Advertisement

Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage

  • T. Peeyush Kumar
  • Devin W. McBride
  • Pramod K. Dash
  • Kanako Matsumura
  • Alba Rubi
  • Spiros L. Blackburn
Article

Abstract

In the brain, vascular endothelial cells conserve blood viscosity, control blood flow, and form the interface between central nervous system and circulating blood. Clinical outcome after aneurysmal subarachnoid hemorrhage is linked to early brain injury, cerebral vasospasm, and other causes of delayed cerebral ischemia. The cerebral vasculature remains a unique target for therapies since it becomes rapidly disrupted after subarachnoid hemorrhage, and damage to the blood vessels continues into the delayed injury phase. The current failure of therapies to improve clinical outcome warrants a re-evaluation of current therapeutic approaches. The mechanisms of endothelial cell injury and blood–brain barrier breakdown are critical to the pathway of cerebral injury, and an improved understanding of these mechanisms may lead to novel therapeutic targets. This review provides an update on the current understanding of endothelial cell injury following aneurysmal subarachnoid hemorrhage, including blood–brain barrier dysfunction.

Keywords

Endothelial cell Subarachnoid hemorrhage Blood–brain barrier Cerebral vasospasm Microthrombosis 

Notes

Acknowledgments

This work was supported by the University of Texas Health Science Center and AHA career development grant 18CDA34110036.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interests for this manuscript.

Reference

  1. 1.
    Fleegler EW, Lee LK, Monuteaux MC, Hemenway D, Mannix R (2013) Firearm legislation and firearm-related fatalities in the United States. JAMA Intern Med 173:732–740.  https://doi.org/10.1001/jamainternmed.2013.1286 PubMedCrossRefGoogle Scholar
  2. 2.
    Rincon F, Rossenwasser RH, Dumont A (2013) The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery 73:217–222.  https://doi.org/10.1227/01.neu.0000430290.93304.33 PubMedCrossRefGoogle Scholar
  3. 3.
    Allen GS, Ahn HS, Preziosi TJ, Battye R, Boone SC, Chou SN, Kelly DL, Weir BK et al (1983a) Cerebral arterial spasm—a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med 308:619–624.  https://doi.org/10.1056/NEJM198303173081103 PubMedCrossRefGoogle Scholar
  4. 4.
    Diringer MN, Bleck TP, Hemphill JC, Menon D, Shutter L, Vespa P, Bruder N, Connolly ES et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s multidisciplinary consensus conference. Neurocrit Care.  https://doi.org/10.1007/s12028-011-9605-9
  5. 5.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625.  https://doi.org/10.1016/S1474-4422(11)70108-9 PubMedCrossRefGoogle Scholar
  6. 6.
    Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J et al (2018) Unique contribution of haptoglobin and haptoglobin genotype in aneurysmal subarachnoid hemorrhage. Front Physiol 9:592.  https://doi.org/10.3389/fphys.2018.00592 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KTS (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth.  https://doi.org/10.1093/bja/aes264
  8. 8.
    Vergouwen MDI, Vermeulen M, Coert BA, Stroes ESG, Roos YBWEM (2008) Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab.  https://doi.org/10.1038/jcbfm.2008.74
  9. 9.
    Woitzik J, Dreier JP, Hecht N, Fiss I, Sandow N, Major S, Winkler M, Dahlem YA et al (2012) Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 32:203–212.  https://doi.org/10.1038/jcbfm.2011.169 PubMedCrossRefGoogle Scholar
  10. 10.
    Tettenborn D, Dycka J (1990) Prevention and treatment of delayed ischemic dysfunction in patients with aneurysmal subarachnoid hemorrhage. StrokeGoogle Scholar
  11. 11.
    Haley EC, Kassell NF, Alves WM, Weir BK, Hansen CA (1995) Phase II trial of tirilazad in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg 82:786–790.  https://doi.org/10.3171/jns.1995.82.5.0786 PubMedCrossRefGoogle Scholar
  12. 12.
    Siironen J, Juvela S, Varis J, Porras M, Poussa K, Ilveskero S, Hernesniemi J, Lassila R (2003) No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled clinical trial. J Neurosurg 99:953–959.  https://doi.org/10.3171/jns.2003.99.6.0953 PubMedCrossRefGoogle Scholar
  13. 13.
    van den Bergh WM (2006) Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH study. Stroke 37:2326–2330.  https://doi.org/10.1161/01.STR.0000236841.16055.0f PubMedCrossRefGoogle Scholar
  14. 14.
    Gomis P, Graftieaux JP, Sercombe R, Hettler D, Scherpereel B, Rousseaux P (2010) Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg 112:681–688.  https://doi.org/10.3171/2009.4.JNS081377 PubMedCrossRefGoogle Scholar
  15. 15.
    Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD (2014) Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol 13:666–675.  https://doi.org/10.1016/S1474-4422(14)70084-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Dreier JP, Sakowitz OW, Harder A, Zimmer C, Dirnagl U, Valdueza JM, Unterberg AW (2002) Focal laminar cortical MR signal abnormalities after subarachnoid hemorrhage. Ann Neurol 52:825–829.  https://doi.org/10.1002/ana.10383 PubMedCrossRefGoogle Scholar
  17. 17.
    Petruk KC, West M, Mohr G, Weir BK, Benoit BG, Gentili F, Disney LB, Khan MI et al (1988) Nimodipine treatment in poor-grade aneurysm patients: results of a multicenter double-blind placebo-controlled trial. J Neurosurg 68:505–517.  https://doi.org/10.3171/jns.1988.68.4.0505 PubMedCrossRefGoogle Scholar
  18. 18.
    Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet.  https://doi.org/10.1038/nrg1158
  19. 19.
    Wang Y, Wang N, Cai B, Wang GY, Li J, Piao XX (2015) In vitro model of the blood–brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen Res 10:2011–2017.  https://doi.org/10.4103/1673-5374.172320 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci.  https://doi.org/10.1038/nrn1824
  21. 21.
    Engelhardt B (2003) Development of the blood–brain barrier. Cell Tissue Res.  https://doi.org/10.1007/s00441-003-0751-z
  22. 22.
    Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res.  https://doi.org/10.1007/s00441-014-1811-2
  23. 23.
    Obermeier B, Daneman R, Ransohoff RM (2013a) Development, maintenance and disruption of the blood–brain barrier. Nat Med.  https://doi.org/10.1038/nm.3407
  24. 24.
    Hawkins BT (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185.  https://doi.org/10.1124/pr.57.2.4 PubMedCrossRefGoogle Scholar
  25. 25.
    Sandoo A, Veldhuijzen van Zanten JJCS, Metsios GS, Carroll D, Kitas GD (2010a) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312.  https://doi.org/10.2174/1874192401004010302 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Friedrich V, Flores R, Muller A, Sehba FA (2010a) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165:968–975.  https://doi.org/10.1016/j.neuroscience.2009.10.038 PubMedCrossRefGoogle Scholar
  27. 27.
    Iuliano BA, Pluta RM, Jung C, Oldfield EH (2004) Endothelial dysfunction in a primate model of cerebral vasospasm. J Neurosurg 100:287–294.  https://doi.org/10.3171/jns.2004.100.2.0287 PubMedCrossRefGoogle Scholar
  28. 28.
    Pluta RM (2008a) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochirurgica Supplementum. pp. 139–147. doi: https://doi.org/10.1007/978-3-211-75718-5-28
  29. 29.
    Pluta RM (2008b) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir 104:139–147CrossRefGoogle Scholar
  30. 30.
    Findlay JM, Weir BK, Kanamaru K, Espinosa F (1989) Arterial wall changes in cerebral vasospasm. Neurosurgery 25:736–745 discussion 745–6PubMedCrossRefGoogle Scholar
  31. 31.
    Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, Colohan AR, Lehman M (1986) Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage. Neurosurgery 19:177–184.  https://doi.org/10.1227/00006123-198608000-00002 PubMedCrossRefGoogle Scholar
  32. 32.
    Zuccarello M, Kassell NF, Sasaki T, Fujiwara S, Nakagomi T, Lehman RM (1987) Barrier disruption in the major cerebral arteries after experimental subarachnoid hemorrhage in spontaneously hypertensive and normotensive rats. Neurosurgery 21:515–522.  https://doi.org/10.1227/00006123-198710000-00013 PubMedCrossRefGoogle Scholar
  33. 33.
    Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL, Vallabhajosyula P (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 42:352–362.  https://doi.org/10.1097/00006123-199802000-00091 PubMedCrossRefGoogle Scholar
  34. 34.
    Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925.  https://doi.org/10.1097/01.WCB.0000125886.48838.7E PubMedCrossRefGoogle Scholar
  35. 35.
    Fujii M, Duris K, Altay O, Soejima Y, Sherchan P, Zhang JH (2012) Inhibition of rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats. Neurochem Int 60:327–333.  https://doi.org/10.1016/j.neuint.2011.12.014 PubMedCrossRefGoogle Scholar
  36. 36.
    Plesnila N (2013) Pathophysiological role of global cerebral ischemia following subarachnoid hemorrhage: the current experimental evidence. Stroke Res Treat.  https://doi.org/10.1155/2013/651958
  37. 37.
    Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (n.d.) Early brain injury, an evolving frontier in subarachnoid hemorrhage research.  https://doi.org/10.1007/s12975-013-0257-2
  38. 38.
    Guo ZD, Sun XC, Zhang JH, (2011) Mechanisms of early brain injury after SAH: matrix metalloproteinase 9. Acta Neurochirurgica Supplementum pp 63–65. doi: https://doi.org/10.1007/978-3-7091-0353-1-11
  39. 39.
    Sehba F a, Flores R, Muller A, Friedrich V, Chen J-F, Britz GW, Winn HR, Bederson JB (2010) Adenosine A(2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 113:826–834.  https://doi.org/10.3171/2009.9.JNS09802 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sehba F a, Friedrich V, Makonnen G, Bederson JB (2007) Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor. J Neurosurg 106:321–329.  https://doi.org/10.3171/jns.2007.106.2.321 PubMedCrossRefGoogle Scholar
  41. 41.
    Alkan T, Tureyen K, Ulutas M, Kahveci N, Goren B, Korfali E, Ozluk K (2001) Acute and delayed vasoconstriction after subarachnoid hemorrhage: local cerebral blood flow, histopathology, and morphology in the rat basilar artery. Arch Physiol Biochem 109:145–153.  https://doi.org/10.1076/apab.109.2.145.4267 PubMedCrossRefGoogle Scholar
  42. 42.
    Clower BR, Yamamoto Y, Cain L, Haines DE, Smith RR (1994) Endothelial injury following experimental subarachnoid hemorrhage in rats: effects on brain blood flow. Anat Rec 240:104–114.  https://doi.org/10.1002/ar.1092400110 PubMedCrossRefGoogle Scholar
  43. 43.
    Ono S, Date I, Nakajima M, Onoda K, Ogihara K, Shiota T, Asari S, Ninomiya Y et al (1997) Three-dimensional analysis of vasospastic major cerebral arteries in rats with the corrosion cast technique. Stroke 28:1631–1637.  https://doi.org/10.1161/01.STR.28.8.1631 PubMedCrossRefGoogle Scholar
  44. 44.
    Ono S, Date I, Onoda K, Ohmoto T (2003) Time course of the diameter of the major cerebral arteries after subarachnoid hemorrhage using corrosion cast technique. Neurol Res 25:383–389.  https://doi.org/10.1179/016164103101201535 PubMedCrossRefGoogle Scholar
  45. 45.
    Sehba F a, Ding WH, Chereshnev I, Bederson JB (1999) Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 30:1955–1961.  https://doi.org/10.1161/01.STR.30.9.1955 PubMedCrossRefGoogle Scholar
  46. 46.
    Sehba F a, Mostafa G, Friedrich V, Bederson JB (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094–1100.  https://doi.org/10.3171/jns.2005.102.6.1094 PubMedCrossRefGoogle Scholar
  47. 47.
    Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX (2009) Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol 29:235–241.  https://doi.org/10.1007/s10571-008-9316-8 PubMedCrossRefGoogle Scholar
  48. 48.
    Hansen-Schwartz J, Hoel NL, Xu C-B, Svendgaard N-A, Edvinsson L (2003a) Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats. J Neurosurg 99:115–120.  https://doi.org/10.3171/jns.2003.99.1.0115 PubMedCrossRefGoogle Scholar
  49. 49.
    Hansen-Schwartz J, Hoel NL, Zhou M, Xu C-B, Svendgaard NA, Edvinsson L (2003b) Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery 52(1188–1194):1194–1195.  https://doi.org/10.1227/01.NEU.0000058467.82442.64 CrossRefGoogle Scholar
  50. 50.
    Hongo K, Kassell NF, Nakagomi T, Sasaki T, Tsukahara T, Ogawa H, Vollmer DG, Lehman RM (1988) Subarachnoid hemorrhage inhibition of endothelium-derived relaxing factor in rabbit basilar artery. J Neurosurg 69:247–253.  https://doi.org/10.3171/jns.1988.69.2.0247 PubMedCrossRefGoogle Scholar
  51. 51.
    Nakagomi T, Kassell NF, Sasaki T, Fujiwara S, Lehman RM, Johshita H, Nazar GB, Torner JC (1987) Effect of subarachnoid hemorrhage on endothelium-dependent vasodilation. J Neurosurg 66:915–923.  https://doi.org/10.3171/jns.1987.66.6.0915 PubMedCrossRefGoogle Scholar
  52. 52.
    Bevan JA, Bevan RD, Walters CL, Wellman T (1998) Functional changes in human pial arteries (300 to 900 micrometer ID) within 48 hours of aneurysmal subarachnoid hemorrhage. Stroke 29:2575–2579PubMedCrossRefGoogle Scholar
  53. 53.
    Hatake K, Wakabayashi I, Kakishita E, Hishida S (1992) Impairment of endothelium-dependent relaxation in human basilar artery after subarachnoid hemorrhage. Stroke 23:1111–1116 discussion 1116-7PubMedCrossRefGoogle Scholar
  54. 54.
    Choy JC, Granville DJ, Hunt DWC, McManus BM (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33:1673–1690.  https://doi.org/10.1006/jmcc.2001.1419 PubMedCrossRefGoogle Scholar
  55. 55.
    Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512:6–11.  https://doi.org/10.1016/j.neulet.2012.01.036 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Comair YG, Schipper HM, Brem S (1993) The prevention of oxyhemoglobin-induced endothelial and smooth muscle cytoskeletal injury by deferoxamine. Neurosurgery 32:58–64 discussion 64–5PubMedCrossRefGoogle Scholar
  57. 57.
    Foley PL, Takenaka K, Kassell NF, Lee KS (1994b) Cytotoxic effects of bloody cerebrospinal fluid on cerebral endothelial cells in culture. J Neurosurg 81:87–92.  https://doi.org/10.3171/jns.1994.81.1.0087 PubMedCrossRefGoogle Scholar
  58. 58.
    Takenaka K, Kassell NF, Foley PL, Lee KS (1993) Oxyhemoglobin-induced cytotoxicity and arachidonic acid release in cultured bovine endothelial cells. Stroke 24:839–845 discussion 845–6 PubMedCrossRefGoogle Scholar
  59. 59.
    Guo Z, Xu L, Wang X, Sun X (2015) MMP-9 expression and activity is concurrent with endothelial cell apoptosis in the basilar artery after subarachnoid hemorrhaging in rats. Neurol Sci 36:1241–1245.  https://doi.org/10.1007/s10072-015-2092-6 PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki H, Sozen T, Hasegawa Y, Chen W, Kanamaru K, Taki W, Zhang JH (2011) Subarachnoid hemorrhage causes pulmonary endothelial cell apoptosis and neurogenic pulmonary edema in mice. Acta Neurochir 111:129–132.  https://doi.org/10.1007/978-3-7091-0693-8_21 CrossRefGoogle Scholar
  61. 61.
    Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J (2000) Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg Neurol 53:260–266.  https://doi.org/10.1016/S0090-3019(99)00187-1 PubMedCrossRefGoogle Scholar
  62. 62.
    Meguro T, Chen B, Lancon J, Zhang JH (2001) Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J Neurochem 77:1128–1135.  https://doi.org/10.1046/j.1471-4159.2001.00313.x PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang H, Weir BK, Macdonald RL, Marton LS, Solenski NJ, Kwan AL, Lee KS (1996) Mechanisms of [Ca++]i elevation induced by erythrocyte components in endothelial cells. J Pharmacol Exp Ther 277:1501–1509PubMedGoogle Scholar
  64. 64.
    Cook DA, Vollrath B (1995) Free radicals and intracellular events associated with cerebrovascular spasm. Cardiovasc Res.  https://doi.org/10.1016/S0008-6363(95)00087-9
  65. 65.
    Ayer RE, Zhang JH (2008a) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir 104:33–41CrossRefGoogle Scholar
  66. 66.
    Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–C741.  https://doi.org/10.1152/ajpcell.2001.280.4.C719 PubMedCrossRefGoogle Scholar
  67. 67.
    Won SM, Lee JH, Park UJ, Gwag J, Gwag BJ, Lee YB (2011) Iron mediates endothelial cell damage and blood–brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Exp Mol Med 43:121–128.  https://doi.org/10.3858/emm.2011.43.2.020 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr.  https://doi.org/10.1016/j.bbamem.2007.07.012
  69. 69.
    Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res.  https://doi.org/10.1093/cvr/cvq144
  70. 70.
    Germanò a, d’Avella D, Imperatore C, Caruso G, Tomasello F (2000) Time-course of blood–brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir 142:575–580; discussion 580–1.  https://doi.org/10.1007/s007010050472 PubMedCrossRefGoogle Scholar
  71. 71.
    Dóczi T (1985) The pathogenetic and prognostic significance of blood–brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien) 77:110–132.  https://doi.org/10.1007/BF01476215 CrossRefGoogle Scholar
  72. 72.
    Doczi T, Joo F, Adam G, Bozóky B, Szerdahelyi P (1986) Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 18:733–739.  https://doi.org/10.1227/00006123-198606000-00010 PubMedCrossRefGoogle Scholar
  73. 73.
    Gules I, Satoh M, Nanda A, Zhang JH (2003) Apoptosis, blood–brain barrier, and subarachnoid hemorrhage. Acta Neurochir 86:483–487Google Scholar
  74. 74.
    Kahles T, Luedike P, Endres M, Galla H-J, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38:3000–3006.  https://doi.org/10.1161/STROKEAHA.107.489765 PubMedCrossRefGoogle Scholar
  75. 75.
    Li Y, Yang H, Ni W, Gu Y (2017) Effects of deferoxamine on blood–brain barrier disruption after subarachnoid hemorrhage. PLoS One 12:e0172784.  https://doi.org/10.1371/journal.pone.0172784 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Li Z, Liang G, Ma T, Li J, Wang P, Liu L, Yu B, Liu Y et al (2015) Blood–brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis 30:597–603.  https://doi.org/10.1007/s11011-014-9609-1 PubMedCrossRefGoogle Scholar
  77. 77.
    Kondo T, Hafezi-Moghadam A, Thomas K, Wagner DD, Kahn CR (2004) Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood–brain barrier. Biochem Biophys Res Commun 317:315–320.  https://doi.org/10.1016/j.bbrc.2004.03.043 PubMedCrossRefGoogle Scholar
  78. 78.
    Ansar S, Larsen C, Maddahi A, Edvinsson L (2010) Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res 1316:163–172.  https://doi.org/10.1016/j.brainres.2009.12.031 PubMedCrossRefGoogle Scholar
  79. 79.
    Victor FC, Gottlieb AB (2002) TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol 1:264–275PubMedGoogle Scholar
  80. 80.
    Zhou C, Yamaguchi M, Colohan ART, Zhang JH (2005) Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:572–582.  https://doi.org/10.1038/sj.jcbfm.9600069 PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:419–431PubMedCrossRefGoogle Scholar
  82. 82.
    Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood–brain barrier disruption in acute ischemic stroke. Front Neurol 4:32.  https://doi.org/10.3389/fneur.2013.00032 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Leib SL, Leppert D, Clements J, Täuber MG (2000) Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 68:615–620PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG (1995) Tumor necrosis factor-α-induced gelatinase B causes delayed opening of the blood–brain barrier: an expanded therapeutic window. Brain Res 703:151–155.  https://doi.org/10.1016/0006-8993(95)01089-0 PubMedCrossRefGoogle Scholar
  85. 85.
    Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim K-W, Lo EH (2012) Neurovascular matrix metalloproteinases and the blood–brain barrier. Curr Pharm Des 18:3645–3648 doi:CPD-EPUB-20120511-002 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Egashira Y, Zhao H, Hua Y, Keep RF, Xi G (2015) White matter injury after subarachnoid hemorrhage: role of blood–brain barrier disruption and matrix metalloproteinase-9. Stroke 46:2909–2915.  https://doi.org/10.1161/STROKEAHA.115.010351 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56.  https://doi.org/10.3389/fncel.2016.00056 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH (2010) Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res 32:715–720.  https://doi.org/10.1179/016164109X12478302362491 PubMedCrossRefGoogle Scholar
  89. 89.
    Lo EH, Wang X, Louise Cuzner M (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res.  https://doi.org/10.1002/jnr.10270
  90. 90.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:1–24.  https://doi.org/10.1101/cshperspect.a005058 CrossRefGoogle Scholar
  91. 91.
    Shiba M, Fujimoto M, Imanaka-Yoshida K, Yoshida T, Taki W, Suzuki H (2014) Tenascin-C causes neuronal apoptosis after subarachnoid hemorrhage in rats. Transl Stroke Res 5:238–247.  https://doi.org/10.1007/s12975-014-0333-2 PubMedCrossRefGoogle Scholar
  92. 92.
    Suzuki H, Kanamaru K, Suzuki Y, Aimi Y, Matsubara N, Araki T, Takayasu M, Kinoshita N et al (2010b) Tenascin-C is induced in cerebral vasospasm after subarachnoid hemorrhage in rats and humans: a pilot study. Neurol Res 32:179–184.  https://doi.org/10.1179/174313208X355495 PubMedCrossRefGoogle Scholar
  93. 93.
    Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H (2017) Effects of tenascin-C knockout on cerebral vasospasm after experimental subarachnoid hemorrhage in mice. Mol Neurobiol 1–8.  https://doi.org/10.1007/s12035-017-0466-x
  94. 94.
    Shiba M, Fujimoto M, Kawakita F, Imanaka-Yoshida K, Yoshida T, Kanamaru K, Taki W, Suzuki H (2015) Effects of tenascin-C on early brain injury after subarachnoid hemorrhage in rats. In: Neurovascular events after subarachnoid hemorrhage. Springer International Publishing, Cham, pp. 69–73.  https://doi.org/10.1007/978-3-319-04981-6_12 CrossRefGoogle Scholar
  95. 95.
    Butt OI, Buehler PW, D’Agnillo F (2011) Blood–brain barrier disruption and oxidative stress in Guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol 178:1316–1328.  https://doi.org/10.1016/j.ajpath.2010.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chen J, Chen G, Li J, Qian C, Mo H, Gu C, Yan F, Yan W et al (2014) Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res 57:340–347.  https://doi.org/10.1111/jpi.12173 PubMedCrossRefGoogle Scholar
  97. 97.
    Fan L f, He P y, Peng Y c, Du Q h, Ma Y j, Jin J x, Xu H z, Li J r et al (2017) Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood–brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 112:336–349.  https://doi.org/10.1016/j.freeradbiomed.2017.08.003 PubMedCrossRefGoogle Scholar
  98. 98.
    Ersahin M, Toklu HZ, Çetinel Ş, Yüksel M, Yèen BÇ, Şener G (2009) Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res 46:324–332.  https://doi.org/10.1111/j.1600-079X.2009.00664.x PubMedCrossRefGoogle Scholar
  99. 99.
    Chen Y, Zhang Y, Tang J, Liu F, Hu Q, Luo C, Tang J, Feng H et al (2015) Norrin protected blood–brain barrier via frizzled-4/β-catenin pathway after subarachnoid hemorrhage in rats. Stroke 46:529–536.  https://doi.org/10.1161/STROKEAHA.114.007265 PubMedCrossRefGoogle Scholar
  100. 100.
    Ying G-y, Jing C-h, Li J-r, Wu C, Feng Y, Jing-yin Chen MD, L. W, Brandon J et al (2016) Neuroprotective effects of valproic acid on blood–brain barrier disruption and apoptosis-related early brain injury in rats subjected to subarachnoid hemorrhage are modulated by heat shock protein 70/matrix metalloproteinases and heat shock protein 70/AKT. Neurosurgery 79:286–295.  https://doi.org/10.1227/NEU.0000000000001264 PubMedCrossRefGoogle Scholar
  101. 101.
    Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH (2012) Isoflurane attenuates blood–brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 43:2513–2516.  https://doi.org/10.1161/STROKEAHA.112.661728 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yuan J, Liu W, Zhu H, Zhang X, Feng Y, Chen Y, Feng H, Lin J (2017) Curcumin attenuates blood–brain barrier disruption after subarachnoid hemorrhage in mice. J Surg Res 207:85–91.  https://doi.org/10.1016/j.jss.2016.08.090 PubMedCrossRefGoogle Scholar
  103. 103.
    Zuo S, Ge H, Li Q, Zhang X, Hu R, Hu S, Liu X, Zhang JH et al (2017) Artesunate protected blood–brain barrier via sphingosine 1 phosphate receptor 1/phosphatidylinositol 3 kinase pathway after subarachnoid hemorrhage in rats. Mol Neurobiol 54:1213–1228.  https://doi.org/10.1007/s12035-016-9732-6 PubMedCrossRefGoogle Scholar
  104. 104.
    Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, Kanamaru K, Zhang JH (2010a) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–618.  https://doi.org/10.1097/CCM.0b013e3181c027ae PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Enkhjargal B, McBride DW, Manaenko A, Reis C, Sakai Y, Tang J, Zhang JH (2016) Intranasal administration of vitamin D attenuates blood–brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P-gp glycosylation signaling after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 37:2555–2566.  https://doi.org/10.1177/0271678X16671147 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pang J, Chen Y, Kuai L, Yang P, Peng J, Wu Y, Chen Y, Vitek MP et al (2017) Inhibition of blood–brain barrier disruption by an apolipoprotein E-mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Transl Stroke Res 8:257–272.  https://doi.org/10.1007/s12975-016-0507-1 PubMedCrossRefGoogle Scholar
  107. 107.
    Xie, Z., Enkhjargal, B., Reis, C., Huang, L., Wan, W., Tang, J., Cheng, Y., Zhang, J.H., 2017. Netrin-1 preserves blood–brain barrier integrity through deleted in colorectal cancer/focal adhesion kinase/RhoA signaling pathway following subarachnoid hemorrhage in rats. J. Am. Heart Assoc. 6. doi: https://doi.org/10.1161/JAHA.116.005198
  108. 108.
    Bendok BR, Getch CC, Malisch TW, Batjer HH (1998) Treatment of aneurysmal subarachnoid hemorrhage. Semin Neurol 18:521–531.  https://doi.org/10.1055/s-2008-1040905 PubMedCrossRefGoogle Scholar
  109. 109.
    Dorsch NW (1995) Cerebral arterial spasm—a clinical review. Br J Neurosurg 9:403–412PubMedCrossRefGoogle Scholar
  110. 110.
    Burrell C, Avalon NE, Siegel J, Pizzi M, Dutta T, Charlesworth MC, Freeman WD (2016) Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia. Expert Rev Neurother.  https://doi.org/10.1080/14737175.2016.1203257
  111. 111.
    Chyatte D (1990) Anti-inflammatory agents and cerebral vasospasm. Neurosurg Clin N Am 1:433–450PubMedGoogle Scholar
  112. 112.
    Matsui T, Takuwa Y, Johshita H, Yamashita K, Asano T (1991) Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm. J Cereb Blood Flow Metab 11:143–149.  https://doi.org/10.1038/jcbfm.1991.17 PubMedCrossRefGoogle Scholar
  113. 113.
    Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ (2010) Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am.  https://doi.org/10.1016/j.nec.2009.10.008
  114. 114.
    Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, Ruefenacht D, Schmiedek P et al (2011) Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke 42:919–923.  https://doi.org/10.1161/STROKEAHA.110.597005 PubMedCrossRefGoogle Scholar
  115. 115.
    Jung S-W, Lee C-Y, Yim M-B (2012) The relationship between subarachnoid hemorrhage volume and development of cerebral vasospasm. J Cerebrovasc Endovasc Neurosurg 14:186–191.  https://doi.org/10.7461/jcen.2012.14.3.186 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Macdonald RL, Weir BK (1991) A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 22:971–982.  https://doi.org/10.1161/01.STR.22.8.971 PubMedCrossRefGoogle Scholar
  117. 117.
    Suzuki H, Muramatsu M, Kojima T, Taki W (2003) Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 34:2796–2800.  https://doi.org/10.1161/01.STR.0000103743.62248.12 PubMedCrossRefGoogle Scholar
  118. 118.
    Caner H, Oruçkaptan H, Bolay H, Kilinç K, Senaati S, Benli K, Ayhan A (1991) The role of lipid peroxidation in the genesis of vasospasm secondary to subarachnoid hemorrhage. Kobe J Med Sci 37:13–20PubMedGoogle Scholar
  119. 119.
    Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G (2011) Role of iron in brain injury after intraventricular hemorrhage. Stroke 42:465–470.  https://doi.org/10.1161/STROKEAHA.110.602755 PubMedCrossRefGoogle Scholar
  120. 120.
    Lin G, Macdonald RL, Marton LS, Kowalczuk A, Solenski NJ, Weir BK (2001) Hemoglobin increases endothelin-1 in endothelial cells by decreasing nitric oxide. Biochem Biophys Res Commun 280:824–830.  https://doi.org/10.1006/BBRC.2000.4167 PubMedCrossRefGoogle Scholar
  121. 121.
    Alabadi JA, Torregrosa G, Miranda FJ, Salom JB, Centeno JM, Alborch E (1997) Impairment of the modulatory role of nitric oxide on the endothelin-1-elicited contraction of cerebral arteries: a pathogenetic factor in cerebral vasospasm after subarachnoid hemorrhage? Neurosurgery 41:245–252PubMedCrossRefGoogle Scholar
  122. 122.
    Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X, Marsden PA, MacDonald RL (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:190–199.  https://doi.org/10.1038/jcbfm.2010.76 PubMedCrossRefGoogle Scholar
  123. 123.
    Olsen SB, Tang DB, Jackson MR, Gomez ER, Ayala B, Alving BM (1996) Enhancement of platelet deposition by cross-linked hemoglobin in a rat carotid endarterectomy model. Circulation 93:327–332.  https://doi.org/10.1161/01.CIR.93.2.327 PubMedCrossRefGoogle Scholar
  124. 124.
    Pluta R (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105:23–56.  https://doi.org/10.1016/j.pharmthera.2004.10.002 PubMedCrossRefGoogle Scholar
  125. 125.
    Gabikian P, Clatterbuck RE, Eberhart CG, Tyler BM, Tierney TS, Tamargo RJ (2002) Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke 33:2681–2686.  https://doi.org/10.1161/01.STR.0000033931.62992.B1 PubMedCrossRefGoogle Scholar
  126. 126.
    Pluta RM, Oldfield EH, Boock RJ (1997) Reversal and prevention of cerebral vasospasm by intracarotid infusions of nitric oxide donors in a primate model of subarachnoid hemorrhage. J Neurosurg.  https://doi.org/10.3171/jns.1997.87.5.0746
  127. 127.
    Thomas JE, Rosenwasser RH (1999) Reversal of severe cerebral vasospasm in three patients after aneurysmal subarachnoid hemorrhage: initial observations regarding the use of intraventricular sodium nitroprusside in humans. Neurosurgery 44:48.  https://doi.org/10.1097/00006123-199901000-00026 PubMedCrossRefGoogle Scholar
  128. 128.
    Bacon CR, Cary NR, Davenport AP (1995) Distribution of endothelin receptors in atherosclerotic human coronary arteries. J Cardiovasc Pharmacol 26(Suppl 3):S439–S441PubMedCrossRefGoogle Scholar
  129. 129.
    Davenport AP, Kuc RE, Maguire JJ, Harland SP (1995) ETA receptors predominate in the human vasculature and mediate constriction. J Cardiovasc Pharmacol 26(Suppl 3):S265–S267.  https://doi.org/10.1097/00005344-199526003-00080 PubMedCrossRefGoogle Scholar
  130. 130.
    Seifert V, Loffler BM, Zimmermann M, Roux S, Stolke D (1995) Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 82:55–62.  https://doi.org/10.3171/jns.1995.82.1.0055 PubMedCrossRefGoogle Scholar
  131. 131.
    Boscolo E, Pavesi G, Zampieri P, Conconi MT, Calore C, Scienza R, Parnigotto PP, Folin M (2006) Endothelial cells from human cerebral aneurysm and arteriovenous malformation release ET-1 in response to vessel rupture. Int J Mol Med 18:813–819PubMedGoogle Scholar
  132. 132.
    Gaetanu P, Rodriguez Baena YR, Grignani G, Spanu G, Pacchiarini L, Paoletti P, Gaetani P, Rodriguez y Baena R et al (1994) Endothelin and aneurysmal subarachnoid haemorrhage: a study of subarachnoid cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57:66–72CrossRefGoogle Scholar
  133. 133.
    Sharkey J, Butcher SP, Kelly JS (1994) Endothelin-1 induced middle cerebral artery occlusion: pathological consequences and neuroprotective effects of MK801. J Auton Nerv Syst 49:177–185.  https://doi.org/10.1016/0165-1838(94)90109-0 CrossRefGoogle Scholar
  134. 134.
    Edvinsson L, Povlsen GK, Ahnstedt H, Waldsee R (2014) CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function. J. Neuroinflammation 11. doi: https://doi.org/10.1186/s12974-014-0207-2
  135. 135.
    Foley PL, Caner HH, Kassell NF, Lee KS (1994a) Reversal of subarachnoid hemorrhage-induced vasoconstriction with an endothelin receptor antagonist. Neurosurgery 34:103–108Google Scholar
  136. 136.
    He GW, Liu MH, Yang Q, Furnary A, Yim APC (2007) Role of endothelin-1 receptor antagonists in vasoconstriction mediated by endothelin and other vasoconstrictors in human internal mammary artery. Ann Thorac Surg 84:1522–1527.  https://doi.org/10.1016/j.athoracsur.2007.05.064 PubMedCrossRefGoogle Scholar
  137. 137.
    Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YE (2010) Role of endothelial cells in myocardial ischemia–reperfusion injury. Vasc Dis Prev 7:1–14.  https://doi.org/10.2174/1874120701007010001 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Dumont AS, Dumont RJ, Chow MM, Lin C-L, Calisaneller T, Ley KF, Kassell NF, Lee KS (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53:123–135.  https://doi.org/10.1227/01.NEU.0000068863.37133.9E PubMedCrossRefGoogle Scholar
  139. 139.
    Findlay JM, Macdonald RL, Weir BK (1991) Current concepts of pathophysiology and management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev 3:336–361PubMedGoogle Scholar
  140. 140.
    Mayberg MR (1998) Cerebral vasospasm. Neurosurg Clin N Am 9:615–627PubMedGoogle Scholar
  141. 141.
    Zhang J, Lewis A, Bernanke D, Zubkov A, Glower B (1998) Stroke: anatomy of a catastrophic event. Anat Rec.  https://doi.org/10.1002/(SICI)1097-0185(199804)253:2<58::AID-AR9>3.0.CO;2-A
  142. 142.
    Davie N, Haleen SJ, Upton PD, Polak JM, Yacoub MH, Morrell NW, Wharton J (2002) ET(a) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 165:398–405.  https://doi.org/10.1164/ajrccm.165.3.2104059 PubMedCrossRefGoogle Scholar
  143. 143.
    Yahiaoui L, Villeneuve A, Valderrama-Carvajal H, Burke F, Fixman ED (2006) Endothelin-1 regulates proliferative responses, both alone and synergistically with PDGF, in rat tracheal smooth muscle cells. Cell Physiol Biochem 17:37–46.  https://doi.org/10.1159/000091462 PubMedCrossRefGoogle Scholar
  144. 144.
    Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner DS et al (2003) Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 34:427–432.  https://doi.org/10.1161/01.STR.0000053848.06436.AB PubMedCrossRefGoogle Scholar
  145. 145.
    Pickard JD, Graham DI, Matear E, MacPherson P, Tamura A, Fitch W (1985) Ultrastructure of cerebral arteries following experimental subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 48:256–262.  https://doi.org/10.1136/jnnp.48.3.256 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Crompton MR (1964) Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 86:301–314.  https://doi.org/10.1093/brain/86.2.301 CrossRefGoogle Scholar
  147. 147.
    Hughes JT, Schianchi PM (1978) Cerebral artery spasm. J Neurosurg 48:515–525.  https://doi.org/10.3171/jns.1978.48.4.0515 PubMedCrossRefGoogle Scholar
  148. 148.
    Ryba M, Jarzabek-Chorzelska M, Chorzelski T, Pastuszko M (1992) Is vascular angiopathy following intracranial aneurysm rupture immunologically mediated? Acta Neurochir 117:34–37.  https://doi.org/10.1007/BF01400632 PubMedCrossRefGoogle Scholar
  149. 149.
    Shimizu T, Kito K, Hoshi T, Yamazaki N, Takahashi K, Takahashi M, Yamane K, Sim C et al (1982) Immunological study of late cerebral vasospasm in subarachnoid hemorrhage. Neurol Med Chir 22:613–619.  https://doi.org/10.2176/nmc.22.613 CrossRefGoogle Scholar
  150. 150.
    Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Güresir E, Vatter H, Dietrich D, Lamprecht A, Muhammad S (2017) Elevated systemic IL-6 levels in patients with aneurysmal subarachnoid hemorrhage is an unspecific marker for post-SAH complications. Int J Mol Sci 18:2580.  https://doi.org/10.3390/ijms18122580 PubMedCentralCrossRefGoogle Scholar
  151. 151.
    Dhar R, Diringer MN (2008) The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care 8:404–412.  https://doi.org/10.1007/s12028-008-9054-2 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Provencio JJ (2013) Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. Acta Neurochirurgica, Supplementum. NIH public access, pp. 233–238. doi: https://doi.org/10.1007/978-3-7091-1192-5-42
  153. 153.
    Gallia GL, Tamargo RJ (2006a) Leukocyte–endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res 28:750–758.  https://doi.org/10.1179/016164106X152025 PubMedCrossRefGoogle Scholar
  154. 154.
    Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life.  https://doi.org/10.1080/15216540500380871
  155. 155.
    Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM (2011) Depletion of Ly6G/C+ cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol 232:94–100.  https://doi.org/10.1016/j.jneuroim.2010.10.016 PubMedCrossRefGoogle Scholar
  156. 156.
    Smithason S, Moore SK, Provencio JJ (2012) Systemic administration of LPS worsens delayed deterioration associated with vasospasm after subarachnoid hemorrhage through a myeloid cell-dependent mechanism. Neurocrit Care 16:327–334.  https://doi.org/10.1007/s12028-011-9651-3 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Hailer NP, Bechmann I, Heizmann S, Nitsch R (1997) Adhesion molecule expression on phagocytic microglial cells following anterograde degeneration of perforant path axons. Hippocampus 7:341–349.  https://doi.org/10.1002/(SICI)1098-1063(1997)7:3<341::AID-HIPO8>3.0.CO;2-N PubMedCrossRefGoogle Scholar
  158. 158.
    Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177:1277–1286PubMedCrossRefGoogle Scholar
  159. 159.
    Okada T, Suzuki H (2017) Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen Res 12:193–196.  https://doi.org/10.4103/1673-5374.200795 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Zheng VZ, Wong GKC (2017) Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci 42:7–11.  https://doi.org/10.1016/j.jocn.2017.02.001 PubMedCrossRefGoogle Scholar
  161. 161.
    Springer TA, Anderson DC, Springer TA, Arfors K-E, Lundberg C, Lindborm L, Lundberg K, Beatty PG et al (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314.  https://doi.org/10.1016/0092-8674(94)90337-9 PubMedCrossRefGoogle Scholar
  162. 162.
    Dietrich HH, Dacey RG (2000) Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46:517–530.  https://doi.org/10.1097/00006123-200003000-00001 PubMedCrossRefGoogle Scholar
  163. 163.
    Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol.  https://doi.org/10.1016/S0955-0674(00)00199-X
  164. 164.
    Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor NF-κB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565.  https://doi.org/10.1016/S0008-6363(01)00220-6 PubMedCrossRefGoogle Scholar
  165. 165.
    Lu Q, Harrington EO, Jackson H, Morin N, Shannon C, Rounds S (2006) Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. J Appl Physiol 101:375–384.  https://doi.org/10.1152/japplphysiol.01515.2005 PubMedCrossRefGoogle Scholar
  166. 166.
    Tedgui A (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581.  https://doi.org/10.1152/physrev.00024.2005 PubMedCrossRefGoogle Scholar
  167. 167.
    Madge LA, Pober JS (2001) TNF signaling in vascular endothelial cells. Exp Mol Pathol 70:317–325.  https://doi.org/10.1006/exmp.2001.2368 PubMedCrossRefGoogle Scholar
  168. 168.
    Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, Tiruppathi C (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287:L1303–L1313.  https://doi.org/10.1152/ajplung.00240.2004 PubMedCrossRefGoogle Scholar
  169. 169.
    Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183.  https://doi.org/10.1161/01.ATV.20.10.2175 PubMedCrossRefGoogle Scholar
  170. 170.
    Kofler S, Nickel T, Weis M (2005) Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci 108:205–213.  https://doi.org/10.1042/CS20040174 PubMedCrossRefGoogle Scholar
  171. 171.
    Winegar RA, Catherine Land M, Morgan WF (1989) Increased chromosomal radiosensitivity of a Chinese hamster ovary cell line that inducibly expresses the eco RI restriction endonuclease. Biochem Biophys Res Commun 160:1079–1084.  https://doi.org/10.1016/S0006-291X(89)80113-5 PubMedCrossRefGoogle Scholar
  172. 172.
    da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FRS (2014) The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci 8:362.  https://doi.org/10.3389/fncel.2014.00362 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Suzuki S, Suzuki M, Iwabuchi T, Kamata Y (1983) Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report. Neurosurgery 13:199–203.  https://doi.org/10.1227/00006123-198308000-00018 PubMedCrossRefGoogle Scholar
  174. 174.
    Stein SC, Browne KD, Chen X-H, Smith DH, Graham DI (2006) Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery 59:781–788.  https://doi.org/10.1227/01.NEU.0000227519.27569.45 PubMedCrossRefGoogle Scholar
  175. 175.
    Suzuki S, Kimura M, Souma M, Ohkima H, Shimizu T, Iwabuchi T (1990) Cerebral microthrombosis in symptomatic cerebral vasospasm—a quantitative histological study in autopsy cases. Neurol Med Chir (Tokyo) 30:309–316.  https://doi.org/10.2176/nmc.30.309 CrossRefGoogle Scholar
  176. 176.
    Frijns CJM, Fijnheer R, Algra A, Van Mourik JA, Van Gijn J, Rinkel GJE (2006) Early circulating levels of endothelial cell activation markers in aneurysmal subarachnoid haemorrhage: associations with cerebral ischaemic events and outcome. J Neurol Neurosurg Psychiatry 77:77–83.  https://doi.org/10.1136/jnnp.2005.064956 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A (1997) Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res 22:1249–1255.  https://doi.org/10.1023/A:1021985030331 PubMedCrossRefGoogle Scholar
  178. 178.
    Ohkuma H, Suzuki S, Kimura M, Sobata E (1991) Role of platelet function in symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 22:854–859PubMedCrossRefGoogle Scholar
  179. 179.
    Peltonen S, Juvela S, Kaste M, Lassila R (1997) Hemostasis and fibrinolysis activation after subarachnoid hemorrhage. J Neurosurg 87:207–214.  https://doi.org/10.3171/jns.1997.87.2.0207 PubMedCrossRefGoogle Scholar
  180. 180.
    Suzuki M, Kudo A, Otawara Y, Hirashima Y, Takaku A, Ogawa A (1999) Extrinsic pathway of blood coagulation and thrombin in the cerebrospinal fluid after subarachnoid hemorrhage. Neurosurgery 44:487–494PubMedCrossRefGoogle Scholar
  181. 181.
    Sabri M, Ai J, Lakovic K, Macdonald RL (2013) Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage. In: Acta Neurochirurgica, Supplementum. Springer, Vienna, pp. 185–192. doi: https://doi.org/10.1007/978-3-7091-1192-5-35
  182. 182.
    Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89:2429–2442.  https://doi.org/10.1016/S0887-7963(97)80117-4 PubMedCrossRefGoogle Scholar
  183. 183.
    Yoshizumi M, Perrella M a, Burnett JC, Lee ME (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 73:205–209.  https://doi.org/10.1161/01.RES.73.1.205 PubMedCrossRefGoogle Scholar
  184. 184.
    Bevilacqua MP, Pober JS, Majeau GR, Fierst W, Cotran RS, Gimbrone MA (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1 (inflammation/coagulation/tissue factor/monokine/endotoxin). Med Sci 83:4533–4537.  https://doi.org/10.1073/pnas.83.12.4533 CrossRefGoogle Scholar
  185. 185.
    Calabria AR, Shusta EV (2008) A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab 28:135–148.  https://doi.org/10.1038/sj.jcbfm.9600518 PubMedCrossRefGoogle Scholar
  186. 186.
    Huntley MA, Bien-Ly N, Daneman R, Watts RJ (2014) Dissecting gene expression at the blood–brain barrier. Front Neurosci 8.  https://doi.org/10.3389/fnins.2014.00355
  187. 187.
    Hupe M, Li MX, Kneitz S, Davydova D, Yokota C, Kele-Olovsson J, Hot B, Stenman JM et al (2017) Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci Signal 10.  https://doi.org/10.1126/scisignal.aag2476
  188. 188.
    González-Cabrero J, Pozo M, Durán MC, De Nicolás R, Egido J, Vivanco F (2007) The proteome of endothelial cells. Methods Mol Biol 357:181–198.  https://doi.org/10.1385/1-59745-214-9:181 PubMedCrossRefGoogle Scholar
  189. 189.
    Haqqani AS, Kelly J, Baumann E, Haseloff RF, Blasig IE, Stanimirovic DB (2007) Protein markers of ischemic insult in brain endothelial cells identified using 2D gel electrophoresis and ICAT-based quantitative proteomics. J Proteome Res 6:226–239.  https://doi.org/10.1021/pr0603811 PubMedCrossRefGoogle Scholar
  190. 190.
    Won C, Lin Z, Kumar T,P, Li S, Ding L, Elkhal A, Szabó G, Vasudevan A (2013) Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 4.  https://doi.org/10.1038/ncomms3149
  191. 191.
    Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Corica F, Frisina N (2003) The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp NeurolGoogle Scholar
  192. 192.
    Haller H, Christel C, Dannenberg L, Thiele P, Lindschau C, Luft FC (1996) Signal transduction of erythropoietin in endothelial cells. Kidney Int.  https://doi.org/10.1038/ki.1996.339
  193. 193.
    Banerjee D, Rodriguez M, Nag M, Adamson JW (2000) Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int.  https://doi.org/10.1046/j.1523-1755.2000.00039.x
  194. 194.
    Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood.  https://doi.org/10.1182/blood-2004-02-0744
  195. 195.
    Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, Calapai G, De Vico G et al (2002a) Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.082097299
  196. 196.
    Grasso G, Passalacqua M, Sfacteria A, Conti A, Morabito A, Mazzullo G, De VG, Buemi M et al (2002b) Does administration of recombinant human erythropoietin attenuate the increase of S-100 protein observed in cerebrospinal fluid after experimental subarachnoid hemorrhage? J Neurosurg.  https://doi.org/10.3171/jns.2002.96.3.0565
  197. 197.
    Grasso G, Buemi M, Giambartino F (2014) The role of erythropoietin in aneurysmal subarachnoid haemorrhage: from bench to bedside. Acta Neurochir.  https://doi.org/10.1007/978-3-319-04981-6_13
  198. 198.
    Springborg JB, Møller C, Gideon P, Jørgensen OS, Juhler M, Olsen NV (2007) Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir.  https://doi.org/10.1007/s00701-007-1284-z
  199. 199.
    Güresir E, Vasiliadis N, Konczalla J, Raab P, Hattingen E, Seifert V, Vatter H (2013) Erythropoietin prevents delayed hemodynamic dysfunction after subarachnoid hemorrhage in a randomized controlled experimental setting. J Neurol Sci.  https://doi.org/10.1016/j.jns.2013.07.004
  200. 200.
    Tran KA, Zhang X, Predescu D, Huang X, MacHado RF, Göthert JR, Malik AB, Valyi-Nagy T et al (2016) Endothelial β-catenin signaling is required for maintaining adult blood–brain barrier integrity and central nervous system homeostasis. Circulation 133:177–186.  https://doi.org/10.1161/CIRCULATIONAHA.115.015982 PubMedCrossRefGoogle Scholar
  201. 201.
    Chang J, Mancuso MR, Maier C, Liang X, Yuki K, Yang L, Kwong JW, Wang J et al (2017) Gpr124 is essential for blood–brain barrier integrity in central nervous system disease. Nat Med 23:450–460.  https://doi.org/10.1038/nm.4309 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, Choi C, Walsh CM et al (2017) Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci 114:E1168–E1177.  https://doi.org/10.1073/pnas.1609905114 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science CenterHoustonUSA
  2. 2.Department of Neurobiology and AnatomyMcGovern Medical SchoolHoustonUSA

Personalised recommendations