Advertisement

Molecular Neurobiology

, Volume 56, Issue 4, pp 2760–2773 | Cite as

Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats

  • Bianca Seminotti
  • Ângela Zanatta
  • Rafael Teixeira Ribeiro
  • Mateus Struecker da Rosa
  • Angela T. S. Wyse
  • Guilhian Leipnitz
  • Moacir WajnerEmail author
Article
  • 149 Downloads

Abstract

S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2′,7′-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.

Keywords

S-Adenosylhomocysteine hydrolase deficiency S-Adenosylmethionine Redox homeostasis Microglia activation Neuronal damage 

Notes

Funding Information

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [grant number #404883/2013-3], Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul [grant number #2266- 2551/14-2], and Financiadora de Estudos e Projetos/Rede Instituto Brasileiro de Neurociência [grant number #01.06.0842-00].

Compliance with Ethical Standards

The experimental protocol was approved by the local Animal Ethics Committe of Universidade Federal do Rio Grande do Sul. The guidelines of National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH publication no. 80–23, revised 2011) and Directive 2010/63/EU were followed.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Gaull GE, Von Berg W, Raiha NC, Sturman JA (1973) Development of methyltransferase activities of human fetal tissues. Pediatr Res 7(5):527–533.  https://doi.org/10.1203/00006450-197305000-00006 CrossRefPubMedGoogle Scholar
  2. 2.
    Grubbs R, Vugrek O, Deisch J, Wagner C, Stabler S, Allen R, Baric I, Rados M et al (2010) S-adenosylhomocysteine hydrolase deficiency: two siblings with fetal hydrops and fatal outcomes. J Inherit Metab Dis 33(6):705–713.  https://doi.org/10.1007/s10545-010-9171-x CrossRefPubMedGoogle Scholar
  3. 3.
    Honzik T, Magner M, Krijt J, Sokolova J, Vugrek O, Beluzic R, Baric I, Hansikova H et al (2012) Clinical picture of S-adenosylhomocysteine hydrolase deficiency resembles phosphomannomutase 2 deficiency. Mol Genet Metab 107(3):611–613.  https://doi.org/10.1016/j.ymgme.2012.08.014 CrossRefPubMedGoogle Scholar
  4. 4.
    Mudd SH, Brosnan JT, Brosnan ME, Jacobs RL, Stabler SP, Allen RH, Vance DE, Wagner C (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85(1):19–25.  https://doi.org/10.1093/ajcn/85.1.19 CrossRefPubMedGoogle Scholar
  5. 5.
    Stender S, Chakrabarti RS, Xing C, Gotway G, Cohen JC, Hobbs HH (2015) Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116(4):269–274.  https://doi.org/10.1016/j.ymgme.2015.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Strauss KA, Ferreira C, Bottiglieri T, Zhao X, Arning E, Zhang S, Zeisel SH, Escolar ML et al (2015) Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab 116(1–2):44–52.  https://doi.org/10.1016/j.ymgme.2015.06.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Baric I, Staufner C, Augoustides-Savvopoulou P, Chien YH, Dobbelaere D, Grunert SC, Opladen T, Petkovic Ramadza D et al (2017) Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders. J Inherit Metab Dis 40(1):5–20.  https://doi.org/10.1007/s10545-016-9972-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Baric I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V et al (2004) S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci U S A 101(12):4234–4239.  https://doi.org/10.1073/pnas.0400658101 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baric I, Cuk M, Fumic K, Vugrek O, Allen RH, Glenn B, Maradin M, Pazanin L et al (2005) S-Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J Inherit Metab Dis 28(6):885–902.  https://doi.org/10.1007/s10545-005-0192-9 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Finkelstein JD, Kyle W, Harris BJ (1971) Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys 146(1):84–92CrossRefGoogle Scholar
  11. 11.
    Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT (2018) S-Adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics 15(1):156–175.  https://doi.org/10.1007/s13311-017-0593-0 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rubin RA, Ordonez LA, Wurtman RJ (1974) Physiological dependence of brain methionine and S-adenosylmethionine concentrations on serum amino acid pattern. J Neurochem 23(1):227–231CrossRefGoogle Scholar
  13. 13.
    Molloy AM, Orsi B, Kennedy DG, Kennedy S, Weir DG, Scott JM (1992) The relationship between the activity of methionine synthase and the ratio of S-adenosylmethionine to S-adenosylhomocysteine in the brain and other tissues of the pig. Biochem Pharmacol 44(7):1349–1355CrossRefGoogle Scholar
  14. 14.
    Halliwell BGJ (2015) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Free radicals in biology and medicine. Oxford University Press Inc, Oxford, pp. 199–283CrossRefGoogle Scholar
  15. 15.
    Zanatta A, Cecatto C, Ribeiro RT, Amaral AU, Wyse AT, Leipnitz G, Wajner M (2017) S-Adenosylmethionine promotes oxidative stress and decreases Na(+), K(+)-ATPase activity in cerebral cortex supernatants of adolescent rats: implications for the pathogenesis of S-adenosylhomocysteine hydrolase deficiency. Mol Neurobiol 55:5868–5878.  https://doi.org/10.1007/s12035-017-0804-z CrossRefPubMedGoogle Scholar
  16. 16.
    Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic, CambridgeGoogle Scholar
  17. 17.
    da Rosa MS, Joao Ribeiro CA, Seminotti B, Teixeira Ribeiro R, Amaral AU, Coelho Dde M, de Oliveira FH, Leipnitz G et al (2015) In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med 83:201–213.  https://doi.org/10.1016/j.freeradbiomed.2015.02.008 CrossRefPubMedGoogle Scholar
  18. 18.
    Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266.  https://doi.org/10.1006/abbi.2001.2292 CrossRefPubMedGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  20. 20.
    Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110.  https://doi.org/10.1385/0-89603-472-0:107 CrossRefPubMedGoogle Scholar
  21. 21.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefGoogle Scholar
  22. 22.
    Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145CrossRefGoogle Scholar
  23. 23.
    Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352.  https://doi.org/10.1385/0-89603-472-0:347 CrossRefPubMedGoogle Scholar
  24. 24.
    Teare JP, Punchard NA, Powell JJ, Lumb PJ, Mitchell WD, Thompson RP (1993) Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clin Chem 39(4):686–689PubMedGoogle Scholar
  25. 25.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefGoogle Scholar
  26. 26.
    Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490CrossRefGoogle Scholar
  27. 27.
    Marklund SL (1985) Product of extracellular-superoxide dismutase catalysis. FEBS Lett 184(2):237–239CrossRefGoogle Scholar
  28. 28.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  29. 29.
    Guthenberg C, Mannervik B (1981) Glutathione S-transferase (transferase pi) from human placenta is identical or closely related to glutathione S-transferase (transferase rho) from erythrocytes. Biochim Biophys Acta 661(2):255–260CrossRefGoogle Scholar
  30. 30.
    Leong SF, Clark JB (1984) Regional development of glutamate dehydrogenase in the rat brain. J Neurochem 43(1):106–111CrossRefGoogle Scholar
  31. 31.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefGoogle Scholar
  32. 32.
    Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681PubMedGoogle Scholar
  33. 33.
    Moura AP, Parmeggiani B, Gasparotto J, Grings M, Fernandez Cardoso GM, Seminotti B, Moreira JCF, Gelain DP et al (2018) Glycine administration alters MAPK signaling pathways and causes neuronal damage in rat brain: putative mechanisms involved in the neurological dysfunction in nonketotic hyperglycinemia. Mol Neurobiol 55(1):741–750.  https://doi.org/10.1007/s12035-016-0319-z CrossRefPubMedGoogle Scholar
  34. 34.
    Waza AA, Hamid Z, Ali S, Bhat SA, Bhat MA (2018) A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm Res 67:579–588.  https://doi.org/10.1007/s00011-018-1151-x CrossRefPubMedGoogle Scholar
  35. 35.
    Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114.  https://doi.org/10.1186/s12974-015-0332-6 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38CrossRefGoogle Scholar
  37. 37.
    Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770CrossRefGoogle Scholar
  38. 38.
    Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34(2):237–256.  https://doi.org/10.1385/CBB:34:2:237 CrossRefPubMedGoogle Scholar
  39. 39.
    Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503CrossRefGoogle Scholar
  40. 40.
    Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM (2016) A minireview on N-acetylcysteine: an old drug with new approaches. Life Sci 151:359–363.  https://doi.org/10.1016/j.lfs.2016.03.003 CrossRefPubMedGoogle Scholar
  41. 41.
    Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260(1–2):153–159CrossRefGoogle Scholar
  42. 42.
    Kaushik S, Kaur J (2003) Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clin Chim Acta 333(1):69–77CrossRefGoogle Scholar
  43. 43.
    Jafari M (2007) Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 231(1):30–39.  https://doi.org/10.1016/j.tox.2006.11.048 CrossRefPubMedGoogle Scholar
  44. 44.
    Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582CrossRefGoogle Scholar
  45. 45.
    Bonini MG, Rota C, Tomasi A, Mason RP (2006) The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40(6):968–975.  https://doi.org/10.1016/j.freeradbiomed.2005.10.042 CrossRefPubMedGoogle Scholar
  46. 46.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57(1):1–9CrossRefGoogle Scholar
  47. 47.
    Serrano-Pozo A, Gomez-Isla T, Growdon JH, Frosch MP, Hyman BT (2013) A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. Am J Pathol 182(6):2332–2344.  https://doi.org/10.1016/j.ajpath.2013.02.031 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA (2010) Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol Aging 31(5):747–757.  https://doi.org/10.1016/j.neurobiolaging.2008.06.011 CrossRefPubMedGoogle Scholar
  49. 49.
    Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–316.  https://doi.org/10.1002/glia.22930 CrossRefPubMedGoogle Scholar
  50. 50.
    Balducci C, Forloni G (2018) Novel targets in Alzheimer’s disease: a special focus on microglia. Pharmacol Res 130:402–413.  https://doi.org/10.1016/j.phrs.2018.01.017 CrossRefPubMedGoogle Scholar
  51. 51.
    Sun L, Shen R, Agnihotri SK, Chen Y, Huang Z, Bueler H (2018) Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 8(1):383.  https://doi.org/10.1038/s41598-017-18786-w CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gudi V, Gai L, Herder V, Tejedor LS, Kipp M, Amor S, Suhs KW, Hansmann F et al (2017) Synaptophysin is a reliable marker for axonal damage. J Neuropathol Exp Neurol 76:109–125.  https://doi.org/10.1093/jnen/nlw114 CrossRefGoogle Scholar
  53. 53.
    Wang X, Cheng JL, Ran YC, Zhang Y, Yang L, Lin YN (2017) Expression of RGMb in brain tissue of MCAO rats and its relationship with axonal regeneration. J Neurol Sci 383:79–86.  https://doi.org/10.1016/j.jns.2017.10.032 CrossRefPubMedGoogle Scholar
  54. 54.
    Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, Henn FA (2001) Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry 50(10):809–812CrossRefGoogle Scholar
  55. 55.
    Xu H, He J, Richardson JS, Li XM (2004) The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem 91(6):1380–1388.  https://doi.org/10.1111/j.1471-4159.2004.02827.x CrossRefPubMedGoogle Scholar
  56. 56.
    Terry RD (1998) The cytoskeleton in Alzheimer disease. J Neural Transm Suppl 53:141–145CrossRefGoogle Scholar
  57. 57.
    Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW (2009) Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem Int 55(1–3):174–180.  https://doi.org/10.1016/j.neuint.2009.02.010 CrossRefPubMedGoogle Scholar
  58. 58.
    Abisambra JF, Jinwal UK, Blair LJ, O'Leary JC 3rd, Li Q, Brady S, Wang L, Guidi CE et al (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci 33(22):9498–9507.  https://doi.org/10.1523/JNEUROSCI.5397-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159.  https://doi.org/10.1146/annurev.neuro.24.1.1121 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations