Advertisement

Viral Triggers and Inflammatory Mechanisms in Pediatric Epilepsy

  • Luca Bartolini
  • Jane E. Libbey
  • Teresa Ravizza
  • Robert S. Fujinami
  • Steven Jacobson
  • William D. Gaillard
Article
  • 35 Downloads

Abstract

Experimental and clinical findings suggest a crucial role for inflammation in the onset of pediatric seizures; this mechanism is not targeted by conventional antiepileptic drugs and may contribute to refractory epilepsy. Several triggers, including infection with neurotropic viruses such as human herpesvirus 6 (HHV-6), other herpesviruses, and picornaviruses, appear to induce activation of the innate and adaptive immune systems, which results in several neuroinflammatory responses, leading to enhanced neuronal excitability, and ultimately contributing to epileptogenesis. This review discusses the proposed mechanisms by which infection with herpesviruses, and particularly with HHV-6, and ensuing inflammation may lead to seizure generation, and later development of epilepsy. We also examine the evidence that links herpesvirus and picornavirus infections with acute seizures and chronic forms of epilepsy. Understanding the mechanisms by which specific viruses may trigger a cascade of alterations in the CNS ultimately leading to epilepsy appears critical for the development of therapeutic agents that may target the virus or inflammatory mechanisms early and prevent progression of epileptogenesis.

Keywords

HHV-6 Picornaviruses Seizures Inflammation Theiler’s murine encephalomyelitis virus 

Notes

Funding

Dr. Bartolini reports receiving grant support from the American Epilepsy Society and Epilepsy Foundation of America. Dr. Ravizza reports receiving grant support from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°602102 (EPITARGET), and Fondazione Italo Monzino. Dr. Gaillard reports receiving grant support from NIH, CDC, NSF, PCORI, American Epilepsy Society, Epilepsy Foundation, CURE, and the Pediatric Epilepsy Research Foundation. Dr. Fujinami reports receiving grant support from NIH (R01NS065714).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ekstrand JJ, Herbener A, Rawlings J, Turney B, Ampofo K, Korgenski EK, Bonkowsky JL (2010) Heightened neurologic complications in children with pandemic H1N1 influenza. Ann Neurol 68:762–766PubMedCrossRefGoogle Scholar
  2. 2.
    Murthy JMK (2010) Neurological complications of dengue infection. Neurol India 58:581–584PubMedCrossRefGoogle Scholar
  3. 3.
    Solomon T, Vaughn DW (2002) Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr Top Microbiol Immunol 267:171–194PubMedGoogle Scholar
  4. 4.
    Owatanapanich S, Wutthanarungsan R, Jaksupa W, Thisyakorn U (2016) Risk factors for severe enteroviral infections in children. J Med Assoc Thail 99:322–330Google Scholar
  5. 5.
    Britton PN, Dale RC, Nissen MD, Crawford N, Elliott E, Macartney K, Khandaker G, Booy R et al (2016) Parechovirus encephalitis and neurodevelopmental outcomes. Pediatrics 137:e20152848PubMedCrossRefGoogle Scholar
  6. 6.
    Karsch K, Obermeier P, Seeber L, Chen X, Tief F, Mühlhans S, Hoppe C, Conrad T et al (2015) Human parechovirus infections associated with seizures and rash in infants and toddlers. Pediatr Infect Dis J 34:1049–1055PubMedCrossRefGoogle Scholar
  7. 7.
    Theodore WH (2014) Epilepsy and viral infections. Epilepsy Curr 14:35–42PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Laina I, Syriopoulou VP, Daikos GL, Roma ES, Papageorgiou F, Kakourou T, Theodoridou M (2010) Febrile seizures and primary human herpesvirus 6 infection. Pediatr Neurol 42:28–31PubMedCrossRefGoogle Scholar
  9. 9.
    Epstein LG, Shinnar S, Hesdorffer DC, Nordli DR, Hamidullah A, Benn EK, Pellock JM, Frank LM et al (2012) Human herpesvirus 6 and 7 in febrile status epilepticus: the FEBSTAT study. Epilepsia 53:1481–1488PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fotheringham J, Donati D, Akhyani N, Fogdell-Hahn A, Vortmeyer A, Heiss JD, Williams E, Weinstein S et al (2007) Association of human herpesvirus-6B with mesial temporal lobe epilepsy. PLoS Med 4:e180PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Annegers JF, Hauser WA, Beghi E, Nicolosi A, Kurland LT (1988) The risk of unprovoked seizures after encephalitis and meningitis. Neurology 38:1407–1410PubMedCrossRefGoogle Scholar
  12. 12.
    Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131:211–234PubMedCrossRefGoogle Scholar
  13. 13.
    Löscher W, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62:668–700PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Xanthos DN, Sandkuhler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53PubMedCrossRefGoogle Scholar
  15. 15.
    Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D et al (2017) Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58:27–38PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    van Vliet EA, Aronica E, Vezzani A, Ravizza T (2018) Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol 44:91–111PubMedCrossRefGoogle Scholar
  17. 17.
    Jyonouchi H, Geng L (2016) Intractable epilepsy (IE) and responses to Anakinra, a human recombinant IL-1 receptor agonist (IL-1ra): Case reports. J Clin Cell Immunol 7:–5Google Scholar
  18. 18.
    Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW, Wirrell EC, Howe CL et al (2016) Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 80:939–945PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Balosso S, Liu J, Bianchi ME, Vezzani A (2014) Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal 21:1726–1740PubMedCrossRefGoogle Scholar
  20. 20.
    Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96:70–82PubMedCrossRefGoogle Scholar
  21. 21.
    Viviani B, Gardoni F, Marinovich M (2007) Cytokines and neuronal ion channels in health and disease. Int Rev Neurobiol 82:247–263PubMedCrossRefGoogle Scholar
  22. 22.
    Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285PubMedCrossRefGoogle Scholar
  23. 23.
    Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228PubMedCrossRefGoogle Scholar
  24. 24.
    Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, Bertollini C, Limatola C et al (2015) GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 82:311–320PubMedCrossRefGoogle Scholar
  25. 25.
    Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640PubMedCrossRefGoogle Scholar
  26. 26.
    Ferrari CC, Depino AM, Prada F, Muraro N, Campbell S, Podhajcer O, Perry VH, Anthony DC et al (2004) Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am J Pathol 165:1827–1837PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Librizzi L, Noè F, Vezzani A, de Curtis M, Ravizza T (2012) Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol 72:82–90PubMedCrossRefGoogle Scholar
  28. 28.
    Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A et al (2009) Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 29:8927–8935PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Friedman A, Kaufer D, Heinemann U (2009) Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 85:142–149PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kim SY, Senatorov VV Jr, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I et al (2017) TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 7:7711PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Frigerio F, Frasca A, Weissberg I, Parrella S, Friedman A, Vezzani A, Noé FM (2012) Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia 53:1887–1897PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY et al (2014) Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol 75:864–875PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60:1258–1268PubMedCrossRefGoogle Scholar
  34. 34.
    Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184PubMedCrossRefGoogle Scholar
  35. 35.
    Zerr DM, Meier AS, Selke SS, Frenkel LM, Huang ML, Wald A, Rhoads MP, Nguy L et al (2005) A population-based study of primary human herpesvirus 6 infection. N Engl J Med 352:768–776PubMedCrossRefGoogle Scholar
  36. 36.
    Theodore WH, Epstein L, Gaillard WD, Shinnar S, Wainwright MS, Jacobson S (2008) Human herpes virus 6B: a possible role in epilepsy? Epilepsia 49:1828–1837PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Morissette G, Flamand L (2010) Herpesviruses and chromosomal integration. J Virol 84:12100–12109PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hill JA, Venna N (2014) Human herpesvirus 6 and the nervous system. Handb Clin Neurol 123:327–355PubMedCrossRefGoogle Scholar
  39. 39.
    Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, Descamps V, Flamand L, Gautheret-Dejean A et al (2012) Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol 22:144–155PubMedCrossRefGoogle Scholar
  40. 40.
    Sweetman LL, Ng YT, Butler IJ, Bodensteiner JB (2005) Neurologic complications associated with respiratory syncytial virus. Pediatr Neurol 32:307–310PubMedCrossRefGoogle Scholar
  41. 41.
    Chiu SS, Tse CYC, Lau YL, Peiris M (2001) Influence A infection is an important cause of febrile seizures. Pediatrics 108:1004–1005CrossRefGoogle Scholar
  42. 42.
    Kawada JI, Kimura H, Ito Y, Hara S, Iriyama M, Yoshikawa T, Morishima T (2003) Systemic cytokine responses in patients with influenza-associated encephalopathy. J Infect Dis 188:690–698PubMedCrossRefGoogle Scholar
  43. 43.
    Mazarati AM (2005) Cytokines: a link between fever and seizures. Epilepsy Curr 5:169–170PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bertolani MF, Portolani M, Marotti F, Sabbattini AM, Chiossi C, Bandieri MR, Cavazzuti GB (1996) A study of childhood febrile convulsions with particular reference to HHV-6 infection: Pathogenic considerations. Childs Nerv Syst 12:534–539PubMedCrossRefGoogle Scholar
  45. 45.
    Millichap JG, Millichap JJ (2006) Role of viral infections in the etiology of febrile seizures. Pediatr Neurol 35:165–172PubMedCrossRefGoogle Scholar
  46. 46.
    Hall CB, Long CE, Schnabel KC, Caserta MT, McIntyre KM, Costanzo MA, Knott A, Dewhurst S et al (1994) Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N Engl J Med 331:432–438PubMedCrossRefGoogle Scholar
  47. 47.
    Chua KB, Lam SK, AbuBakar S, Koh MT, Lee WS (1997) The incidence of human herpesvirus 6 infection in children with febrile convulsion admitted to the university hospital, Kuala Lumpur. Med J Malaysia 52:335–341PubMedGoogle Scholar
  48. 48.
    Pancharoen C, Chansongsakul T, Bhattarakosol P (2000) Causes of fever in children with first febrile seizures: how common are human herpesvirus-6 and dengue virus infection? Southeast Asian J Trop Med Public Health 31:521–523PubMedGoogle Scholar
  49. 49.
    Ogata M, Fukuda T, Teshima T (2015) Human herpesvirus-6 encephalitis after allogeneic hematopoietic cell transplantation: what we do and do not know. Bone Marrow Transplant 50:1030–1036PubMedCrossRefGoogle Scholar
  50. 50.
    Isaacson E, Glaser CA, Forghani B, Amad Z, Wallace M, Armstrong RW, Exner MM, Schmid S (2005) Evidence of human herpesvirus 6 infection in 4 immunocompetent patients with encephalitis. Clin Infect Dis 40:890–893PubMedCrossRefGoogle Scholar
  51. 51.
    Kawamura Y, Sugata K, Ihira M, Mihara T, Mutoh T, Asano Y, Yoshikawa T (2011) Different characteristics of human herpesvirus 6 encephalitis between primary infection and viral reactivation. J Clin Virol 51:12–19PubMedCrossRefGoogle Scholar
  52. 52.
    Zerr DM, Gooley TA, Yeung L, Huang ML, Carpenter P, Wade JC, Corey L, Anasetti C (2001) Humanherpesvirus 6 reactivation and encephalitis in allogeneic bone marrow transplant recipients. Clin Infect Dis 33:763–771PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshikawa T, Ohashi M, Miyake F, Fujita A, Usui C, Sugata K, Suga S, Hashimoto S et al (2009) Exanthem subitum-associated encephalitis: nationwide survey in Japan. Pediatr Neurol 41:353–358PubMedCrossRefGoogle Scholar
  54. 54.
    Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, Vortmeyer A, Heiss JD, Cogen P et al (2003) Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology 61:1405–1411PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kawamura Y, Nakayama A, Kato T, Miura H, Ishihara N, Ihira M, Takahashi Y, Matsuda K et al (2015) Pathogenic role of human herpesvirus 6B infection in mesial temporal lobe epilepsy. J Infect Dis 212:1014–1021PubMedCrossRefGoogle Scholar
  56. 56.
    Li JM, Lei D, Peng F, Zeng YJ, Li L, Xia ZL, Xia XQ, Zhou D (2011) Detection of human herpes virus 6B in patients with mesial temporal lobe epilepsy in West China and the possible association with elevated NF-κB expression. Epilepsy Res 94:1–9PubMedCrossRefGoogle Scholar
  57. 57.
    Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, Haydon PG, Coulter DA (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, Riedemann T, Sutor B, Sontheimer H (2015) Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci 35:3330–3345PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Xu Z, Xue T, Zhang Z, Wang X, Xu P, Zhang J, Lei X, Li Y et al (2011) Role of signal transducer and activator of transcription-3 in up-regulation of GFAP after epilepsy. Neurochem Res 36:2208–2215PubMedCrossRefGoogle Scholar
  60. 60.
    Caserta MT, Hall CB, Schnabel K, McIntyre K, Long C, Costanzo M, Dewhurst S, Insel R et al (1994) Neuroinvasion and persistence of human herpesvirus 6 in children. J Infect Dis 170:1586–1589PubMedCrossRefGoogle Scholar
  61. 61.
    Opsahl ML, Kennedy PGE (2005) Early and late HHV-6 gene transcripts in multiple sclerosis lesions and normal appearing white matter. Brain 128:516–527PubMedCrossRefGoogle Scholar
  62. 62.
    Mayne M, Cheadle C, Soldan SS, Cermelli C, Yamano Y, Akhyani N, Nagel JE, Taub DD et al (2001) Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: induction of proinflammatory mechanisms. J Virol 75:11641–11650PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Reynaud JM, Horvat B (2013) Human herpesvirus 6 and neuroinflammation. ISRN Virology, Article ID 834890.Google Scholar
  64. 64.
    Alvarez-Lafuente R, Garcia-Montojo M, De Las Heras V, Dominguez-Mozo MI, Bartolome M, Arroyo R (2009) CD46 expression and HHV-6 infection in patients with multiple sclerosis. Acta Neurol Scand 120:246–250PubMedCrossRefGoogle Scholar
  65. 65.
    Gautier-Smith PC (1965) Neurological complications of glandular fever (infectious mononucleosis). Brain 88:323–334PubMedCrossRefGoogle Scholar
  66. 66.
    Russell J, Fisher M, Zivin JA, Sullivan J, Drachman DA (1985) Status epilepticus and Epstein-Barr virus encephalopathy. Diagnosis by modern serologic techniques. Arch Neurol 42:789–792PubMedCrossRefGoogle Scholar
  67. 67.
    Bialek R, Haverkamp FA, Fichsel H (1990) Epstein-Barr virus infection as a cause of infantile spasms. Lancet 335:425PubMedCrossRefGoogle Scholar
  68. 68.
    Eeg-Olofsson O, Bergström T, Andermann F, Andermann E, Olivier A, Rydenhag B (2004) Herpesviral DNA in brain tissue from patients with temporal lobe epilepsy. Acta Neurol Scand 109:169–174PubMedCrossRefGoogle Scholar
  69. 69.
    Tselis AC (2014) Epstein-Barr virus infections of the nervous system. Handb Clin Neurol 123:285–305PubMedCrossRefGoogle Scholar
  70. 70.
    Whitley RJ, Kimberlin DW (2005) Herpes simplex encephalitis: children and adolescents. Semin Pediatr Infect Dis 16:17–23PubMedCrossRefGoogle Scholar
  71. 71.
    Ward KN, Ohrling A, Bryant NJ, Bowley JS, Ross EM, Verity CM (2012) Herpes simplex serious neurological disease in young children: incidence and long-term outcome. Arch Dis Child 97:162–165PubMedCrossRefGoogle Scholar
  72. 72.
    Bradshaw MJ, Venkatesan A (2016) Herpes simplex Virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13:493–508PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Solbrig MV, Adrian R, Chang DY, Perng GC (2006) Viral risk factor for seizures: pathobiology of dynorphin in herpes simplex viral (HSV-1) seizures in an animal model. Neurobiol Dis 23:612–620PubMedCrossRefGoogle Scholar
  74. 74.
    Science M, MacGregor D, Richardson SE, Mahant S, Tran D, Bitnun A (2014) Central nervous system complications of varicella-zoster virus. J Pediatr 165:779–785PubMedCrossRefGoogle Scholar
  75. 75.
    Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, Cunningham R, Zuckerman M et al (2010) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10:835–844PubMedCrossRefGoogle Scholar
  76. 76.
    Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ (2006) Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis 43:1143–1151PubMedCrossRefGoogle Scholar
  77. 77.
    Rafailidis PI, Mourtzoukou EG, Varbobitis IC, Falagas ME (2008) Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J 5:47PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL et al (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92:7440–7444PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Friedman JE, Lyons MJ, Cu G, Ablashl DV, Whitman JE, Edgar M, Koskiniemi M, Vaheri A et al (1999) The association of the human herpesvirus-6 and MS. Mult Scler 5:355–362PubMedCrossRefGoogle Scholar
  80. 80.
    Yao K, Crawford JR, Komaroff AL, Ablashi DV, Jacobson S (2010) Review part 2: human herpesvirus-6 in central nervous system diseases. J Med Virol 82:1669–1678PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tomasik J, Smits SL, Leweke FM, Eljasz P, Pas S, Kahn RS, Osterhaus ADME, Bahn S, de Witte LD (2018). Virus discovery analyses on post-mortem brain tissue and cerebrospinal fluid of schizophrenia patients. Schizophr ResGoogle Scholar
  82. 82.
    Rotbart HA (1995) Enteroviral infections of the central nervous system. Clin Infect Dis 20:971–981PubMedCrossRefGoogle Scholar
  83. 83.
    Shekhar K, Lye MS, Norlijah O, Ong F, Looi LM, Khuzaiah R, Marzuki I, Hussein I et al (2005) Deaths in children during an outbreak of hand, foot and mouth disease in Peninsular Malaysia-clinical and pathological characteristics. Med J Malaysia 60:297–304PubMedGoogle Scholar
  84. 84.
    Verboon-Maciolek MA, Groenendaal F, Hahn CD, Hellmann J, van Loon AM, Boivin G, de Vries LS (2008) Human parechovirus causes encephalitis with white matter injury in neonates. Ann Neurol 64:266–273PubMedCrossRefGoogle Scholar
  85. 85.
    Stringer JL (2006) Models available for infection induced seizures. In: Pitkänen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Elsevier Academic Press, Burlington, pp. 521–526CrossRefGoogle Scholar
  86. 86.
    Solbrig MV, Adrian R, Baratta J, Lauterborn JC, Koob GF (2006) Kappa opioid control of seizures produced by a virus in an animal model. Brain 129:642–654PubMedCrossRefGoogle Scholar
  87. 87.
    Getts DR, Matsumoto I, Müller M, Getts MT, Radford J, Shrestha B, Campbell IL, King NJ (2007) Role of IFN-gamma in an experimental murine model of West Nile virus-induced seizures. J Neurochem 103:1019–1030PubMedCrossRefGoogle Scholar
  88. 88.
    Mori CM, Mori E, Favaro LL, Santos CR, Lara MC, Villalobos EM, Cunha EM, Brandao PE et al (2012) Equid herpesvirus type-1 exhibits neurotropism and neurovirulence in a mouse model. J Comp Pathol 146:202–210PubMedCrossRefGoogle Scholar
  89. 89.
    Zukor K, Wang H, Siddharthan V, Julander JG, Morrey JD (2018) Zika virus-induced acute myelitis and motor deficits in adult interferon αβ/γ receptor knockout mice. J Neurovirol.  https://doi.org/10.1007/s13365-017-0595-z
  90. 90.
    Bröer S, Käufer C, Haist V, Li L, Gerhauser I, Anjum M, Bankstahl M, Baumgärtner W et al (2016) Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol 279:57–74PubMedCrossRefGoogle Scholar
  91. 91.
    DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS (2017) Theiler’s murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: models for multiple sclerosis and epilepsy. J Neuroimmunol 308:30–42PubMedCrossRefGoogle Scholar
  92. 92.
    Libbey JE, Kirkman NJ, Smith MCP, Tanaka T, Wilcox KS, White HS, Fujinami RS (2008) Seizures following picornavirus infection. Epilepsia 49:1066–1074PubMedCrossRefGoogle Scholar
  93. 93.
    Libbey JE, Fujinami RS (2011) Neurotropic viral infections leading to epilepsy: focus on Theiler’s murine encephalomyelitis virus. Future Virol 6:1339–1350PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Patel DC, Wallis G, Dahle EJ, McElroy PB, Thomson KE, Tesi RJ, Szymkowski DE, West PJ et al (2017) Hippocampal TNFα signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. eNeuro 4:e0105–17.2017CrossRefGoogle Scholar
  95. 95.
    Stewart KA, Wilcox KS, Fujinami RS, White HS (2010) Development of postinfection epilepsy after Theiler’s virus infection of C57BL/6 mice. J Neuropathol Exp Neurol 69:1210–1219PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Howe CL, LaFrance-Corey RG, Sundsbak RS, Sauer BM, LaFrance SJ, Buenz EJ, Schmalstieg WF (2012) Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection. Sci Rep 2:545PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Loewen JL, Barker-Haliski ML, Dahle EJ, White HS, Wilcox KS (2016) Neuronal injury, gliosis, and glial proliferation in two models of temporal lobe epilepsy. J Neuropathol Exp Neurol 75:366–378PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kirkman NJ, Libbey JE, Wilcox KS, White HS, Fujinami RS (2010) Innate but not adaptive immune responses contribute to behavioral seizures following viral infection. Epilepsia 51:454–464PubMedCrossRefGoogle Scholar
  99. 99.
    Barker-Haliski ML, Dahle EJ, Heck TD, Pruess TH, Vanegas F, Wilcox KS, White HS (2015) Evaluating an etiologically-relevant platform for therapy development for temporal lobe epilepsy: effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the Theiler’s murine encephalomyelitis virus mouse model. J Pharmacol Exp Ther 353:318–329PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Libbey JE, Kirkman NJ, Wilcox KS, White HS, Fujinami RS (2010) Role for complement in the development of seizures following acute viral infection. J Virol 84:6452–6460PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Buenz EJ, Sauer BM, Lafrance-Corey RG, Deb C, Denic A, German CL, Howe CL (2009) Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection. Am J Pathol 175:668–684PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Stewart KA, Wilcox KS, Fujinami RS, White HS (2010) Theiler’s virus infection chronically alters seizure susceptibility. Epilepsia 51:1418–1428PubMedCrossRefGoogle Scholar
  103. 103.
    Umpierre AD, Remigio GJ, Dahle EJ, Bradford K, Alex AB, Smith MD, West PJ, White HS et al (2014) Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler’s virus model of temporal lobe epilepsy. Neurobiol Dis 64:98–106PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Barker-Haliski ML, Heck TD, Dahle EJ, Venagas F, Pruess TH, Wilcox KS, White HS (2016) Acute treatment with minocycline, but not valproic acid, improves long-term behavioral out-comes in the Theiler’s virus model of temporal lobe epilepsy. Epilepsia 57:1958–1967PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS (2011) Lack of correlation of central nervous system inflammation and neuropathology with the development of seizures following acute virus infection. J Virol 85:8149–8157PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Carrithers MD (2014) Innate immune viral recognition: relevance to CNS infections. Handb Clin Neurol 123:215–223PubMedCrossRefGoogle Scholar
  107. 107.
    DePaula-Silva AB, Sonderegger FL, Libbey JE, Doty DJ, Fujinami RS (2018) The immune response to picornavirus infection and the effect of immune manipulation on acute seizures. J NeurovirolGoogle Scholar
  108. 108.
    Howe CL, LaFrance-Corey RG, Sundsbak RS, LaFrance SJ (2012) Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain. J Neuroinflammation 9:50PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cusick MF, Libbey JE, Patel DC, Doty DJ, Fujinami RS (2013) Infiltrating macrophages are key to the development of seizures following virus infection. J Virol 87:1849–1860PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Waltl I, Kaufer C, Broer S, Chhatbar C, Ghita L, Gerhauser I, Anjum M, Kalinke U et al (2018) Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol Dis 110:192–205PubMedCrossRefGoogle Scholar
  111. 111.
    Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, Buenz EJ (2016) Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep 6:28699PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K (2017) Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation 14:238PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Libbey JE, Cusick MF, Doty DJ, Fujinami RS (2017) Complement components are expressed by infiltrating macrophages/activated microglia early following viral infection. Viral Immunol 30:304–314PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS (2011) Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J Virol 85:6913–6922PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Libbey JE, Fujinami RS (2014) Adaptive immune response to viral infections in the central nervous system. Handb Clin Neurol 123:225–247PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cusick MF, Libbey JE, Doty DJ, DePaula-Silva AB, Fujinami RS (2017) The role of peripheral Interleukin-6 in the development of seizures following virus encephalitis. J Neurovirol 23:696–703PubMedCrossRefGoogle Scholar
  117. 117.
    Zurbriggen A, Thomas C, Yamada M, Roos R, Fujinami RS (1991) Direct evidence of a role for amino acid 101 of VP-1 in central nervous system disease in Theiler's murine encephalomyelitis virus infection. J Virol 65:1929–1937PubMedPubMedCentralGoogle Scholar
  118. 118.
    Cusick MF, Libbey JE, Doty DJ, Fujinami RS (2014) DA virus mutant H101 has altered CNS pathogenesis and causes immunosuppression. J Neuroimmunol 277:118–126PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Alapirtti T, Lehtimaki K, Nieminen R, Makinen R, Raitanen J, Moilanen E, Makinen J, Peltola J (2018) The production of IL-6 in acute epileptic seizure: a video-EEG study. J Neuroimmunol 316:50–55PubMedCrossRefGoogle Scholar
  120. 120.
    Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC (2000) Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 7:153–159PubMedCrossRefGoogle Scholar
  121. 121.
    Vereyken EJ, Bajova H, Chow S, de Graan PN, Gruol DL (2007) Chronic interleukin-6 alters the level of synaptic proteins in hippocampus in culture and in vivo. Eur J Neurosci 253:605–616Google Scholar
  122. 122.
    Garcia-Oscos F, Salgado H, Hall S, Thomas F, Farmer GE, Bermeo J, Galindo LC, Ramirez RD et al (2012) The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling. Biol Psychiatry 71:574–582PubMedCrossRefGoogle Scholar
  123. 123.
    Libbey JE, Hanak TJ, Doty DJ, Wilcox KS, Fujinami RS (2016) NBQX, a highly selective competitive antagonist of AMPA and KA ionotropic glutamate receptors, increases seizures and mortality following picornavirus infection. Exp Neurol 280:89–96PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Smeal RM, Stewart KA, Iacob E, Fujinami RS, White HS, Wilcox KS (2012) The activity within the CA3 excitatory network during Theiler's virus encephalitis is distinct from that observed during chronic epilepsy. J Neuro-Oncol 18:30–44Google Scholar
  125. 125.
    Smeal RM, Fujinami R, White HS, Wilcox KS (2015) Decrease in CA3 inhibitory network activity during Theiler's virus encephalitis. Neurosci Lett 609:210–215PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Clinical Epilepsy SectionNational Institute of Neurological Disorders and Stroke, NIHBethesdaUSA
  2. 2.Division of Neuroimmunology and NeurovirologyNational Institute of Neurological Disorders and StrokeBethesdaUSA
  3. 3.Center for Neuroscience, Children’s National Medical CenterGeorge Washington UniversityWashingtonUSA
  4. 4.Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUSA
  5. 5.Neuroscience DepartmentIRCCS—Istituto di Ricerche Farmacologiche Mario NegriMilanItaly

Personalised recommendations