Molecular Neurobiology

, Volume 56, Issue 4, pp 3053–3067 | Cite as

Astragaloside VI Promotes Neural Stem Cell Proliferation and Enhances Neurological Function Recovery in Transient Cerebral Ischemic Injury via Activating EGFR/MAPK Signaling Cascades

  • Xi Chen
  • Hao Wu
  • Hansen Chen
  • Qi Wang
  • Xue-jiao Xie
  • Jiangang ShenEmail author


Radix Astragali (AR) is a commonly used medicinal herb for post-stroke disability in Traditional Chinese Medicine but its active compounds for promoting neurogenic effects are largely unknown. In the present study, we tested the hypothesis that Astragaloside VI could be a promising active compound from AR for adult neurogenesis and brain repair via targeting epidermal growth factor (EGF)-mediated MAPK signaling pathway in post-stroke treatment. By using cultured neural stem cells (NSCs) and experimental stroke rat model, we investigated the effects of Astragaloside VI on inducing NSCs proliferation and self-renewal in vitro, and enhancing neurogenesis for the recovery of the neurological functions in post-ischemic brains in vivo. For animal experiments, rats were undergone 1.5 h middle cerebral artery occlusion (MCAO) plus 7 days reperfusion. Astragaloside VI (2 μg/kg) was daily administrated by intravenous injection (i.v.) for 7 days. Astragaloside VI treatment promoted neurogenesis and astrogenic formation in dentate gyrus zone, subventricular zone, and cortex of the transient ischemic rat brains in vivo. Astragaloside VI treatment enhanced NSCs self-renewal and proliferation in the cultured NSCs in vitro without affecting NSCs differentiation. Western blot analysis showed that Astragaloside VI up-regulated the expression of nestin, p-EGFR and p-MAPK, and increased neurosphere sizes, whose effects were abolished by the co-treatment of EGF receptor inhibitor gefitinib and ERK inhibitor PD98059. Behavior tests revealed that Astragaloside VI promoted the spatial learning and memory and improved the impaired motor function in transient cerebral ischemic rats. Taken together, Astragaloside VI could effectively activate EGFR/MAPK signaling cascades, promote NSCs proliferation and neurogenesis in transient cerebral ischemic brains, and improve the repair of neurological functions in post-ischemic stroke rats. Astragaloside VI could be a new therapeutic drug candidate for post-stroke treatment.


Astragaloside VI Transient cerebral ischemia Neural stem cell Proliferation Epidermal growth factor 



Epidermal growth factor


Neural stem cells


Middle cerebral artery occlusion


Subventricular zone


Lateral ventricles


Dentate gyrus


Astragaloside VI


Traditional Chinese medicine



We appreciate Professor Guowei Qin from Shanghai Institute of Meteria Medica for providing the sample of Astrogaloside VI for our study.

Authors’ Contribution

The work was performed and accomplished by all authors. S-JG and XC received fund and designed the experiments. XC, HW, and C-HS conducted the experiments and statistical analyses. X-XJ and QW provided technical support for animal experiments, experimental design, data interpretation, and gave comments on the manuscript. XC and S-JG wrote the manuscript. All authors have read and approved the final manuscript.


This study was supported by the grants from Shenzhen Science and Technology Innovation Commission (JCYJ20150402152005623), 2011 State Key Project of National Natural Foundation of China (No. 81630101,SIRI/04/09/2014/2), and National Natural Foundation of China (No. 81703741).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animal experimental protocols were conducted in accordance with the national and institutional guidelines on ethics and biosafety, which were approved and regulated by the Committee on the Use of Live Animals in Teaching and Research (CULATR), HKU. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

12035_2018_1294_Fig10_ESM.png (82 kb)

Effects of As I, AS II, AS III, AS V (from 50 nM to 50 uM) on the C17.2 NPCs cell viability detected by MTT assay. (PNG 82 kb)

12035_2018_1294_MOESM1_ESM.tif (481 kb)
High resolution image (TIF 481 kb)
12035_2018_1294_Fig11_ESM.png (5.7 mb)

As VI dose-dependently induces proliferation of primary cultured NSCs. NSCs were dual-immunostained with Nestin (red) and BrdU(green). (PNG 5873 kb)

12035_2018_1294_MOESM2_ESM.tif (11.1 mb)
High resolution image (TIF 11342 kb)
12035_2018_1294_Fig12_ESM.png (72 kb)

Laser Doppler detections for perfusion reduction rates (%) in different groups of rats after MCAO ischemic surgery. (PNG 72 kb)

12035_2018_1294_MOESM3_ESM.tif (721 kb)
High resolution image (TIF 720 kb)
12035_2018_1294_Fig13_ESM.png (667 kb)

A, Chemical structure of Astragaloside VI. B, LC-MS-HPLC analysis of the purity of Astragaloside VI (AS-VI) and the purity identified was over 99.9%. (PNG 666 kb)

12035_2018_1294_MOESM4_ESM.tif (1.6 mb)
High resolution image (TIF 1681 kb)


  1. 1.
    Mori E (2002) Impact of subcortical ischemic lesions on behavior and cognition. Ann N Y Acad Sci 977:141–148CrossRefGoogle Scholar
  2. 2.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239(1):57–69CrossRefGoogle Scholar
  3. 3.
    Seo TB, Kim TW, Shin MS, Ji ES, Cho HS, Lee JM, Kim TW, Kim CJ (2014) Aerobic exercise alleviates ischemia-induced memory impairment by enhancing cell proliferation and suppressing neuronal apoptosis in hippocampus. Int Neurourol J 18(4):187–197. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26CrossRefGoogle Scholar
  5. 5.
    Hartman RE, Lee JM, Zipfel GJ, Wozniak DF (2005) Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res 1043(1–2):48–56. CrossRefPubMedGoogle Scholar
  6. 6.
    Tian L, Nie H, Zhang Y, Chen Y, Peng Z, Cai M et al (2014) Recombinant human thioredoxin-1 promotes neurogenesis and facilitates cognitive recovery following cerebral ischemia in mice. Neuropharmacology 77:453–464. CrossRefPubMedGoogle Scholar
  7. 7.
    Cittolin-Santos GF, de Assis AM, Guazzelli PA, Paniz LG, da Silva JS, Calcagnotto ME, Hansel G, Zenki KC et al (2016) Guanosine exerts neuroprotective effect in an experimental model of acute ammonia intoxication. Mol Neurobiol 54:3137–3148. CrossRefPubMedGoogle Scholar
  8. 8.
    Gould E, Tanapat P (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 80(2):427–436CrossRefGoogle Scholar
  9. 9.
    Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18(19):7768–7778CrossRefGoogle Scholar
  10. 10.
    Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y et al (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103(35):13198–13202. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG (2007) Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med 2(1):69–74. CrossRefPubMedGoogle Scholar
  12. 12.
    Lu J, Manaenko A, Hu Q (2017) Targeting adult neurogenesis for Poststroke therapy. Stem Cells Int 2017:5868632–5868610. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang RL, Zhang ZG, Chopp M (2008) Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 55(3):345–352. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP (2018) Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin 39(5):695–712. CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang R, Zhang Z, Chopp M (2016) Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 36(12):2034–2043. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Koh SH, Park HH (2017) Neurogenesis in stroke recovery. Transl Stroke Res 8(1):3–13. CrossRefPubMedGoogle Scholar
  17. 17.
    Merson TD, Bourne JA (2014) Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol 56:4–19. CrossRefPubMedGoogle Scholar
  18. 18.
    Uzun G, Subhani D, Amor S (2010) Trophic factors and stem cells for promoting recovery in stroke. J Vasc Interv Neurol 3(1):3–12PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ninomiya M, Yamashita T, Araki N, Okano H, Sawamoto K (2006) Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone. Neurosci Lett 403(1–2):63–67. CrossRefPubMedGoogle Scholar
  20. 20.
    Tureyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ (2005) EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery 57(6):1254–1263 discussion 1254-1263CrossRefGoogle Scholar
  21. 21.
    Morita M, Kozuka N, Itofusa R, Yukawa M, Kudo Y (2005) Autocrine activation of EGF receptor promotes oscillation of glutamate-induced calcium increase in astrocytes cultured in rat cerebral cortex. J Neurochem 95(3):871–879. CrossRefPubMedGoogle Scholar
  22. 22.
    Jori FP, Galderisi U, Piegari E, Cipollaro M, Cascino A, Peluso G, Cotrufo R, Giordano A et al (2003) EGF-responsive rat neural stem cells: molecular follow-up of neuron and astrocyte differentiation in vitro. J Cell Physiol 195(2):220–233. CrossRefPubMedGoogle Scholar
  23. 23.
    Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ (2001) ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int J Cancer 94(6):774–782CrossRefGoogle Scholar
  24. 24.
    Teramoto T, Qiu J, Plumier JC, Moskowitz MA (2003) EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest 111(8):1125–1132. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yarden Y, Schlessinger J (1987) Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26(5):1443–1451CrossRefGoogle Scholar
  26. 26.
    Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(2 Suppl):21–26. CrossRefPubMedGoogle Scholar
  27. 27.
    Novak U, Walker F, Kaye A (2001) Expression of EGFR-family proteins in the brain: role in development, health and disease. J Clin Neurosci 8(2):106–111. CrossRefPubMedGoogle Scholar
  28. 28.
    Weickert CS, Webster MJ, Colvin SM, Herman MM, Hyde TM, Weinberger DR, Kleinman JE (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 423(3):359–372CrossRefGoogle Scholar
  29. 29.
    Caric D, Raphael H, Viti J, Feathers A, Wancio D, Lillien L (2001) EGFRs mediate chemotactic migration in the developing telencephalon. Development 128(21):4203–4216PubMedGoogle Scholar
  30. 30.
    Abe Y, Nawa H, Namba H (2009) Activation of epidermal growth factor receptor ErbB1 attenuates inhibitory synaptic development in mouse dentate gyrus. Neurosci Res 63(2):138–148. CrossRefPubMedGoogle Scholar
  31. 31.
    Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1(2005):0010–0E17. CrossRefPubMedGoogle Scholar
  32. 32.
    Sutterlin P, Williams EJ, Chambers D, Saraf K, von Schack D, Reisenberg M, Doherty P, Williams G (2013) The molecular basis of the cooperation between EGF, FGF and eCB receptors in the regulation of neural stem cell function. Mol Cell Neurosci 52:20–30. CrossRefPubMedGoogle Scholar
  33. 33.
    Alagappan D, Lazzarino DA, Felling RJ, Balan M, Kotenko SV, Levison SW (2009) Brain injury expands the numbers of neural stem cells and progenitors in the SVZ by enhancing their responsiveness to EGF. ASN Neuro 1(2):AN20090002. CrossRefGoogle Scholar
  34. 34.
    Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shamloo M, Rytter A, Wieloch T (1999) Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 93(1):81–88CrossRefGoogle Scholar
  36. 36.
    Campos LS, Leone DP, Relvas JB, Brakebusch C, Fassler R, Suter U, ffrench-Constant C (2004) Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131(14):3433–3444. CrossRefPubMedGoogle Scholar
  37. 37.
    Hu BR, Wieloch T (1994) Tyrosine phosphorylation and activation of mitogen-activated protein kinase in the rat brain following transient cerebral ischemia. J Neurochem 62(4):1357–1367CrossRefGoogle Scholar
  38. 38.
    Hao CZ, Wu F, Shen J, Lu L, Fu DL, Liao WJ, Zheng GQ (2012) Clinical efficacy and safety of buyang huanwu decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials. Evid Based Complement Alternat Med 2012:630124–630110. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yang LP, Shen JG, Xu WC, Li J, Jiang JQ (2011) Secondary metabolites of the genus Astragalus: structure and biological-activity update. Chem Biodivers 8(7):1215–1233CrossRefGoogle Scholar
  40. 40.
    Liu YQ, Wang ZW, Wei SC, Yan CL, Wang RQ, Li YD (2015 Mar) The influences of ultrafiltration and alcohol sedimentation on protective effects of Radix Astragali and Radix Hedyseri against rat's cerebral ischemia. Zhongguo Ying Yong Sheng Li Xue Za Zhi 31(2):132–135PubMedGoogle Scholar
  41. 41.
    Fu S, Gu Y, Jiang J-Q, Chen X, Mingjing X, Chen X, Shen J (2014) Calycosin-7-O-beta-D-glucoside regulates nitric oxide /caveolin-1/matrix metalloproteinases pathway and protects blood-brain barrier integrity in experimental cerebral ischemia-reperfusion injury. J Ethnopharmacol 155(1):692–701CrossRefGoogle Scholar
  42. 42.
    Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu JH, Zhang WD, Chen J (2004) Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett 363(3):218–223. CrossRefPubMedGoogle Scholar
  43. 43.
    Qu YZ, Li M, Zhao YL, Zhao ZW, Wei XY, Liu JP, Gao L, Gao GD (2009) Astragaloside IV attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats. Eur J Pharmacol 606(1–3):137–141. CrossRefPubMedGoogle Scholar
  44. 44.
    Li M, Ma RN, Li LH, Qu YZ, Gao GD (2013) Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4. Eur J Pharmacol 715(1–3):189–195. CrossRefPubMedGoogle Scholar
  45. 45.
    Li M, Qu YZ, Zhao ZW, Wu SX, Liu YY, Wei XY, Gao L, Gao GD (2012) Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem Int 60(5):458–465. CrossRefPubMedGoogle Scholar
  46. 46.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91CrossRefGoogle Scholar
  47. 47.
    Chen HS, Chen XM, Feng JH, Liu KJ, Qi SH, Shen JG (2015) Peroxynitrite decomposition catalyst reduces delayed thrombolysis-induced hemorrhagic transformation in ischemia-reperfused rat brains. CNS Neurosci Ther 21(7):585–590. CrossRefPubMedGoogle Scholar
  48. 48.
    Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10. CrossRefPubMedGoogle Scholar
  49. 49.
    Squire LR, Zola SM (1996) Ischemic brain damage and memory impairment: a commentary. Hippocampus 6(5):546–552.<546::AID-HIPO7>3.0.CO;2-G CrossRefPubMedGoogle Scholar
  50. 50.
    Lu Q, Tucker D, Dong Y, Zhao N, Zhang Q (2016) Neuroprotective and functional improvement effects of methylene blue in global cerebral ischemia. Mol Neurobiol 53(8):5344–5355. CrossRefPubMedGoogle Scholar
  51. 51.
    Xuan AG, Chen Y, Long DH, Zhang M, Ji WD, Zhang WJ, Liu JH, Hong LP et al (2015) PPARalpha agonist Fenofibrate ameliorates learning and memory deficits in rats following global cerebral ischemia. Mol Neurobiol 52(1):601–609. CrossRefPubMedGoogle Scholar
  52. 52.
    Li L, Yang R, Li P, Lu H, Hao J, Li L, Tucker D, Zhang Q (2018) Combination treatment with methylene blue and hypothermia in global cerebral ischemia. Mol Neurobiol 55(3):2042–2055. CrossRefPubMedGoogle Scholar
  53. 53.
    Ahsan A, Hiniker SM, Davis MA, Lawrence TS, Nyati MK (2009) Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization. Cancer Res 69(12):5108–5114. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lui VW, Grandis JR (2002) EGFR-mediated cell cycle regulation. Anticancer Res 22(1A):1–11PubMedGoogle Scholar
  55. 55.
    Justicia C, Planas AM (1999) Transforming growth factor-alpha acting at the epidermal growth factor receptor reduces infarct volume after permanent middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 19(2):128–132. CrossRefPubMedGoogle Scholar
  56. 56.
    Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, Rolfe A, McGinn MJ, Hamm R et al (2010) The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 27(5):923–938. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    de la Rosa EJ, de Pablo F (2000) Cell death in early neural development: beyond the neurotrophic theory. Trends Neurosci 23(10):454–458CrossRefGoogle Scholar
  58. 58.
    Honarpour N, Tabuchi K, Stark J, Hammer R, Südhof T, Parada L, Wang X, Richardson J et al (2001) Embryonic neuronal death due to neurotrophin and neurotransmitter deprivation occurs independent of Apaf-1. Neuroscience 106(2):263–274CrossRefGoogle Scholar
  59. 59.
    Yang K, Cao F, Sheikh AM, Malik M, Wen G, Wei H, Ted Brown W, Li X (2013) Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Struct Funct 218(3):669–682. CrossRefPubMedGoogle Scholar
  60. 60.
    Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, Müller S, Klebl B et al (2005 Jan 15) Cellular targets of gefitinib. Cancer Res 65(2):379–382PubMedGoogle Scholar
  61. 61.
    Rojewska E, Popiolek-Barczyk K, Kolosowska N, Piotrowska A, Zychowska M, Makuch W, Przewlocka B, Mika J (2015) PD98059 influences immune factors and enhances opioid analgesia in model of neuropathy. PLoS One 10(10):e0138583. eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yang LP, Shen JG, Xu WC, Li J, Jiang JQ (2013) Secondary metabolites of the genus Astragalus: structure and biological-activity update. Chem Biodivers 10(6):1004–1054. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Core FacilityThe People’s Hospital of Bao-anShenzhenChina
  2. 2.The 8th people’s Hospital of ShenzhenThe Affiliated Bao-an Hospital of Southern Medical UniversityShenzhenChina
  3. 3.School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
  4. 4.Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
  5. 5.School of Traditional Chinese MedicineHunan University of Chinese MedicineChangshaChina

Personalised recommendations