Molecular Neurobiology

, Volume 56, Issue 5, pp 3244–3259 | Cite as

Targeting Axon Integrity to Prevent Chemotherapy-Induced Peripheral Neuropathy

  • Virendra Bhagawan Chine
  • Ngan Pan Bennett Au
  • Gajendra Kumar
  • Chi Him Eddie MaEmail author


Chemotherapy-induced peripheral neuropathy (CIPN) is an irreversible off-target adverse effect of many chemotherapeutic agents such as paclitaxel, yet its mechanism is poorly understood and no preventative measure is available. CIPN is characterized by peripheral nerve damages resulting in permanent sensory function deficits. Our recent unbiased genome-wide analysis revealed that heat shock protein (Hsp) 27 is part of a transcriptional network induced by axonal injury and highly enriched for genes involved in adaptive neuronal responses, particularly axonal regeneration. To examine if Hsp27 could prevent the occurrence of CIPN, we first demonstrated that paclitaxel-induced allodynia was associated directly with axonal degeneration in sensory neurons in a mouse model of CIPN. We therefore hypothesize that by preventing axonal degeneration could prevent the development of CIPN. We drove expression of human Hsp27 (hHsp27) specifically in neurons. Development of mechanical and thermal allodynia was prevented completely in paclitaxel-treated hHsp27 transgenic mice. Strikingly, hHsp27 protected against paclitaxel-induced neurotoxicity in vivo including degeneration of afferent nerve fibers, demyelination, mitochondrial swelling, apoptosis, and restored sensory nerve action potential. Finally, we delineated signaling cascades that link CIPN development to caspase 3 and RhoA/cofilin activation in sensory neurons and peripheral nerves. hHsp27 exerted anti-apoptotic effect and maintained axon integrity by restoring caspase 3 and RhoA expression to basal levels. Taken together, our data suggest that by preventing axonal degeneration might prove beneficial as anti-CIPN drugs, which represents an emerging research area for therapeutic development.


Chemotherapy-induced peripheral neuropathy Heat shock protein 27 Paclitaxel Axonal degeneration Apoptosis 



This work is supported in part by GRF grants from The Research Grant Council of the Hong Kong Special Administrative Region Government (CityU 11100015 and CityU 11100417), and the Health and Medical Research Fund, Food and Health Bureau, Hong Kong Special Administrative Region Government (05160126) award to Chi Ma.

Authors’ Contributions

VC carried out the neurobehavioral assessment, in vivo electrophysiological recording, immunohistochemistry of skin and nerve biopsies, electron microscopy, TUNEL assay, and Western blot analysis for cleaved caspase 3 protein expression. NPBA performed in vitro DRG culture analysis and Western blot analysis for RhoA/cofilin activation. GK validated and standardized SNAP and NCV recording. CHEM conceived the project, designed the study, and wrote the manuscript with inputs from all authors. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1301_MOESM1_ESM.pdf (9 mb)
ESM 1 (PDF 9231 kb)


  1. 1.
    Au NP, Fang Y, Xi N, Lai KW, Ma CH (2014) Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy. Nanomedicine 10(6):1323–1333PubMedGoogle Scholar
  2. 2.
    Jaggi AS, Singh N (2011) Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 291(1–3):1–9PubMedGoogle Scholar
  3. 3.
    Pachman DR, Barton DL, Watson JC, Loprinzi CL (2011) Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther 90(3):377–387PubMedGoogle Scholar
  4. 4.
    Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR (2004) Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109(1–2):132–142PubMedGoogle Scholar
  5. 5.
    Windebank AJ, Grisold W (2008) Chemotherapy-induced neuropathy. J Peripher Nerv Syst 13(1):27–46PubMedGoogle Scholar
  6. 6.
    Verstappen CC, Koeppen S, Heimans JJ, Huijgens PC, Scheulen ME, Strumberg D, Kiburg B, Postma TJ (2005) Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 64(6):1076–1077PubMedGoogle Scholar
  7. 7.
    Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC (1993) Neurotoxicity of Taxol. J Natl Cancer Inst Monogr 15:107–115Google Scholar
  8. 8.
    Michaud LB, Valero V, Hortobagyi G (2000) Risks and benefits of taxanes in breast and ovarian cancer. Drug Saf 23(5):401–428PubMedGoogle Scholar
  9. 9.
    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265PubMedGoogle Scholar
  10. 10.
    Lee JJ, Swain SM (2006) Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 24(10):1633–1642PubMedGoogle Scholar
  11. 11.
    Hilkens PH, ven den Bent MJ (1997) Chemotherapy-induced peripheral neuropathy. J Peripher Nerv Syst 2(4):350–361PubMedGoogle Scholar
  12. 12.
    Siau C, Xiao W, Bennett GJ (2006) Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201(2):507–514PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang MS, Davis AA, Culver DG, Wang Q, Powers JC, Glass JD (2004) Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain 127(Pt 3):671–679PubMedGoogle Scholar
  14. 14.
    Callizot N, Andriambeloson E, Glass J, Revel M, Ferro P, Cirillo R, Vitte PA, Dreano M (2008) Interleukin-6 protects against paclitaxel, cisplatin and vincristine-induced neuropathies without impairing chemotherapeutic activity. Cancer Chemother Pharmacol 62(6):995–1007PubMedGoogle Scholar
  15. 15.
    Smith SB, Crager SE, Mogil JS (2004) Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci 74(21):2593–2604PubMedGoogle Scholar
  16. 16.
    Boyette-Davis J, Dougherty PM (2011) Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp Neurol 229(2):353–357PubMedPubMedCentralGoogle Scholar
  17. 17.
    Boyette-Davis J, Xin W, Zhang H, Dougherty PM (2011) Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 152(2):308–313PubMedGoogle Scholar
  18. 18.
    Tatsushima Y, Egashira N, Kawashiri T, Mihara Y, Yano T, Mishima K, Oishi R (2011) Involvement of substance P in peripheral neuropathy induced by paclitaxel but not oxaliplatin. J Pharmacol Exp Ther 337(1):226–235PubMedGoogle Scholar
  19. 19.
    Pan YA, Misgeld T, Lichtman JW, Sanes JR (2003) Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 23(36):11479–11488PubMedGoogle Scholar
  20. 20.
    Vuorinen VS, Roytta M (1990) Taxol-induced neuropathy after nerve crush: long-term effects on regenerating axons. Acta Neuropathol 79(6):663–671PubMedGoogle Scholar
  21. 21.
    Ma CH, Omura T, Cobos EJ, Latremoliere A, Ghasemlou N, Brenner GJ, van Veen E, Barrett L et al (2011) Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 121(11):4332–4347PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268(5):3420–3429PubMedGoogle Scholar
  23. 23.
    Stetler RA, Cao G, Gao Y, Zhang F, Wang S, Weng Z, Vosler P, Zhang L et al (2008) Hsp27 protects against ischemic brain injury via attenuation of a novel stress-response cascade upstream of mitochondrial cell death signaling. J Neurosci 28(49):13038–13055PubMedPubMedCentralGoogle Scholar
  24. 24.
    Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56(2):273–279PubMedGoogle Scholar
  25. 25.
    Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15(1):505–516PubMedPubMedCentralGoogle Scholar
  26. 26.
    Pichon S, Bryckaert M, Berrou E (2004) Control of actin dynamics by p38 MAP kinase - Hsp27 distribution in the lamellipodium of smooth muscle cells. J Cell Sci 117(Pt 12):2569–2577PubMedGoogle Scholar
  27. 27.
    Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269(32):20780–20784PubMedGoogle Scholar
  28. 28.
    Chaudhuri S, Smith PG (2008) Cyclic strain-induced HSP27 phosphorylation modulates actin filaments in airway smooth muscle cells. Am J Respir Cell Mol Biol 39(3):270–278PubMedGoogle Scholar
  29. 29.
    Tezel G, Wax MB (2000) The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 20(10):3552–3562PubMedGoogle Scholar
  30. 30.
    Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71(1):3–9PubMedGoogle Scholar
  31. 31.
    Torres L, Danver J, Ji K, Miyauchi JT, Chen D, Anderson ME, West BL, Robinson JK et al (2016) Dynamic microglial modulation of spatial learning and social behavior. Brain Behav Immun 55:6–16PubMedGoogle Scholar
  32. 32.
    Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109(1–2):150–161PubMedGoogle Scholar
  33. 33.
    Polomano RC, Mannes AJ, Clark US, Bennett GJ (2001) A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94(3):293–304PubMedGoogle Scholar
  34. 34.
    Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, Allchorne AJ, Stahl GL et al (2007) Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 27(32):8699–8708PubMedGoogle Scholar
  35. 35.
    Korngut L, Ma CH, Martinez JA, Toth CC, Guo GF, Singh V, Woolf CJ, Zochodne DW (2012) Overexpression of human HSP27 protects sensory neurons from diabetes. Neurobiol Dis 47(3):436–443PubMedPubMedCentralGoogle Scholar
  36. 36.
    Dixon WJ (1965) The up-and-down method for small samples. J Am Stat Assoc 60(312):967–978Google Scholar
  37. 37.
    Ward SJ, Ramirez MD, Neelakantan H, Walker EA (2011) Cannabidiol prevents the development of cold and mechanical allodynia in paclitaxel-treated female C57Bl6 mice. Anesth Analg 113(4):947–950PubMedPubMedCentralGoogle Scholar
  38. 38.
    Choi Y, Yoon YW, Na HS, Kim SH, Chung JM (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59(3):369–376PubMedGoogle Scholar
  39. 39.
    Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C et al (2012) TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 463(4):561–569PubMedGoogle Scholar
  40. 40.
    Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87(2):149–158PubMedGoogle Scholar
  41. 41.
    Asthana P, Zhang N, Kumar G, Chine VB, Singh KK, Mak YL, Chan LL, Lam PKS et al (2018) Pacific ciguatoxin induces excitotoxicity and neurodegeneration in the motor cortex via caspase 3 activation: implication for irreversible motor deficit. Mol Neurobiol 55(8):6769–6787PubMedGoogle Scholar
  42. 42.
    Painter MW, Brosius Lutz A, Cheng YC, Latremoliere A, Duong K, Miller CM, Posada S, Cobos EJ et al (2014) Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron 83(2):331–343PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bobylev I, Joshi AR, Barham M, Ritter C, Neiss WF, Höke A, Lehmann HC (2015) Paclitaxel inhibits mRNA transport in axons. Neurobiol Dis 82:321–331PubMedGoogle Scholar
  44. 44.
    Wozniak KM, Wu Y, Farah MH, Littlefield BA, Nomoto K, Slusher BS (2013) Neuropathy-inducing effects of eribulin mesylate versus paclitaxel in mice with preexisting neuropathy. Neurotox Res 24(3):338–344PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ma KH, Hung HA, Srinivasan R, Xie H, Orkin SH, Svaren J (2015) Regulation of peripheral nerve myelin maintenance by gene repression through polycomb repressive complex 2. J Neurosci 35(22):8640–8652PubMedPubMedCentralGoogle Scholar
  46. 46.
    Boehmerle W, Huehnchen P, Peruzzaro S, Balkaya M, Endres M (2014) Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci Rep 4:6370PubMedPubMedCentralGoogle Scholar
  47. 47.
    Cliffer KD, Siuciak JA, Carson SR, Radley HE, Park JS, Lewis DR, Zlotchenko E, Nguyen T et al (1998) Physiological characterization of Taxol-induced large-fiber sensory neuropathy in the rat. Ann Neurol 43(1):46–55PubMedGoogle Scholar
  48. 48.
    Huehnchen P, Boehmerle W, Endres M (2013) Assessment of paclitaxel induced sensory polyneuropathy with “Catwalk” automated gait analysis in mice. PLoS One 8(10):e76772PubMedPubMedCentralGoogle Scholar
  49. 49.
    Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249(1):9–17PubMedGoogle Scholar
  50. 50.
    Sahenk Z, Barohn R, New P, Mendell JR (1994) Taxol neuropathy: electrodiagnostic and sural nerve biopsy findings. Arch Neurol 51(7):726–729PubMedGoogle Scholar
  51. 51.
    van den Bent MJ, van Raaij-van den Aarssen VJ, Verweij J, Doorn PA, Sillevis Smitt PA (1997) Progression of paclitaxel-induced neuropathy following discontinuation of treatment. Muscle Nerve 20(6):750–752PubMedGoogle Scholar
  52. 52.
    Flatters SJ, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122(3):245–257PubMedPubMedCentralGoogle Scholar
  53. 53.
    Arrieta O, Hernandez-Pedro N, Fernández-González-Aragón M, Saavedra-Perez D, Campos-Parra A, Rios-Trejo M, Cerón-Lizárraga T, Martínez-Barrera L et al (2011) Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology 77(10):987–995PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lipton RB, Apfel SC, Dutcher JP, Rosenberg R, Kaplan J, Berger A, Einzig AI, Wiernik P et al (1989) Taxol produces a predominantly sensory neuropathy. Neurology 39(3):368–373PubMedGoogle Scholar
  55. 55.
    Chen X, Stubblefield MD, Custodio CM, Hudis CA, Seidman AD, DeAngelis LM (2013) Electrophysiological features of taxane-induced polyneuropathy in patients with breast cancer. J Clin Neurophysiol 30(2):199–203PubMedGoogle Scholar
  56. 56.
    Park SB, Lin CSY, Krishnan AV, Friedlander ML, Lewis CR, Kiernan MC (2011) Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel-induced neuropathy. Muscle Nerve 43(3):367–374PubMedGoogle Scholar
  57. 57.
    Weil MT, Mobius W, Winkler A, Ruhwedel T, Wrzos C, Romanelli E, Bennett JL, Enz L et al (2016) Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases. Cell Rep 16(2):314–322PubMedPubMedCentralGoogle Scholar
  58. 58.
    Purves D, Augustine G, Fitzpatrick D, Katz L, LaMantia A, McNamara J, Williams S (2004) Increased conduction velocity as a result of myelination. Neuroscience. In: Neuroscience, 3nd edn. Sinauer Associates, Sunderland, pp 63–65Google Scholar
  59. 59.
    Flatters SJ, Xiao W-H, Bennett GJ (2006) Acetyl-L-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neurosci Lett 397(3):219–223PubMedPubMedCentralGoogle Scholar
  60. 60.
    Xiao WH, Bennett GJ (2012) Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153(3):704–709PubMedPubMedCentralGoogle Scholar
  61. 61.
    Griffiths LA, Flatters SJ (2015) Pharmacological modulation of the mitochondrial electron transport chain in paclitaxel-induced painful peripheral neuropathy. J Pain 16(10):981–994PubMedPubMedCentralGoogle Scholar
  62. 62.
    Krukowski K, Nijboer CH, Huo X, Kavelaars A, Heijnen CJ (2015) Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain 156(11):2184–2192PubMedPubMedCentralGoogle Scholar
  63. 63.
    Joseph EK, Levine JD (2006) Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain 121(1):105–114PubMedGoogle Scholar
  64. 64.
    Zheng H, Xiao WH, Bennett GJ (2012) Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol 238(2):225–234PubMedGoogle Scholar
  65. 65.
    Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R (2003) Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278(16):14162–14167PubMedGoogle Scholar
  66. 66.
    Huang ZZ, Li D, Liu CC, Cui Y, Zhu HQ, Zhang WW, Li YY, Xin WJ (2014) CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav Immun 40:155–165PubMedGoogle Scholar
  67. 67.
    Friesland A, Weng Z, Duenas M, Massa SM, Longo FM, Lu Q (2014) Amelioration of cisplatin-induced experimental peripheral neuropathy by a small molecule targeting p75 NTR. Neurotoxicology 45:81–90PubMedGoogle Scholar
  68. 68.
    James SE, Burden H, Burgess R, Xie Y, Yang T, Massa SM, Longo FM, Lu Q (2008) Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants. Neurotoxicology 29(4):605–612PubMedPubMedCentralGoogle Scholar
  69. 69.
    James SE, Dunham M, Carrion-Jones M, Murashov A, Lu Q (2010) Rho kinase inhibitor Y-27632 facilitates recovery from experimental peripheral neuropathy induced by anti-cancer drug cisplatin. Neurotoxicology 31(2):188–194PubMedPubMedCentralGoogle Scholar
  70. 70.
    Qiu Y, Chen WY, Wang ZY, Liu F, Wei M, Ma C, Huang YG (2016) Simvastatin attenuates neuropathic pain by inhibiting the RhoA/LIMK/cofilin pathway. Neurochem Res 41(9):2457–2469PubMedGoogle Scholar
  71. 71.
    Scuteri A, Nicolini G, Miloso M, Bossi M, Cavaletti G, Windebank AJ, Tredici G (2006) Paclitaxel toxicity in post-mitotic dorsal root ganglion (DRG) cells. Anticancer Res 26(2A):1065–1070PubMedGoogle Scholar
  72. 72.
    Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, Taroni F, Lauria G (2008) Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 214(2):276–284PubMedGoogle Scholar
  73. 73.
    Liu XJ, Zhang Y, Liu T, Xu ZZ, Park CK, Berta T, Jiang D, Ji RR (2014) Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Res 24(11):1374–1377PubMedPubMedCentralGoogle Scholar
  74. 74.
    Berta T, Park CK, Xu ZZ, Xie RG, Liu T, Lu N, Liu YC, Ji RR (2014) Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-alpha secretion. J Clin Invest 124(3):1173–1186PubMedPubMedCentralGoogle Scholar
  75. 75.
    Berta T, Qadri YJ, Chen G, Ji RR (2016) Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res 95(10):1124–1131PubMedPubMedCentralGoogle Scholar
  76. 76.
    Benn SC, Perrelet D, Kato AC, Scholz J, Decosterd I, Mannion RJ, Bakowska JC, Woolf CJ (2002) Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 36(1):45–56PubMedGoogle Scholar
  77. 77.
    André N, Braguer D, Brasseur G, Gonçalves A, Lemesle-Meunier D, Guise S, Jordan MA, Briand C (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60(19):5349–5353PubMedGoogle Scholar
  78. 78.
    Mehlen P, Kretz-Remy C, Preville X, Arrigo A-P (1996) Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J 15(11):2695–2706PubMedPubMedCentralGoogle Scholar
  79. 79.
    Wang C, Song S, Zhang Y, Ge Y, Fang X, Huang T, Du J, Gao J (2015) Inhibition of the Rho/Rho kinase pathway prevents lipopolysaccharide-induced hyperalgesia and the release of TNF-alpha and IL-1beta in the mouse spinal cord. Sci Rep 5:14553PubMedPubMedCentralGoogle Scholar
  80. 80.
    Zulauf L, Coste O, Marian C, Moser C, Brenneis C, Niederberger E (2009) Cofilin phosphorylation is involved in nitric oxide/cGMP-mediated nociception. Biochem Biophys Res Commun 390(4):1408–1413PubMedGoogle Scholar
  81. 81.
    Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER, Jaffrey SR (2005) Local translation of RhoA regulates growth cone collapse. Nature 436(7053):1020–1024PubMedPubMedCentralGoogle Scholar
  82. 82.
    Qin Q, Baudry M, Liao G, Noniyev A, Galeano J, Bi X (2009) A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci 29(16):5183–5192PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H, Tohyama M (2002) Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol 158(2):321–329PubMedPubMedCentralGoogle Scholar
  84. 84.
    Sun X, Zhou Z, Fink DJ, Mata M (2013) HspB1 silences translation of PDZ-RhoGEF by enhancing miR-20a and miR-128 expression to promote neurite extension. Mol Cell Neurosci 57:111–119PubMedPubMedCentralGoogle Scholar
  85. 85.
    Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, Costigan M et al (2016) A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89(5):956–970PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesCity University of Hong KongKowloon TongHong Kong
  2. 2.Centre for Biosystems, Neuroscience, and NanotechnologyCity University of Hong KongKowloon TongHong Kong

Personalised recommendations