Molecular Neurobiology

, Volume 56, Issue 4, pp 2524–2541 | Cite as

Anionic Phospholipids Bind to and Modulate the Activity of Human TRESK Background K+ Channel

  • Jonathan P. Giblin
  • Iñigo Etayo
  • Aida Castellanos
  • Alba Andres-Bilbe
  • Xavier GasullEmail author


The background K+ channel TRESK regulates sensory neuron excitability, and changes in its function/expression contribute to neuronal hyperexcitability after injury/inflammation, making it an attractive therapeutic target for pain-related disorders. Factors that change lipid bilayer composition/properties (including volatile anesthetics, chloroform, chlorpromazine, shear stress, and cell swelling/shrinkage) modify TRESK current, but despite the importance of anionic phospholipids (e.g., PIP2) in the regulation of many ion channels, it remains unknown if membrane lipids affect TRESK function. We describe that both human and rat TRESK contain potential anionic phospholipid binding sites (apbs) in the large cytoplasmic loop, but only the human channel is able to bind to multilamellar vesicles (MLVs), enriched with anionic phospholipids, suggesting an electrostatically mediated interaction. We mapped the apbs to a short stretch of 14 amino acids in the loop, located at the membrane-cytosol interface. Disruption of electrostatic lipid-TRESK interactions inhibited hTRESK currents, while subsequent application of Folch Fraction MLVs or a PIP2 analog activated hTRESK, an effect that was absent in the rat ortholog. Strikingly, channel activation by anionic phospholipids was conferred to rTRESK by replacing the equivalent rat sequence with the human apbs. Finally, in the presence of a calcineurin inhibitor, stimulation of a Gq/11-linked GPCR reduced hTRESK current, revealing a likely inhibitory effect of membrane lipid hydrolysis on hTRESK activity. This novel regulation of hTRESK by anionic phospholipids is a characteristic of the human channel that is not present in rodent orthologs. This must be considered when extrapolating results from animal models and may open the door to the development of novel channel modulators as analgesics.


K2P channels KCNK Membrane phospholipids Nociception Neuronal excitability 


Authors’ Contributions

Authors JPG, AC, and AA carried out cellular cultures, plasmid generation, and transfection. JPG and IE performed construction of GST fusion proteins, chimeric constructs, and liposome binding assays. AC, AA, and XG performed electrophysiological recordings in cell lines. JPG and XG participated in the design of the study and performed the statistical analysis. JPG and XG conceived the study, oversaw the research, and prepared the manuscript with help from all others. All authors read and approved the final manuscript.

Funding Information

Supported by grants from Ministerio de Economia y Competitividad and Instituto de Salud Carlos III of Spain FIS PI14/00141 (XG) and FIS PI17/00296 (XG), RETICs Oftared RD12/0034/0003 (XG) and RD16/0008/0014 (XG), and Generalitat de Catalunya 2014SGR1165 (XG) and 2017SGR737 (XG). J.P.G. was supported by a Ramón y Cajal Research Contract (Ministerio de Economia y Competitividad RYC-2011-08589).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing financial interests

Supplementary material

12035_2018_1244_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 65 kb)


  1. 1.
    Goldstein SAN, Bayliss DA, Kim D et al (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540. CrossRefPubMedGoogle Scholar
  2. 2.
    Doyle DA, Morais Cabral J, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77CrossRefGoogle Scholar
  3. 3.
    Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605. CrossRefPubMedGoogle Scholar
  4. 4.
    Bandulik S, Tauber P, Lalli E et al (2015) Two-pore domain potassium channels in the adrenal cortex. Pflugers Arch 467:1027–1042. CrossRefPubMedGoogle Scholar
  5. 5.
    Duprat F, Lauritzen I, Patel A, Honoré E (2007) The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci 30:573–580. CrossRefPubMedGoogle Scholar
  6. 6.
    Mathie A, Veale EL (2015) Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch 467:931–943. CrossRefPubMedGoogle Scholar
  7. 7.
    Steinberg EA, Wafford KA, Brickley SG et al (2014) The role of K2P channels in anaesthesia and sleep. Pflugers Arch 467:907–916. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sano Y, Inamura K, Miyake A et al (2003) A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord. J Biol Chem 278:27406–27412CrossRefGoogle Scholar
  9. 9.
    Bautista DM, Sigal YM, Milstein AD et al (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11:772–779. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tulleuda A, Cokic B, Callejo G et al (2011) TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 7:30. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dobler T, Springauf A, Tovornik S et al (2007) TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol Lond 585:867–879. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Usoskin D, Furlan A, Islam S et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153. CrossRefPubMedGoogle Scholar
  13. 13.
    Chiu IM, Barrett LB, Williams EK et al (2014) Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. Elife.
  14. 14.
    Manteniotis S, Lehmann R, Flegel C et al (2013) Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in trigeminal ganglia. PLoS One 8:e79523. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Physiol, Cell Physiol 291:C138–C146. CrossRefPubMedGoogle Scholar
  16. 16.
    Lennertz RC, Tsunozaki M, Bautista DM, Stucky CL (2010) Physiological basis of tingling paresthesia evoked by hydroxy-sanshool. J Neurosci 30:4353–4361. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Castellanos A, Andres A, Bernal L et al (2018) Pyrethroids inhibit K2P channels and activate sensory neurons. Pain 159:92–105. CrossRefPubMedGoogle Scholar
  18. 18.
    Lafrenière RG, Cader MZ, Poulin J-F et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16:1157–1160. CrossRefPubMedGoogle Scholar
  19. 19.
    Liu P, Xiao Z, Ren F et al (2013) Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci 33:12810–12824. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou J, Chen H, Yang C et al (2017) Reversal of TRESK downregulation alleviates neuropathic pain by inhibiting activation of gliocytes in the spinal cord. Neurochem Res 42:1288–1298. CrossRefPubMedGoogle Scholar
  21. 21.
    Callejo G, Giblin JP, Gasull X (2013) Modulation of TRESK background K+ channel by membrane stretch. PLoS One 8:e64471. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Guo Z, Cao Y-Q (2014) Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. PLoS One 9:e87029. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou J, Yang C-X, Zhong J-Y, Wang H-B (2013) Intrathecal TRESK gene recombinant adenovirus attenuates spared nerve injury-induced neuropathic pain in rats. Neuroreport 24:131–136. CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou J, Yao S-L, Yang C-X et al (2012) TRESK gene recombinant adenovirus vector inhibits capsaicin-mediated substance P release from cultured rat dorsal root ganglion neurons. Mol Med Report 5:1049–1052. CrossRefGoogle Scholar
  25. 25.
    Liu C, Au JD, Zou HL et al (2004) Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth Analg 99:1715–1722, table of contents. CrossRefPubMedGoogle Scholar
  26. 26.
    Sonner JM, Cantor RS (2013) Molecular mechanisms of drug action: an emerging view. Annu Rev Biophys 42:143–167. CrossRefPubMedGoogle Scholar
  27. 27.
    Czirják G, Tóth ZE, Enyedi P (2004) The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J Biol Chem 279:18550–18558. CrossRefPubMedGoogle Scholar
  28. 28.
    Czirják G, Enyedi P (2006) Targeting of calcineurin to an NFAT-like docking site is required for the calcium-dependent activation of the background K+ channel, TRESK. J Biol Chem 281:14677–14682. CrossRefPubMedGoogle Scholar
  29. 29.
    Kang D, Kim G-T, Kim E-J et al (2008) Lamotrigine inhibits TRESK regulated by G-protein coupled receptor agonists. Biochem Biophys Res Commun 367:609–615. CrossRefPubMedGoogle Scholar
  30. 30.
    Kollert S, Dombert B, Döring F, Wischmeyer E (2015) Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling. Sci Rep 5:12548. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hughes S, Marsh SJ, Tinker A, Brown DA (2007) PIP2-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP2 depletion by Gq-coupled receptors in single living neurons. Pflugers Arch 455:115–124. CrossRefPubMedGoogle Scholar
  32. 32.
    Li Y, Gamper N, Hilgemann DW, Shapiro MS (2005) Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:9825–9835. CrossRefPubMedGoogle Scholar
  33. 33.
    Willars GB, Nahorski SR, Challiss RA (1998) Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem 273:5037–5046CrossRefGoogle Scholar
  34. 34.
    Allen V, Swigart P, Cheung R et al (1997) Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J 327(Pt 2):545–552CrossRefGoogle Scholar
  35. 35.
    Rohács T (2016) Phosphoinositide signaling in somatosensory neurons. Advances in Biological Regulation 61:2–16. CrossRefPubMedGoogle Scholar
  36. 36.
    Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:re19. CrossRefPubMedGoogle Scholar
  37. 37.
    Chemin J, Patel AJ, Duprat F et al (2005) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53. CrossRefPubMedGoogle Scholar
  38. 38.
    Chemin J, Patel AJ, Duprat F et al (2007) Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflugers Arch 455:97–103. CrossRefPubMedGoogle Scholar
  39. 39.
    Lopes CMB, Rohács T, Czirják G et al (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol Lond 564:117–129. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brzeska H, Guag J, Remmert K et al (2010) An experimentally based computer search identifies unstructured membrane-binding sites in proteins. J Biol Chem 285:5738–5747. CrossRefPubMedGoogle Scholar
  41. 41.
    Letunic I, Doerks T, Bork P (2014) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864CrossRefGoogle Scholar
  43. 43.
    Callejo G, Castellanos A, Castany M et al (2015) Acid-sensing ion channels detect moderate acidifications to induce ocular pain. Pain 156:483–495. CrossRefPubMedGoogle Scholar
  44. 44.
    Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111. CrossRefPubMedGoogle Scholar
  45. 45.
    Hernandez CC, Zaika O, Shapiro MS (2008) A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K +channels. J Gen Physiol 132:361–381. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol 116:599–608CrossRefGoogle Scholar
  47. 47.
    Zeng W-Z, Liou H-H, Krishna UM et al (2002) Structural determinants and specificities for ROMK1-phosphoinositide interaction. American Journal of Physiology- Renal Physiology 282:F826–F834. CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang H, He C, Yan X et al (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1:183–188. CrossRefPubMedGoogle Scholar
  49. 49.
    Folch J (1942) Brain cephalin, a mixture of phosphatides. Separation from it of phosphatidylserine, phosphatidylenthanolamine, and a fraction containing an inositol phosphatide. J Biol Chem 146:35–44Google Scholar
  50. 50.
    Kimelberg HK, Papahadjopoulos D (1971) Interactions of basic proteins with phospholipid membranes. Binding and changes in the sodium permeability of phosphatidylserine vesicles. J Biol Chem 246:1142–1148PubMedGoogle Scholar
  51. 51.
    Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem 272:5388–5395CrossRefGoogle Scholar
  52. 52.
    Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806. CrossRefPubMedGoogle Scholar
  53. 53.
    Lopes CMB, Zhang H, Rohács T et al (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:933–944CrossRefGoogle Scholar
  54. 54.
    Veldhuis NA, Poole DP, Grace M et al (2015) The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 67:36–73. CrossRefPubMedGoogle Scholar
  55. 55.
    Sandoz G, Bell SC, Isacoff EY (2011) Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proc Natl Acad Sci U S A 108:2605–2610. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rayaprolu V, Royal P, Stengel K et al (2018) Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity. J Gen Physiol 150:683–696. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346CrossRefGoogle Scholar
  58. 58.
    Falkenburger BH, Jensen JB, Dickson EJ et al (2010) Phosphoinositides: lipid regulators of membrane proteins. J Physiol Lond 588:3179–3185. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8:921–934. CrossRefPubMedGoogle Scholar
  60. 60.
    Braun G, Nemcsics B, Enyedi P, Czirják G (2011) TRESK background K(+) channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes. PLoS One 6:e28119. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chemin J, Girard C, Duprat F et al (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22:5403–5411. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405CrossRefGoogle Scholar
  63. 63.
    Czirják G, Enyedi P (2010) TRESK background K(+) channel is inhibited by phosphorylation via two distinct pathways. J Biol Chem 285:14549–14557. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Enyedi P, Veres I, Braun G, Czirják G (2014) Tubulin binds to the cytoplasmic loop of TRESK background K+ channel in vitro. PLoS One 9:e97854. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Czirják G, Vuity D, Enyedi P (2008) Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J Biol Chem 283:15672–15680. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hille B, Dickson EJ, Kruse M et al (2015) Phosphoinositides regulate ion channels. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1851:844–856. CrossRefGoogle Scholar
  67. 67.
    Maingret F, Patel AJ, Lesage F et al (2000) Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133CrossRefGoogle Scholar
  68. 68.
    Chemin J, Patel A, Duprat F et al (2005) Lysophosphatidic acid-operated K+ channels. J Biol Chem 280:4415–4421. CrossRefPubMedGoogle Scholar
  69. 69.
    Comoglio Y, Levitz J, Kienzler MA et al (2014) Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. Proc Natl Acad Sci U S A 201407160:13547–13552. CrossRefGoogle Scholar
  70. 70.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–376. CrossRefPubMedGoogle Scholar
  72. 72.
    Keshavaprasad B, Liu C, Au JD et al (2005) Species-specific differences in response to anesthetics and other modulators by the K2P channel TRESK. Anesth Analg 101:1042–1049, table of contents. CrossRefPubMedGoogle Scholar
  73. 73.
    Czirják G, Enyedi P (2014) The LQLP Calcineurin-docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel. J Biol Chem 289:29506–29518. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Czirják G, Enyedi P (2006) Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels. Mol Pharmacol 69:1024–1032. CrossRefPubMedGoogle Scholar
  75. 75.
    Marsh B, Acosta C, Djouhri L, Lawson SN (2012) Leak K+ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 49:375–386. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurophysiology Lab, Department of Biomedicine, Medical School, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain

Personalised recommendations