed experimental procedures and carried out the analysis and interpretation of data. CFP performed experimental procedures. HLAV and CBD participated in the discussion of data and critically reviewed the manuscript. SRO, HLAV, and CBD participated in the conception and design of the study, as well as in the analysis and interpretation of data. All authors read and approved the final manuscript.

Correspondence to Helena L. A. Vieira.

Electronic Supplementary Material

ESM 1

(PDF 633 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, S.R., Figueiredo-Pereira, C., Duarte, C.B. et al. P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Mol Neurobiol 56, 3159–3174 (2019). https://doi.org/10.1007/s12035-018-1302-7

Download citation

Keywords

  • Carbon monoxide
  • Astrocytes
  • FosB
  • Cytoprotection
  • P2X7R
  • Transcriptome