Advertisement

Molecular Neurobiology

, Volume 56, Issue 4, pp 2551–2557 | Cite as

Zika Virus and the Metabolism of Neuronal Cells

  • Hussin A. RothanEmail author
  • Shengyun Fang
  • Mohan Mahesh
  • Siddappa N. ByrareddyEmail author
Article

Abstract

Zika virus (ZIKV) infection is associated with abnormal functions of neuronal cells causing neurological disorders such as microcephaly in the newborns and Guillain–Barré syndrome in the adults. Typically, healthy brain growth is associated with normal neural stem cell proliferation, differentiation, and maturation. This process requires a controlled cellular metabolism that is essential for normal migration, axonal elongation, and dendrite morphogenesis of newly generated neurons. Thus, the remarkable changes in the cellular metabolism during early stages of neuronal stem cell differentiation are crucial for brain development. Recent studies show that ZIKV directly infects neuronal stem cells in the fetus and impairs brain growth. In this review, we highlighted the fact that the activation of P53 and inhibition of the mTOR pathway by ZIKV infection to neuronal stem cells induces early shifting from glycolysis to oxidative phosphorylation (OXPHOS) may induce immature differentiation, apoptosis, and stem cell exhaustion. We hypothesize that ZIKV infection to mature myelin-producing cells and resulting metabolic shift may lead to the development of neurological diseases, such as Guillain–Barré syndrome. Thus, the effects of ZIKV on the cellular metabolism of neuronal cells may lead to the incidence of neurological disorders as observed recently during ZIKV infection.

Keywords

Zika virus Cellular metabolism Neuronal cells Microcephaly Brain development 

Notes

Acknowledgements

We thank Robin Taylor for the editorial assistance.

Funding Information

This work is supported in part 1U01GM117175 to SF and R01AI113883 and Nebraska Neuroscience Alliance Endowed Fund Awarded to SNB.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rothan HA, Bidokhti MRM, Byrareddy SN (2018) Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV. J Autoimmun 89:11–20CrossRefGoogle Scholar
  2. 2.
    Gatherer D, Kohl A (2016) Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol 97:269–273CrossRefGoogle Scholar
  3. 3.
    Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N (2016) Zika virus: history, emergence, biology, and prospects for control. Antivir Res 130:69–80CrossRefGoogle Scholar
  4. 4.
    Petersen LR, Jamieson DJ, Honein MA (2016) Zika Virus. N Engl J Med 375:294–295PubMedGoogle Scholar
  5. 5.
    Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, Araujo ESM, de Sequeira PC et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16:653–660CrossRefGoogle Scholar
  6. 6.
    Magnani DM, Rogers TF, Maness NJ, Grubaugh ND, Beutler N, Bailey VK et al (2018) Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques. Nat Commun 9(1):1624CrossRefGoogle Scholar
  7. 7.
    Coffey LL, Keesler RI, Pesavento PA, Woolard K, Singapuri A, Watanabe J et al (2018) Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat Commun 9(1):2414CrossRefGoogle Scholar
  8. 8.
    Mavigner M, Raper J, Kovacs-Balint Z, Gumber S, O’Neal JT, Bhaumik SK, Zhang X, Habib J et al (2018) Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci Transl Med 10(435):eaao6975CrossRefGoogle Scholar
  9. 9.
    Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S et al (2018) Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 24(3):368–374CrossRefGoogle Scholar
  10. 10.
    Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L et al (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120–126CrossRefGoogle Scholar
  11. 11.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033CrossRefGoogle Scholar
  12. 12.
    Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140(12):2535–2547CrossRefGoogle Scholar
  13. 13.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20CrossRefGoogle Scholar
  14. 14.
    Fontaine KA, Sanchez EL, Camarda R, Lagunoff M (2015) Dengue virus induces and requires glycolysis for optimal replication. J Virol 89:2358–2366CrossRefGoogle Scholar
  15. 15.
    Allonso D, Andrade IS, Conde JN, Coelho DR, Rocha DC et al (2015) Dengue virus NS1 protein modulates cellular energy metabolism by increasing glyceraldehyde-3-phosphate dehydrogenase activity. J Virol 89:11871–11883CrossRefGoogle Scholar
  16. 16.
    Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738CrossRefGoogle Scholar
  17. 17.
    Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ, Harris WA (2012) Metabolic differentiation in the embryonic retina. Nat Cell Biol 14:859–864CrossRefGoogle Scholar
  18. 18.
    Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271CrossRefGoogle Scholar
  19. 19.
    Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241CrossRefGoogle Scholar
  20. 20.
    Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752CrossRefGoogle Scholar
  21. 21.
    Diaz-Castro B, Pardal R, Garcia-Flores P, Sobrino V, Duran R, Piruat JI, Lopez-Barneo J (2015) Resistance of glia-like central and peripheral neural stem cells to genetically induced mitochondrial dysfunction--differential effects on neurogenesis. EMBO Rep 16:1511–1519CrossRefGoogle Scholar
  22. 22.
    Wanet A, Arnould T, Najimi M, Renard P (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24:1957–1971CrossRefGoogle Scholar
  23. 23.
    Steib K, Schaffner I, Jagasia R, Ebert B, Lie DC (2014) Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci 34:6624–6633CrossRefGoogle Scholar
  24. 24.
    Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70:1033–1053CrossRefGoogle Scholar
  25. 25.
    van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN (2017) Zika virus targeting in the developing brain. J Neurosci 37:2161–2175CrossRefGoogle Scholar
  26. 26.
    Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N, Li M, Dell’Anno MT, Gulden FO et al (2016) Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 16:2576–2592CrossRefGoogle Scholar
  27. 27.
    Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S et al (2016) Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–671CrossRefGoogle Scholar
  28. 28.
    Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervelloa C, Cursi M et al (2011) Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9:447–462CrossRefGoogle Scholar
  29. 29.
    Paliouras GN, Hamilton LK, Aumont A, Joppe SE, Barnabe-Heider F, Fernandes KJL (2012) Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 32:15012–15026CrossRefGoogle Scholar
  30. 30.
    Romine J, Gao X, Xu XM, So KF, Chen J (2015) The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation. Neurobiol Aging 36:1716–1726CrossRefGoogle Scholar
  31. 31.
    Gomes LC, Scorrano L (2011) Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times. Autophagy 7:1251–1253CrossRefGoogle Scholar
  32. 32.
    Barbier V, Lang D, Valois S, Rothman AL, Medin CL (2017) Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 500:149–160CrossRefGoogle Scholar
  33. 33.
    Tricarico PM, Caracciolo I, Crovella S, D'Agaro P (2017) Zika virus induces inflammasome activation in the glial cell line U87-MG. Biochem Biophys Res Commun 492:597–602CrossRefGoogle Scholar
  34. 34.
    Frumence E, Roche M, Krejbich-Trotot P, El-Kalamouni C, Nativel B et al (2016) The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction. Virology 493:217–226CrossRefGoogle Scholar
  35. 35.
    Ghouzzi VE, Bianchi FT, Molineris I, Mounce BC, Berto GE, Rak M, Lebon S, Aubry L et al (2016) ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death Dis 7:e2440CrossRefGoogle Scholar
  36. 36.
    Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120CrossRefGoogle Scholar
  37. 37.
    Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20:427–434CrossRefGoogle Scholar
  38. 38.
    Gabriel E, Ramani A, Karow U, Gottardo M, Natarajan K et al (2017) Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20(397–406):e395Google Scholar
  39. 39.
    Huang WC, Abraham R, Shim BS, Choe H, Page DT (2016) Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Sci Rep 6:34793CrossRefGoogle Scholar
  40. 40.
    Tiwari SK, Dang J, Qin Y, Lichinchi G, Bansal V, Rana TM (2017) Zika virus infection reprograms global transcription of host cells to allow sustained infection. Emerg Microbes Infect 6:e24CrossRefGoogle Scholar
  41. 41.
    Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M et al (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18:591–596CrossRefGoogle Scholar
  42. 42.
    Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–149CrossRefGoogle Scholar
  43. 43.
    Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53CrossRefGoogle Scholar
  44. 44.
    Zhao Z, Yang M, Azar SR, Soong L, Weaver SC, Sun J, Chen Y, Rossi SL et al (2017) Viral retinopathy in experimental models of Zika infection. Invest Ophthalmol Vis Sci 58:4355–4365CrossRefGoogle Scholar
  45. 45.
    Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E et al (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–4749CrossRefGoogle Scholar
  46. 46.
    Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492CrossRefGoogle Scholar
  47. 47.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795CrossRefGoogle Scholar
  48. 48.
    Walton NM, Shin R, Tajinda K, Heusner CL, Kogan JH, Miyake S, Chen Q, Tamura K et al (2012) Adult neurogenesis transiently generates oxidative stress. PLoS One 7:e35264CrossRefGoogle Scholar
  49. 49.
    Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL et al (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:396–409CrossRefGoogle Scholar
  50. 50.
    Molloy JC, Sommer U, Viant MR, Sinkins SP (2016) Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl Environ Microbiol 82:3109–3120CrossRefGoogle Scholar
  51. 51.
    Lee CJ, Lin HR, Liao CL, Lin YL (2008) Cholesterol effectively blocks entry of flavivirus. J Virol 82:6470–6480CrossRefGoogle Scholar
  52. 52.
    Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ et al (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350CrossRefGoogle Scholar
  53. 53.
    Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G et al (2009) Discovery of insect and human dengue virus host factors. Nature 458:1047–1050CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Biomedical Engineering & Technology, School of MedicineUniversity of MarylandBaltimoreUSA
  2. 2.Department of Physiology, School of MedicineUniversity of MarylandBaltimoreUSA
  3. 3.Division of Comparative PathologyTulane National Primate Research CenterCovingtonUSA
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA
  5. 5.Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaUSA
  6. 6.Department of Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical Centre (UNMC)OmahaUSA

Personalised recommendations