Advertisement

Impairment of Axonal Transport in Diabetes: Focus on the Putative Mechanisms Underlying Peripheral and Central Neuropathies

  • Filipa I. Baptista
  • Helena Pinheiro
  • Catarina A. Gomes
  • António F. Ambrósio
Article
  • 93 Downloads

Abstract

Diabetes mellitus is a chronic disease with numerous complications that severely impact on the quality of life of patients. Different neuropathies may arise as complications associated with the nervous system, both peripherally and at the central level. The mechanisms behind these neuronal complications are far from being clarified, but axonal transport impairment, a vital process for neuronal physiology, has been described in the context of experimental diabetes. Alterations in neuronal cytoskeleton and motor proteins, deficits in ATP supply or neuroinflammation, as processes that disturb the effective transport of cargoes along the axon, were reported as putative causes of axonal impairment, ultimately leading to axonal degeneration. The main goal of the present review is to reunite the main studies in the literature exploring diabetes-induced alterations likely involved in axonal transport deficits, and call the attention for the uttermost importance of further exploring the field. Understanding the mechanisms underlying neuronal deficits in diabetes is crucial for the development of new therapeutic strategies to prevent neuronal degeneration in diabetes and related neuropathies.

Keywords

Diabetes Axonal transport Cytoskeleton Kinesin Dynein Neurodegeneration 

Abbreviations

AD

Alzheimer’s disease

ATP

Adenosine triphosphate

CNS

Central nervous system

DRG

Dorsal root ganglion

KIF

Kinesin superfamily protein

NF

Neurofilament

NGF

Nerve growth factor

NT-3

Neurotrophin-3

PNS

Peripheral nervous system

TNF

Tumor necrosis factor

RGC

Retinal ganglion cell

SC

Superior colliculus

STZ

Streptozotocin

Notes

Acknowledgements

This work was supported by Foundation for Science and Technology (PEst UID/NEU/04539/2013), COMPETE-FEDER (POCI-01-0145-FEDER-007440), and Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000008: BrainHealth 2020). Filipa I. Baptista acknowledges a fellowship from Foundation for Science and Technology, Portugal (SFRH/BPD/86830/2012).

References

  1. 1.
    Prior R, Van Helleputte L, Benoy V, Van Den Bosch L (2017) Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 105:300–320.  https://doi.org/10.1016/j.nbd.2017.02.009 CrossRefPubMedGoogle Scholar
  2. 2.
    Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL (2010) Retrograde axonal transport: Pathways to cell death? Trends Neurosci 33(7):335–344.  https://doi.org/10.1016/j.tins.2010.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332.  https://doi.org/10.1038/nrn2631 CrossRefPubMedGoogle Scholar
  4. 4.
    Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3):201–214.  https://doi.org/10.1038/nrn1624 CrossRefPubMedGoogle Scholar
  5. 5.
    Macioce P, Filliatreau G, Figliomeni B, Hassig R, Thiery J, Di Giamberardino L (1989) Slow axonal transport impairment of cytoskeletal proteins in streptozocin-induced diabetic neuropathy. J Neurochem 53(4):1261–1267CrossRefPubMedGoogle Scholar
  6. 6.
    Medori R, Autilio-Gambetti L, Monaco S, Gambetti P (1985) Experimental diabetic neuropathy: Impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci U S A 82(22):7716–7720CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McLean WG (1997) The role of axonal cytoskeleton in diabetic neuropathy. Neurochem Res 22(8):951–956CrossRefPubMedGoogle Scholar
  8. 8.
    Mohiuddin L, Fernyhough P, Tomlinson DR (1995) Reduced levels of mRNA encoding endoskeletal and growth-associated proteins in sensory ganglia in experimental diabetes. Diabetes 44(1):25–30CrossRefPubMedGoogle Scholar
  9. 9.
    McLean WG, Pekiner C, Cullum NA, Casson IF (1992) Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes. Mol Neurobiol 6(2–3):225–237.  https://doi.org/10.1007/BF02780555 CrossRefPubMedGoogle Scholar
  10. 10.
    Williams SK, Howarth NL, Devenny JJ, Bitensky MW (1982) Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sci U S A 79(21):6546–6550CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ryle C, Donaghy M (1995) Non-enzymatic glycation of peripheral nerve proteins in human diabetics. J Neurol Sci 129(1):62–68CrossRefPubMedGoogle Scholar
  12. 12.
    Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G (2011) Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 1383:300–306.  https://doi.org/10.1016/j.brainres.2011.01.084 CrossRefPubMedGoogle Scholar
  13. 13.
    Kim B, Backus C, Oh S, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150(12):5294–5301.  https://doi.org/10.1210/en.2009-0695 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Falzone TL, Gunawardena S, McCleary D, Reis GF, Goldstein LS (2010) Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies. Hum Mol Genet 19(22):4399–4408.  https://doi.org/10.1093/hmg/ddq363 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fernyhough P, Schmidt RE (2002) Neurofilaments in diabetic neuropathy. Int Rev Neurobiol 50:115–144CrossRefPubMedGoogle Scholar
  16. 16.
    Yagihashi S, Kamijo M, Watanabe K (1990) Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin diabetic rats. Am J Pathol 136(6):1365–1373PubMedPubMedCentralGoogle Scholar
  17. 17.
    Fernyhough P, Gallagher A, Averill SA, Priestley JV, Hounsom L, Patel J, Tomlinson DR (1999) Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 48(4):881–889CrossRefPubMedGoogle Scholar
  18. 18.
    Pekiner C, McLean WG (1991) Neurofilament protein phosphorylation in spinal cord of experimentally diabetic rats. J Neurochem 56(4):1362–1367CrossRefPubMedGoogle Scholar
  19. 19.
    Kamiya H, Zhang W, Sima AA (2009) Dynamic changes of neuroskeletal proteins in DRGs underlie impaired axonal maturation and progressive axonal degeneration in type 1 diabetes. Exp Diabetes Res 2009:793281.  https://doi.org/10.1155/2009/793281 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chevalier-Larsen E, Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta 1762(11–12):1094–1108.  https://doi.org/10.1016/j.bbadis.2006.04.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Dillon C, Goda Y (2005) The actin cytoskeleton: Integrating form and function at the synapse. Annu Rev Neurosci 28:25–55.  https://doi.org/10.1146/annurev.neuro.28.061604.135757 CrossRefPubMedGoogle Scholar
  22. 22.
    Pekiner C, Cullum NA, Hughes JN, Hargreaves AJ, Mahon J, Casson IF, McLean WG (1993) Glycation of brain actin in experimental diabetes. J Neurochem 61(2):436–442CrossRefPubMedGoogle Scholar
  23. 23.
    Jakobsen J, Sidenius P (1980) Decreased axonal transport of structural proteins in streptozotocin diabetic rats. J Clin Invest 66(2):292–297.  https://doi.org/10.1172/JCI109856 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Willars GB, Calcutt NA, Tomlinson DR (1987) Reduced anterograde and retrograde accumulation of axonally transported phosphofructokinase in streptozotocin-diabetic rats: effects of insulin and the aldose reductase inhibitor 'Statil. Diabetologia 30(4):239–243CrossRefPubMedGoogle Scholar
  25. 25.
    Meiri KF, McLean WG (1982) Axonal transport of protein in motor fibres of experimentally diabetic rats--fast anterograde transport. Brain Res 238(1):77–88CrossRefPubMedGoogle Scholar
  26. 26.
    Sidenius P, Jakobsen J (1979) Axonal transport in early experimental diabetes. Brain Res 173(2):315–330CrossRefPubMedGoogle Scholar
  27. 27.
    Inoue T, Majid T, Pautler RG (2011) Manganese enhanced MRI (MEMRI): Neurophysiological applications. Rev Neurosci 22(6):675–694.  https://doi.org/10.1515/RNS.2011.048 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T et al (2010) Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice. PLoS One 5(10):e13463.  https://doi.org/10.1371/journal.pone.0013463 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Longo FM, Powell HC, Lebeau J, Gerrero MR, Heckman H, Myers RR (1986) Delayed nerve regeneration in streptozotocin diabetic rats. Muscle Nerve 9(5):385–393.  https://doi.org/10.1002/mus.880090502 CrossRefPubMedGoogle Scholar
  30. 30.
    Pham VM, Tu NH, Katano T, Matsumura S, Saito A, Yamada A, Furue H, Ito S (2018) Impaired peripheral nerve regeneration in type-2 diabetic mouse model. Eur J Neurosci 47(2):126–139.  https://doi.org/10.1111/ejn.13771 CrossRefPubMedGoogle Scholar
  31. 31.
    Hellweg R, Raivich G, Hartung HD, Hock C, Kreutzberg GW (1994) Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Exp Neurol 130(1):24–30.  https://doi.org/10.1006/exnr.1994.1181 CrossRefPubMedGoogle Scholar
  32. 32.
    Tomlinson DR, Fernyhough P, Diemel LT (1997) Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 46(Suppl 2):S43–S49CrossRefPubMedGoogle Scholar
  33. 33.
    Lee PG, Hohman TC, Cai F, Regalia J, Helke CJ (2001) Streptozotocin-induced diabetes causes metabolic changes and alterations in neurotrophin content and retrograde transport in the cervical vagus nerve. Exp Neurol 170(1):149–161.  https://doi.org/10.1006/exnr.2001.7673 CrossRefPubMedGoogle Scholar
  34. 34.
    Weis J, Saxena S, Evangelopoulos ME, Kruttgen A (2003) Trophic factors in neurodegenerative disorders. IUBMB Life 55(6):353–357.  https://doi.org/10.1080/1521654031000153021 CrossRefPubMedGoogle Scholar
  35. 35.
    De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173.  https://doi.org/10.1146/annurev.neuro.31.061307.090711 CrossRefPubMedGoogle Scholar
  36. 36.
    Rahmati M, Gharakhanlou R, Movahedin M, Mowla SJ, Khazani A, Fouladvand M, Jahani Golbar S (2015) Treadmill training modifies KIF5B motor protein in the STZ-induced diabetic rat spinal cord and sciatic nerve. Arch Iran Med 18(2):94–101PubMedGoogle Scholar
  37. 37.
    Pesaresi M, Giatti S, Spezzano R, Romano S, Diviccaro S, Borsello T, Mitro N, Caruso D et al (2018) Axonal transport in a peripheral diabetic neuropathy model: Sex-dimorphic features. Biol Sex Differ 9(1):6.  https://doi.org/10.1186/s13293-018-0164-z CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tanaka Y, Niwa S, Dong M, Farkhondeh A, Wang L, Zhou R, Hirokawa N (2016) The molecular motor KIF1A transports the TrkA Neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90(6):1215–1229.  https://doi.org/10.1016/j.neuron.2016.05.002 CrossRefPubMedGoogle Scholar
  39. 39.
    Karle KN, Mockel D, Reid E, Schols L (2012) Axonal transport deficit in a KIF5A( −/− ) mouse model. Neurogenetics 13(2):169–179.  https://doi.org/10.1007/s10048-012-0324-y CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fernyhough P, Roy Chowdhury SK, Schmidt RE (2010) Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 5(1):39–49CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rumora AE, Lentz SI, Hinder LM, Jackson SW, Valesano A, Levinson GE, Feldman EL (2017) Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J 32:195–207.  https://doi.org/10.1096/fj.201700206R CrossRefPubMedGoogle Scholar
  42. 42.
    Rumora AE, Lentz SI, Hinder LM, Jackson SW, Valesano A, Levinson GE, Feldman EL (2018) Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J 32(1):195–207.  https://doi.org/10.1096/fj.201700206R CrossRefPubMedGoogle Scholar
  43. 43.
    Mohseni S (2001) Hypoglycemic neuropathy. Acta Neuropathol 102(5):413–421PubMedGoogle Scholar
  44. 44.
    Jensen VF, Molck AM, Bogh IB, Lykkesfeldt J (2014) Effect of insulin-induced hypoglycaemia on the peripheral nervous system: Focus on adaptive mechanisms, pathogenesis and histopathological changes. J Neuroendocrinol 26(8):482–496.  https://doi.org/10.1111/jne.12170 CrossRefPubMedGoogle Scholar
  45. 45.
    Sidenius P, Jakobsen J (1987) Anterograde fast component of axonal transport during insulin-induced hypoglycemia in nondiabetic and diabetic rats. Diabetes 36(7):853–858CrossRefPubMedGoogle Scholar
  46. 46.
    Sidenius P, Jakobsen J (1983) Peripheral neuropathy in rats induced by insulin treatment. Diabetes 32(4):383–386CrossRefPubMedGoogle Scholar
  47. 47.
    Dilley A, Bove GM (2008) Disruption of axoplasmic transport induces mechanical sensitivity in intact rat C-fibre nociceptor axons. J Physiol 586(2):593–604.  https://doi.org/10.1113/jphysiol.2007.144105 CrossRefPubMedGoogle Scholar
  48. 48.
    Dilley A, Richards N, Pulman KG, Bove GM (2013) Disruption of fast axonal transport in the rat induces behavioral changes consistent with neuropathic pain. J Pain 14(11):1437–1449.  https://doi.org/10.1016/j.jpain.2013.07.005 CrossRefPubMedGoogle Scholar
  49. 49.
    Satkeviciute I, Goodwin G, Bove GM, Dilley A (2018) Time course of ongoing activity during neuritis and following axonal transport disruption. J Neurophysiol 119(5):1993–2000.  https://doi.org/10.1152/jn.00882.2017 CrossRefPubMedGoogle Scholar
  50. 50.
    Chihara E, Sakugawa M, Entani S (1982) Reduced protein synthesis in diabetic retina and secondary reduction of slow axonal transport. Brain Res 250(2):363–366CrossRefPubMedGoogle Scholar
  51. 51.
    Tsukada T, Chihara E (1986) Changes in components of fast axonally transported proteins in the optic nerves of diabetic rabbits. Invest Ophthalmol Vis Sci 27(7):1115–1122PubMedGoogle Scholar
  52. 52.
    Zhang L, Ino-ue M, Dong K, Yamamoto M (2000) Retrograde axonal transport impairment of large- and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res 20(2):131–136CrossRefPubMedGoogle Scholar
  53. 53.
    Ino-Ue M, Zhang L, Naka H, Kuriyama H, Yamamoto M (2000) Polyol metabolism of retrograde axonal transport in diabetic rat large optic nerve fiber. Invest Ophthalmol Vis Sci 41(13):4055–4058PubMedGoogle Scholar
  54. 54.
    Fernandez DC, Pasquini LA, Dorfman D, Aldana Marcos HJ, Rosenstein RE (2012) Early distal axonopathy of the visual pathway in experimental diabetes. Am J Pathol 180(1):303–313.  https://doi.org/10.1016/j.ajpath.2011.09.018 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Baptista FI, Pinto MJ, Elvas F, Almeida RD, Ambrosio AF (2013) Diabetes alters KIF1A and KIF5B motor proteins in the Hippocampus. PLoS One 8(6):e65515.  https://doi.org/10.1371/journal.pone.0065515 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Baptista FI, Pinto MJ, Elvas F, Martins T, Almeida RD, Ambrosio AF (2014) Diabetes induces changes in KIF1A, KIF5B and dynein distribution in the rat retina: Implications for axonal transport. Exp Eye Res 127C:91–103.  https://doi.org/10.1016/j.exer.2014.07.011 CrossRefGoogle Scholar
  57. 57.
    Medori R, Jenich H, Autilio-Gambetti L, Gambetti P (1988) Experimental diabetic neuropathy: Similar changes of slow axonal transport and axonal size in different animal models. J Neurosci 8(5):1814–1821CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang L, Inoue M, Dong K, Yamamoto M (1998) Alterations in retrograde axonal transport in optic nerve of type I and type II diabetic rats. Kobe J Med Sci 44(5–6):205–215PubMedGoogle Scholar
  59. 59.
    Avasthi P, Watt CB, Williams DS, Le YZ, Li S, Chen CK, Marc RE, Frederick JM et al (2009) Trafficking of membrane proteins to cone but not rod outer segments is dependent on heterotrimeric kinesin-II. J Neurosci 29(45):14287–14298.  https://doi.org/10.1523/JNEUROSCI.3976-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kuribayashi J, Kitaoka Y, Munemasa Y, Ueno S (2010) Kinesin-1 and degenerative changes in optic nerve axons in NMDA-induced neurotoxicity. Brain Res 1362:133–140.  https://doi.org/10.1016/j.brainres.2010.09.053 CrossRefPubMedGoogle Scholar
  61. 61.
    Gaspar JM, Baptista FI, Galvao J, Castilho AF, Cunha RA, Ambrosio AF (2010) Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals. Neuroscience 169(4):1589–1600.  https://doi.org/10.1016/j.neuroscience.2010.06.021 CrossRefPubMedGoogle Scholar
  62. 62.
    Baptista FI, Gaspar JM, Cristovao A, Santos PF, Kofalvi A, Ambrosio AF (2011) Diabetes induces early transient changes in the content of vesicular transporters and no major effects in neurotransmitter release in hippocampus and retina. Brain Res 1383:257–269.  https://doi.org/10.1016/j.brainres.2011.01.071 CrossRefPubMedGoogle Scholar
  63. 63.
    De Vos K, Goossens V, Boone E, Vercammen D, Vancompernolle K, Vandenabeele P, Haegeman G, Fiers W et al (1998) The 55-kDa tumor necrosis factor receptor induces clustering of mitochondria through its membrane-proximal region. J Biol Chem 273(16):9673–9680CrossRefPubMedGoogle Scholar
  64. 64.
    Sima AA, Zhang W, Kreipke CW, Rafols JA, Hoffman WH (2009) Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabet Stud 6(1):37–42.  https://doi.org/10.1900/RDS.2009.6.37 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565CrossRefPubMedGoogle Scholar
  66. 66.
    Stagi M, Gorlovoy P, Larionov S, Takahashi K, Neumann H (2006) Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J 20(14):2573–2575.  https://doi.org/10.1096/fj.06-6679fje CrossRefPubMedGoogle Scholar
  67. 67.
    Fang C, Bourdette D, Banker G (2012) Oxidative stress inhibits axonal transport: Implications for neurodegenerative diseases. Mol Neurodegener 7(1):29.  https://doi.org/10.1186/1750-1326-7-29 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Stagi M, Dittrich PS, Frank N, Iliev AI, Schwille P, Neumann H (2005) Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci 25(2):352–362.  https://doi.org/10.1523/JNEUROSCI.3887-04.2005 CrossRefPubMedGoogle Scholar
  69. 69.
    Nagayach A, Patro N, Patro I (2014) Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 29(3):747–761.  https://doi.org/10.1007/s11011-014-9562-z CrossRefPubMedGoogle Scholar
  70. 70.
    Madeira MH, Boia R, Santos PF, Ambrosio AF, Santiago AR (2015) Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediat Inflamm 2015:673090.  https://doi.org/10.1155/2015/673090 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.CNC.IBILI ConsortiumUniversity of CoimbraCoimbraPortugal
  3. 3.Faculty of MedicineUniversity of CoimbraCoimbraPortugal

Personalised recommendations