Advertisement

Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation

  • Zoë P. Van Acker
  • Evi Luyckx
  • Sylvia Dewilde
Article

Abstract

After its discovery in 2000, the notion grew that neuroglobin, a neuronal specific heme protein, is involved in cytoprotection. To date, neuroglobin levels have been positively correlated with a beneficial outcome in a plethora of neurotoxic insults, e.g., ischemic and traumatic brain injuries and Alzheimer’s disease. The first part of this review goes further into these changes of neuroglobin expression upon different neuronal insults as well as the underlying regulation. In the second part, we shed light on the mechanisms by which neuroglobin contributes to neuroprotection, being (i) the scavenging and detoxification of reactive oxygen/nitrogen species, (ii) the augmentation of the threshold for apoptosis initiation, (iii) its contribution to an anti-inflammatory milieu, and (iv) tissue regeneration. We also consider different neuroglobin models to address as yet unanswered questions. Based on the recent findings and progress in the field, we invigorate the avenues of neuroglobin in neurological ailments to increase in the coming years.

Keywords

Neuroglobin Expression Neuroprotection Apoptosis Inflammation Neurogenesis 

Notes

Acknowledgements

ZP.V.A holds a PhD fellowship from the University of Antwerp (2014BAPDOCPROEX153). E.L is supported by the Research Foundation-Flanders (FWO).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702.  https://doi.org/10.1016/j.neuron.2011.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578.  https://doi.org/10.1146/annurev.cellbio.15.1.551 PubMedCrossRefGoogle Scholar
  3. 3.
    Burmester T, Hankeln T (2014) Function and evolution of vertebrate globins. Acta Physiol (Oxford) 211(3):501–514.  https://doi.org/10.1111/apha.12312 CrossRefGoogle Scholar
  4. 4.
    Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407(6803):520–523.  https://doi.org/10.1038/35035093 PubMedCrossRefGoogle Scholar
  5. 5.
    Reuss S, Saaler-Reinhardt S, Weich B, Wystub S, Reuss MH, Burmester T, Hankeln T (2002) Expression analysis of neuroglobin mRNA in rodent tissues. Neuroscience 115(3):645–656PubMedCrossRefGoogle Scholar
  6. 6.
    Fabrizius A, Andre D, Laufs T, Bicker A, Reuss S, Burmester T, Hankeln T (2016) Critical re-evaluation of neuroglobin expression reveals conserved patterns among mammals. Neuroscience.  https://doi.org/10.1016/j.neuroscience.2016.07.042
  7. 7.
    Abbruzzetti S, Faggiano S, Bruno S, Spyrakis F, Mozzarelli A, Dewilde S, Moens L, Viappiani C (2009) Ligand migration through the internal hydrophobic cavities in human neuroglobin. Proc Natl Acad Sci U S A 106(45):18984–18989.  https://doi.org/10.1073/pnas.0905433106 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE (2004) Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance. J Biol Chem 279(43):44417–44426.  https://doi.org/10.1074/jbc.M407126200 PubMedCrossRefGoogle Scholar
  9. 9.
    Wystub S, Ebner B, Fuchs C, Weich B, Burmester T, Hankeln T (2004) Interspecies comparison of neuroglobin, cytoglobin and myoglobin: Sequence evolution and candidate regulatory elements. Cytogenet Genome Res 105(1):65–78.  https://doi.org/10.1159/000078011 PubMedCrossRefGoogle Scholar
  10. 10.
    Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M et al (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99(1):110–119.  https://doi.org/10.1016/j.jinorgbio.2004.11.009 PubMedCrossRefGoogle Scholar
  11. 11.
    Fordel E, Thijs L, Moens L, Dewilde S (2007) Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J 274(5):1312–1317.  https://doi.org/10.1111/j.1742-4658.2007.05679.x PubMedCrossRefGoogle Scholar
  12. 12.
    Pesce A, De Sanctis D, Nardini M, Dewilde S, Moens L, Hankeln T, Burmester T, Ascenzi P et al (2004) Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin. IUBMB Life 56(11–12):657–664.  https://doi.org/10.1080/15216540500078830 PubMedCrossRefGoogle Scholar
  13. 13.
    Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R et al (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 276(42):38949–38955.  https://doi.org/10.1074/jbc.M106438200 PubMedCrossRefGoogle Scholar
  14. 14.
    Herold S, Fago A, Weber RE, Dewilde S, Moens L (2004) Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J Biol Chem 279(22):22841–22847.  https://doi.org/10.1074/jbc.M313732200 PubMedCrossRefGoogle Scholar
  15. 15.
    Petersen MG, Dewilde S, Fago A (2008) Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 102(9):1777–1782.  https://doi.org/10.1016/j.jinorgbio.2008.05.008 PubMedCrossRefGoogle Scholar
  16. 16.
    Yamashita T, Hafsi L, Masuda E, Tsujino H, Uno T (2014) Ferric human neuroglobin scavenges superoxide to form oxy adduct. Chem Pharm Bull (Tokyo) 62(6):613–615CrossRefGoogle Scholar
  17. 17.
    Fago A, Mathews AJ, Moens L, Dewilde S, Brittain T (2006) The reaction of neuroglobin with potential redox protein partners cytochrome b5 and cytochrome c. FEBS Lett 580(20):4884–4888.  https://doi.org/10.1016/j.febslet.2006.08.003 PubMedCrossRefGoogle Scholar
  18. 18.
    Picotti P, Dewilde S, Fago A, Hundahl C, De Filippis V, Moens L, Fontana A (2009) Unusual stability of human neuroglobin at low pH--molecular mechanisms and biological significance. FEBS J 276(23):7027–7039.  https://doi.org/10.1111/j.1742-4658.2009.07416.x PubMedCrossRefGoogle Scholar
  19. 19.
    Khan AA, Mao XO, Banwait S, Jin K, Greenberg DA (2007) Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc Natl Acad Sci U S A 104(48):19114–19119.  https://doi.org/10.1073/pnas.0706167104 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li RC, Pouranfar F, Lee SK, Morris MW, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against beta-amyloid-induced cell injury. Neurobiol Aging 29(12):1815–1822.  https://doi.org/10.1016/j.neurobiolaging.2007.05.001 PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, Dai YB, Sun JY, Xiang Y, Yang J, Dai SY, Zhang X (2015) Neuroglobin attenuates Beta amyloid-induced apoptosis through inhibiting caspases activity by activating PI3K/Akt signaling pathway. J Mol Neurosci.  https://doi.org/10.1007/s12031-015-0645-z
  22. 22.
    Chen LM, Xiong YS, Kong FL, Qu M, Wang Q, Chen XQ, Wang JZ, Zhu LQ (2012) Neuroglobin attenuates Alzheimer-like tau hyperphosphorylation by activating Akt signaling. J Neurochem 120(1):157–164.  https://doi.org/10.1111/j.1471-4159.2011.07275.x PubMedCrossRefGoogle Scholar
  23. 23.
    Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S (2007) Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene 398(1–2):114–122.  https://doi.org/10.1016/j.gene.2007.03.022 PubMedCrossRefGoogle Scholar
  24. 24.
    Emara M, Salloum N, Allalunis-Turner J (2009) Expression and hypoxic up-regulation of neuroglobin in human glioblastoma cells. Mol Oncol 3(1):45–53.  https://doi.org/10.1016/j.molonc.2008.11.002 PubMedCrossRefGoogle Scholar
  25. 25.
    Liu J, Yu Z, Guo S, Lee SR, Xing C, Zhang C, Gao Y, Nicholls DG et al (2009) Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res 87(1):164–170.  https://doi.org/10.1002/jnr.21826 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nayak G, Prentice HM, Milton SL (2009) Role of neuroglobin in regulating reactive oxygen species in the brain of the anoxia-tolerant turtle Trachemys scripta. J Neurochem 110(2):603–612.  https://doi.org/10.1111/j.1471-4159.2009.06157.x PubMedCrossRefGoogle Scholar
  27. 27.
    Lechauve C, Augustin S, Cwerman-Thibault H, Bouaita A, Forster V, Celier C, Rustin P, Marden MC et al (2012) Neuroglobin involvement in respiratory chain function and retinal ganglion cell integrity. Biochim Biophys Acta 1823(12):2261–2273.  https://doi.org/10.1016/j.bbamcr.2012.09.009 PubMedCrossRefGoogle Scholar
  28. 28.
    Rayner BS, Duong TT, Myers SJ, Witting PK (2006) Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury. J Neurochem 97(1):211–221.  https://doi.org/10.1111/j.1471-4159.2006.03726.x PubMedCrossRefGoogle Scholar
  29. 29.
    Duong TT, Antao S, Ellis NA, Myers SJ, Witting PK (2008) Supplementation with a synthetic polyphenol limits oxidative stress and enhances neuronal cell viability in response to hypoxia-re-oxygenation injury. Brain Res 1219:8–18.  https://doi.org/10.1016/j.brainres.2008.04.044 PubMedCrossRefGoogle Scholar
  30. 30.
    Duong TT, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA et al (2009) Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury. J Neurochem 108(5):1143–1154.  https://doi.org/10.1111/j.1471-4159.2008.05846.x PubMedCrossRefGoogle Scholar
  31. 31.
    De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, Garcia-Segura LM (2013) 17beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J Neuroendocrinol 25(3):260–270.  https://doi.org/10.1111/jne.12007 PubMedCrossRefGoogle Scholar
  32. 32.
    Kleinknecht A, Popova B, Lazaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH (2016) C-terminal tyrosine residue modifications modulate the protective phosphorylation of serine 129 of alpha-synuclein in a yeast model of Parkinson’s disease. PLoS Genet 12(6):e1006098.  https://doi.org/10.1371/journal.pgen.1006098 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yu Z, Liu J, Guo S, Xing C, Fan X, Ning M, Yuan JC, Lo EH, Wang X (2009) Neuroglobin-overexpression alters hypoxic response gene expression in primary neuron culture following oxygen glucose deprivation. Neuroscience 162 (2):396–403. doi: https://doi.org/10.1016/j.neuroscience.2009.04.055
  34. 34.
    Yu Z, Xu J, Liu N, Wang Y, Li X, Pallast S, van Leyen K, Wang X (2012) Mitochondrial distribution of neuroglobin and its response to oxygen-glucose deprivation in primary-cultured mouse cortical neurons. Neuroscience 218:235–242.  https://doi.org/10.1016/j.neuroscience.2012.05.054 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yu Z, Liu N, Li Y, Xu J, Wang X (2013) Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons. Neurobiol Dis 56:95–103.  https://doi.org/10.1016/j.nbd.2013.04.015 PubMedCrossRefGoogle Scholar
  36. 36.
    Peroni D, Negro A, Bahr M, Dietz GP (2007) Intracellular delivery of Neuroglobin using HIV-1 TAT protein transduction domain fails to protect against oxygen and glucose deprivation. Neurosci Lett 421(2):110–114.  https://doi.org/10.1016/j.neulet.2007.05.046 PubMedCrossRefGoogle Scholar
  37. 37.
    Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, Van Bockstaele D, Moens L, Dewilde S (2006) Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 410(2):146–151.  https://doi.org/10.1016/j.neulet.2006.09.027 PubMedCrossRefGoogle Scholar
  38. 38.
    Zara S, De Colli M, Rapino M, Pacella S, Nasuti C, Sozio P, Di Stefano A, Cataldi A (2013) Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt intracellular signaling pathway in Alzheimer's disease rat model. Gerontology 59(3):250–260.  https://doi.org/10.1159/000346445 PubMedCrossRefGoogle Scholar
  39. 39.
    Szymanski M, Wang R, Fallin MD, Bassett SS, Avramopoulos D (2010) Neuroglobin and Alzheimer's dementia: genetic association and gene expression changes. Neurobiol Aging 31(11):1835–1842.  https://doi.org/10.1016/j.neurobiolaging.2008.10.003 PubMedCrossRefGoogle Scholar
  40. 40.
    Ferrer I, Gomez A, Carmona M, Huesa G, Porta S, Riera-Codina M, Biagioli M, Gustincich S et al (2011) Neuronal hemoglobin is reduced in Alzheimer’s disease, argyrophilic grain disease, Parkinson's disease, and dementia with Lewy bodies. J Alzheimers Dis 23(3):537–550.  https://doi.org/10.3233/JAD-2010-101485 PubMedCrossRefGoogle Scholar
  41. 41.
    Lee HM, Greeley GH Jr, Englander EW (2011) Transgenic overexpression of neuroglobin attenuates formation of smoke-inhalation-induced oxidative DNA damage, in vivo, in the mouse brain. Free Radic Biol Med 51(12):2281–2287.  https://doi.org/10.1016/j.freeradbiomed.2011.09.026 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gorgun FM, Zhuo M, Singh S, Englander EW (2014) Neuroglobin mitigates mitochondrial impairments induced by acute inhalation of combustion smoke in the mouse brain. Inhal Toxicol 26(6):361–369.  https://doi.org/10.3109/08958378.2014.902147 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tae B, Oliveira KC, Conceicao RR, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RM, Giannocco G (2016) Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. Environ Toxicol doi: https://doi.org/10.1002/tox.22321
  44. 44.
    Beltran-Parrazal L, Acuna D, Ngan AM, Kim E, Ngan A, Kawakami K, Edmond J, Lopez IA (2010) Neuroglobin, cytoglobin, and transcriptional profiling of hypoxia-related genes in the rat cerebellum after prenatal chronic very mild carbon monoxide exposure (25 ppm). Brain Res 1330:61–71.  https://doi.org/10.1016/j.brainres.2010.03.005 PubMedCrossRefGoogle Scholar
  45. 45.
    Cwerman-Thibault H, Lechauve C, Augustin S, Roussel D, Reboussin E, Mohammad A, Degardin-Chicaud J, Simonutti M et al (2017) Neuroglobin can prevent or reverse glaucomatous progression in DBA/2J mice. Mol Ther Methods Clin Dev 5:200–220.  https://doi.org/10.1016/j.omtm.2017.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sugitani K, Koriyama Y, Sera M, Arai K, Ogai K, Wakasugi K (2017) A novel function of neuroglobin for neuroregeneration in mice after optic nerve injury. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2017.09.127
  47. 47.
    Cardinale A, Fusco FR, Paldino E, Giampa C, Marino M, Nuzzo MT, D'Angelo V, Laurenti D et al (2017) Localization of neuroglobin in the brain of R6/2 mouse model of Huntington's disease. Neurol Sci.  https://doi.org/10.1007/s10072-017-3168-2
  48. 48.
    Nuzzo MT, Fiocchetti M, Totta P, Melone MAB, Cardinale A, Fusco FR, Gustincich S, Persichetti F et al (2017) Huntingtin polyQ mutation impairs the 17beta-estradiol/neuroglobin pathway devoted to neuron survival. Mol Neurobiol 54(8):6634–6646.  https://doi.org/10.1007/s12035-016-0337-x PubMedCrossRefGoogle Scholar
  49. 49.
    Hundahl CA, Luuk H, Ilmjarv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A (2011) Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 6(12):e28160.  https://doi.org/10.1371/journal.pone.0028160 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hundahl C, Stoltenberg M, Fago A, Weber RE, Dewilde S, Fordel E, Danscher G (2005) Effects of short-term hypoxia on neuroglobin levels and localization in mouse brain tissues. Neuropathol Appl Neurobiol 31(6):610–617.  https://doi.org/10.1111/j.1365-2990.2005.00657.x PubMedCrossRefGoogle Scholar
  51. 51.
    Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 107(50):21570–21575.  https://doi.org/10.1073/pnas.1015379107 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Fordel E, Geuens E, Dewilde S, De Coen W, Moens L (2004) Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life 56(11–12):681–687.  https://doi.org/10.1080/15216540500037406 PubMedCrossRefGoogle Scholar
  53. 53.
    Hummler N, Schneider C, Giessl A, Bauer R, Walkinshaw G, Gassmann M, Rascher W, Trollmann R (2012) Acute hypoxia modifies regulation of neuroglobin in the neonatal mouse brain. Exp Neurol 236(1):112–121.  https://doi.org/10.1016/j.expneurol.2012.04.006 PubMedCrossRefGoogle Scholar
  54. 54.
    Mammen PP, Shelton JM, Goetsch SC, Williams SC, Richardson JA, Garry MG, Garry DJ (2002) Neuroglobin, a novel member of the globin family, is expressed in focal regions of the brain. J Histochem Cytochem 50(12):1591–1598PubMedCrossRefGoogle Scholar
  55. 55.
    Li RC, Lee SK, Pouranfar F, Brittian KR, Clair HB, Row BW, Wang Y, Gozal D (2006) Hypoxia differentially regulates the expression of neuroglobin and cytoglobin in rat brain. Brain Res 1096(1):173–179.  https://doi.org/10.1016/j.brainres.2006.04.063 PubMedCrossRefGoogle Scholar
  56. 56.
    Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G et al (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37(6):1391–1398.  https://doi.org/10.1161/01.STR.0000221308.94473.14 PubMedCrossRefGoogle Scholar
  57. 57.
    Li RC, Guo SZ, Lee SK, Gozal D (2010) Neuroglobin protects neurons against oxidative stress in global ischemia. J Cereb Blood Flow Metab 30(11):1874–1882.  https://doi.org/10.1038/jcbfm.2010.90 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Khan AA, Wang Y, Sun Y, Mao XO, Xie L, Miles E, Graboski J, Chen S et al (2006) Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci U S A 103(47):17944–17948.  https://doi.org/10.1073/pnas.0607497103 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A 98(26):15306–15311.  https://doi.org/10.1073/pnas.251466698 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA (2003) Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci U S A 100(6):3497–3500.  https://doi.org/10.1073/pnas.0637726100 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Cai B, Lin Y, Xue XH, Fang L, Wang N, Wu ZY (2011) TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 227(1):224–231.  https://doi.org/10.1016/j.expneurol.2010.11.009 PubMedCrossRefGoogle Scholar
  62. 62.
    Hundahl C, Kelsen J, Kjaer K, Ronn LC, Weber RE, Geuens E, Hay-Schmidt A, Nyengaard JR (2006) Does neuroglobin protect neurons from ischemic insult? A quantitative investigation of neuroglobin expression following transient MCAo in spontaneously hypertensive rats. Brain Res 1085(1):19–27.  https://doi.org/10.1016/j.brainres.2006.02.040 PubMedCrossRefGoogle Scholar
  63. 63.
    Ord EN, Shirley R, McClure JD, McCabe C, Kremer EJ, Macrae IM, Work LM (2013) Combined antiapoptotic and antioxidant approach to acute neuroprotection for stroke in hypertensive rats. J Cereb Blood Flow Metab 33(8):1215–1224.  https://doi.org/10.1038/jcbfm.2013.70 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Schmidt-Kastner R, Haberkamp M, Schmitz C, Hankeln T, Burmester T (2006) Neuroglobin mRNA expression after transient global brain ischemia and prolonged hypoxia in cell culture. Brain Res 1103(1):173–180.  https://doi.org/10.1016/j.brainres.2006.05.047 PubMedCrossRefGoogle Scholar
  65. 65.
    Schubert S, Gerlach F, Stoltenburg-Didinger G, Burmester T, Hankeln T, Boettcher W, Wehsack A, Hubler M et al (2010) Cerebral expression of neuroglobin and cytoglobin after deep hypothermic circulatory arrest in neonatal piglets. Brain Res 1356:1–10.  https://doi.org/10.1016/j.brainres.2010.08.005 PubMedCrossRefGoogle Scholar
  66. 66.
    Wang R, Halper-Stromberg E, Szymanski-Pierce M, Bassett SS, Avramopoulos D (2014) Genetic determinants of neuroglobin transcription. Neurogenetics 15(1):65–75.  https://doi.org/10.1007/s10048-013-0388-3 PubMedCrossRefGoogle Scholar
  67. 67.
    DellaValle B, Hempel C, Kurtzhals JA, Penkowa M (2010) In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia 58(10):1220–1227.  https://doi.org/10.1002/glia.21002 PubMedCrossRefGoogle Scholar
  68. 68.
    Li WD, Sun Q, Zhang XS, Wang CX, Li S, Li W, Hang CH (2014) Expression and cell distribution of neuroglobin in the brain tissue after experimental subarachnoid hemorrhage in rats: a pilot study. Cell Mol Neurobiol 34(2):247–255.  https://doi.org/10.1007/s10571-013-0008-7 PubMedCrossRefGoogle Scholar
  69. 69.
    Di Pietro V, Lazzarino G, Amorini AM, Tavazzi B, D'Urso S, Longo S, Vagnozzi R, Signoretti S et al (2014) Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 69:258–264.  https://doi.org/10.1016/j.freeradbiomed.2014.01.032 PubMedCrossRefGoogle Scholar
  70. 70.
    Purushothuman S, Stone J (2015) The reaction of cerebral cortex to a nearby lesion: Damage, survival, self-protection. Brain Res 1601:52–63.  https://doi.org/10.1016/j.brainres.2015.01.003 PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao S, Yu Z, Zhao G, Xing C, Hayakawa K, Whalen MJ, Lok JM, Lo EH et al (2012) Neuroglobin-overexpression reduces traumatic brain lesion size in mice. BMC Neurosci 13:67.  https://doi.org/10.1186/1471-2202-13-67 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Taylor JM, Kelley B, Gregory EJ, Berman NE (2014) Neuroglobin overexpression improves sensorimotor outcomes in a mouse model of traumatic brain injury. Neurosci Lett 577:125–129.  https://doi.org/10.1016/j.neulet.2014.03.012 PubMedCrossRefGoogle Scholar
  73. 73.
    Chuang PY, Conley YP, Poloyac SM, Okonkwo DO, Ren D, Sherwood PR, Hravnak M, Alexander SA (2010) Neuroglobin genetic polymorphisms and their relationship to functional outcomes after traumatic brain injury. J Neurotrauma 27(6):999–1006.  https://doi.org/10.1089/neu.2009.1129 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jin K, Mao X, Xie L, Greenberg DA (2011) Neuroglobin expression in human arteriovenous malformation and intracerebral hemorrhage. Acta Neurochir Suppl 111:315–319.  https://doi.org/10.1007/978-3-7091-0693-8_52 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Haines B, Demaria M, Mao X, Xie L, Campisi J, Jin K, Greenberg DA (2012) Hypoxia-inducible factor-1 and neuroglobin expression. Neurosci Lett 514(2):137–140.  https://doi.org/10.1016/j.neulet.2012.01.080 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhang W, Tian Z, Sha S, Cheng LY, Philipsen S, Tan-Un KC (2011) Functional and sequence analysis of human neuroglobin gene promoter region. Biochim Biophys Acta 1809(4–6):236–244.  https://doi.org/10.1016/j.bbagrm.2011.02.003 PubMedCrossRefGoogle Scholar
  77. 77.
    Woo SK, Kwon MS, Geng Z, Chen Z, Ivanov A, Bhatta S, Gerzanich V, Simard JM (2012) Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J Cereb Blood Flow Metab 32(3):525–536.  https://doi.org/10.1038/jcbfm.2011.159 PubMedCrossRefGoogle Scholar
  78. 78.
    Moeller LC, Broecker-Preuss M (2011) Transcriptional regulation by nonclassical action of thyroid hormone. Thyroid Res 4(Suppl 1):S6.  https://doi.org/10.1186/1756-6614-4-S1-S6 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Oliveira KC, da Conceicao RR, Piedade GC, de Souza JS, Sato MA, de Barros Maciel RM, Giannocco G (2015) Thyroid hormone modulates neuroglobin and cytoglobin in rat brain. Metab Brain Dis.  https://doi.org/10.1007/s11011-015-9718-5
  80. 80.
    Ma Y, Freitag P, Zhou J, Brune B, Frede S, Fandrey J (2004) Thyroid hormone induces erythropoietin gene expression through augmented accumulation of hypoxia-inducible factor-1. Am J Phys Regul Integr Comp Phys 287(3):R600–R607.  https://doi.org/10.1152/ajpregu.00115.2004 CrossRefGoogle Scholar
  81. 81.
    Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O'Connor R, O'Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 93(1):105–117.  https://doi.org/10.1111/j.1471-4159.2004.02949.x PubMedCrossRefGoogle Scholar
  82. 82.
    Sun F, Mao X, Xie L, Greenberg DA, Jin K (2013) Neuroglobin protein is upregulated in Alzheimer’s disease. J Alzheimers Dis 36(4):659–663.  https://doi.org/10.3233/JAD-130323 PubMedCrossRefGoogle Scholar
  83. 83.
    Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31(19):4087–4096.  https://doi.org/10.1128/MCB.01276-10 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Van Acker ZP, Luyckx E, Van Leuven W, Geuens E, De Deyn PP, Dam DV, Dewilde S (2017) Impaired hypoxic tolerance in APP23 mice: a dysregulation of neuroprotective globin levels. FEBS Lett.  https://doi.org/10.1002/1873-3468.12651
  85. 85.
    Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis.  https://doi.org/10.1016/j.nbd.2015.03.014
  86. 86.
    Sun Y, Jin K, Mao XO, Xie L, Peel A, Childs JT, Logvinova A, Wang X et al (2005) Effect of aging on neuroglobin expression in rodent brain. Neurobiol Aging 26(2):275–278.  https://doi.org/10.1016/j.neurobiolaging.2004.03.006 PubMedCrossRefGoogle Scholar
  87. 87.
    Yu Z, Liu N, Wang Y, Li X, Wang X (2012) Identification of neuroglobin-interacting proteins using yeast two-hybrid screening. Neuroscience 200:99–105.  https://doi.org/10.1016/j.neuroscience.2011.10.046 PubMedCrossRefGoogle Scholar
  88. 88.
    Ilmjarv S, Reimets R, Hundahl CA, Luuk H (2014) Effect of light on global gene expression in the neuroglobin-deficient mouse retina. Biomed Rep 2(6):780–786.  https://doi.org/10.3892/br.2014.364 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507(7493):448–454.  https://doi.org/10.1038/nature13163 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P (2015) Long-term neuroglobin expression of human astrocytes following brain trauma. Neurosci Lett 606:194–199.  https://doi.org/10.1016/j.neulet.2015.09.002 PubMedCrossRefGoogle Scholar
  91. 91.
    Guglielmotto M, Reineri S, Iannello A, Ferrero G, Vanzan L, Miano V, Ricci L, Tamagno E et al (2016) E2 regulates epigenetic signature on neuroglobin enhancer-promoter in neuronal cells. Front Cell Neurosci 10:147.  https://doi.org/10.3389/fncel.2016.00147 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    De Marinis E, Ascenzi P, Pellegrini M, Galluzzo P, Bulzomi P, Arevalo MA, Garcia-Segura LM, Marino M (2010) 17beta-estradiol--a new modulator of neuroglobin levels in neurons: role in neuroprotection against H(2)O(2)-induced toxicity. Neurosignals 18(4):223–235.  https://doi.org/10.1159/000323906 PubMedCrossRefGoogle Scholar
  93. 93.
    Hundahl CA, Kelsen J, Hay-Schmidt A (2013) Neuroglobin and cytoglobin expression in the human brain. Brain Struct Funct 218(2):603–609.  https://doi.org/10.1007/s00429-012-0480-8 PubMedCrossRefGoogle Scholar
  94. 94.
    Brittain T (2012) The anti-apoptotic role of neuroglobin. Cells 1(4):1133–1155.  https://doi.org/10.3390/cells1041133 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Liu N, Yu Z, Li Y, Yuan J, Zhang J, Xiang S, Wang X (2013) Transcriptional regulation of mouse neuroglobin gene by cyclic AMP responsive element binding protein (CREB) in N2a cells. Neurosci Lett 534:333–337.  https://doi.org/10.1016/j.neulet.2012.11.025 PubMedCrossRefGoogle Scholar
  96. 96.
    Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116(1):1–9.  https://doi.org/10.1111/j.1471-4159.2010.07080.x PubMedCrossRefGoogle Scholar
  97. 97.
    Zhu Y, Sun Y, Jin K, Greenberg DA (2002) Hemin induces neuroglobin expression in neural cells. Blood 100(7):2494–2498.  https://doi.org/10.1182/blood-2002-01-0280 PubMedCrossRefGoogle Scholar
  98. 98.
    Jin K, Mao XO, Xie L, John V, Greenberg DA (2011) Pharmacological induction of neuroglobin expression. Pharmacology 87(1–2):81–84.  https://doi.org/10.1159/000322998 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252PubMedCrossRefGoogle Scholar
  100. 100.
    Pinto-Almazan R, Segura-Uribe JJ, Farfan-Garcia ED, Guerra-Araiza C (2017) Effects of tibolone on the central nervous system: clinical and experimental approaches. Biomed Res Int 2017:8630764.  https://doi.org/10.1155/2017/8630764 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol.  https://doi.org/10.1016/j.mce.2016.05.024
  102. 102.
    Liu N, Yu Z, Gao X, Song YS, Yuan J, Xun Y, Wang T, Yan F et al (2016) Establishment of cell-based neuroglobin promoter reporter assay for neuroprotective compounds screening. CNS Neurol Disord Drug TargetsGoogle Scholar
  103. 103.
    Ye Q, Sun Y, Wu Y, Gao Y, Li Z, Li W, Zhang C (2015) Pichia pastoris production of tat-NGB and its neuroprotection on rat pheochromocytoma cells. Mol Biotechnol.  https://doi.org/10.1007/s12033-015-9898-6
  104. 104.
    Azarov I, Wang L, Rose JJ, Xu Q, Huang XN, Belanger A, Wang Y, Guo L et al (2016) Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci Transl Med 8(368):368ra173.  https://doi.org/10.1126/scitranslmed.aah6571 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11(9):1087–1095PubMedCrossRefGoogle Scholar
  106. 106.
    Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T et al (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278(51):51713–51721.  https://doi.org/10.1074/jbc.M309396200 PubMedCrossRefGoogle Scholar
  107. 107.
    Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T et al (2004) Coupling of the heme and an internal disulfide bond in human neuroglobin. Micron 35(1–2):59–62.  https://doi.org/10.1016/j.micron.2003.10.019 PubMedCrossRefGoogle Scholar
  108. 108.
    Van Doorslaer S, Dewilde S, Kiger L, Nistor SV, Goovaerts E, Marden MC, Moens L (2003) Nitric oxide binding properties of neuroglobin. A characterization by EPR and flash photolysis. J Biol Chem 278(7):4919–4925.  https://doi.org/10.1074/jbc.M210617200 PubMedCrossRefGoogle Scholar
  109. 109.
    Jin K, Mao XO, Xie L, Khan AA, Greenberg DA (2008) Neuroglobin protects against nitric oxide toxicity. Neurosci Lett 430(2):135–137.  https://doi.org/10.1016/j.neulet.2007.10.031 PubMedCrossRefGoogle Scholar
  110. 110.
    Van Leuven W, Cuypers B, Desmet F, Giordano D, Verde C, Moens L, Van Doorslaer S, Dewilde S (2013) Is the heme pocket region modulated by disulfide-bridge formation in fish and amphibian neuroglobins as in humans? Biochim Biophys Acta 1834(9):1757–1763.  https://doi.org/10.1016/j.bbapap.2013.01.042 PubMedCrossRefGoogle Scholar
  111. 111.
    Vinck E, Van Doorslaer S, Dewilde S, Moens L (2004) Structural change of the heme pocket due to disulfide bridge formation is significantly larger for neuroglobin than for cytoglobin. J Am Chem Soc 126(14):4516–4517.  https://doi.org/10.1021/ja0383322 PubMedCrossRefGoogle Scholar
  112. 112.
    Bentmann A, Schmidt M, Reuss S, Wolfrum U, Hankeln T, Burmester T (2005) Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem 280(21):20660–20665.  https://doi.org/10.1074/jbc.M501338200 PubMedCrossRefGoogle Scholar
  113. 113.
    Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163(2):552–560.  https://doi.org/10.1016/j.neuroscience.2009.06.058 PubMedCrossRefGoogle Scholar
  114. 114.
    Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504(1):46–57PubMedCrossRefGoogle Scholar
  115. 115.
    Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T et al (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286(20):18277–18289.  https://doi.org/10.1074/jbc.M110.159541 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Jayaraman T, Tejero J, Chen BB, Blood AB, Frizzell S, Shapiro C, Tiso M, Hood BL et al (2011) 14-3-3 binding and phosphorylation of neuroglobin during hypoxia modulate six-to-five heme pocket coordination and rate of nitrite reduction to nitric oxide. J Biol Chem 286(49):42679–42689.  https://doi.org/10.1074/jbc.M111.271973 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yu Z, Zhang Y, Liu N, Yuan J, Lin L, Zhuge Q, Xiao J, Wang X (2016) Roles of neuroglobin binding to mitochondrial complex III subunit cytochrome c1 in oxygen-glucose deprivation-induced neurotoxicity in primary neurons. Mol Neurobiol 53(5):3249–3257.  https://doi.org/10.1007/s12035-015-9273-4 PubMedCrossRefGoogle Scholar
  118. 118.
    Varjosalo M, Sacco R, Stukalov A, van Drogen A, Planyavsky M, Hauri S, Aebersold R, Bennett KL et al (2013) Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods 10(4):307–314.  https://doi.org/10.1038/nmeth.2400 PubMedCrossRefGoogle Scholar
  119. 119.
    Wakasugi K, Nakano T, Morishima I (2004) Association of human neuroglobin with cystatin C, a cysteine proteinase inhibitor. Biochemistry 43(18):5119–5125.  https://doi.org/10.1021/bi0495782 PubMedCrossRefGoogle Scholar
  120. 120.
    Wakasugi K, Nakano T, Kitatsuji C, Morishima I (2004) Human neuroglobin interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem Biophys Res Commun 318(2):453–460.  https://doi.org/10.1016/j.bbrc.2004.04.045 PubMedCrossRefGoogle Scholar
  121. 121.
    Khan AA, Mao XO, Banwait S, DerMardirossian CM, Bokoch GM, Jin K, Greenberg DA (2008) Regulation of hypoxic neuronal death signaling by neuroglobin. FASEB J 22(6):1737–1747.  https://doi.org/10.1096/fj.07-100784 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wakasugi K, Nakano T, Morishima I (2003) Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor. J Biol Chem 278(38):36505–36512.  https://doi.org/10.1074/jbc.M305519200 PubMedCrossRefGoogle Scholar
  123. 123.
    Trandafir F, Hoogewijs D, Altieri F, Rivetti di Val Cervo P, Ramser K, Van Doorslaer S, Vanfleteren JR, Moens L et al (2007) Neuroglobin and cytoglobin as potential enzyme or substrate. Gene 398(1–2):103–113.  https://doi.org/10.1016/j.gene.2007.02.038 PubMedCrossRefGoogle Scholar
  124. 124.
    Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155(6):1003–1015.  https://doi.org/10.1083/jcb.200105057 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548.  https://doi.org/10.1016/j.cell.2012.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Fuchs C, Heib V, Kiger L, Haberkamp M, Roesner A, Schmidt M, Hamdane D, Marden MC et al (2004) Zebrafish reveals different and conserved features of vertebrate neuroglobin gene structure, expression pattern, and ligand binding. J Biol Chem 279(23):24116–24122.  https://doi.org/10.1074/jbc.M402011200 PubMedCrossRefGoogle Scholar
  127. 127.
    Paltrinieri L, Di Rocco G, Battistuzzi G, Borsari M, Sola M, Ranieri A, Zanetti-Polzi L, Daidone I et al (2017) Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. J Biol Inorg Chem.  https://doi.org/10.1007/s00775-017-1455-2
  128. 128.
    Watanabe S, Takahashi N, Uchida H, Wakasugi K (2012) Human neuroglobin functions as an oxidative stress-responsive sensor for neuroprotection. J Biol Chem 287(36):30128–30138.  https://doi.org/10.1074/jbc.M112.373381 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Takahashi N, Wakasugi K (2016) Identification of residues crucial for the interaction between human neuroglobin and the alpha-subunit of heterotrimeric Gi protein. Sci Rep 6:24948.  https://doi.org/10.1038/srep24948 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against oxidative stress. Brain Res 1190:159–166.  https://doi.org/10.1016/j.brainres.2007.11.022 PubMedCrossRefGoogle Scholar
  131. 131.
    Tian J, Cai T, Yuan Z, Wang H, Liu L, Haas M, Maksimova E, Huang XY et al (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 17(1):317–326.  https://doi.org/10.1091/mbc.E05-08-0735 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Liu A, Brittain T (2015) A futile redox cycle involving neuroglobin observed at physiological temperature. Int J Mol Sci 16(8):20082–20094.  https://doi.org/10.3390/ijms160820082 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Sowa AW, Guy PA, Sowa S, Hill RD (1999) Nonsymbiotic haemoglobins in plants. Acta Biochim Pol 46(2):431–445PubMedGoogle Scholar
  134. 134.
    Brittain T, Skommer J, Henty K, Birch N, Raychaudhuri S (2010) A role for human neuroglobin in apoptosis. IUBMB Life 62(12):878–885.  https://doi.org/10.1002/iub.405 PubMedCrossRefGoogle Scholar
  135. 135.
    Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12(12):801–817.  https://doi.org/10.1038/nrc3399 PubMedCrossRefGoogle Scholar
  136. 136.
    Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK et al (2015) Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 35(Suppl):S185–S198.  https://doi.org/10.1016/j.semcancer.2015.03.004 PubMedCrossRefGoogle Scholar
  137. 137.
    Oleksiewicz U, Daskoulidou N, Liloglou T, Tasopoulou K, Bryan J, Gosney JR, Field JK, Xinarianos G (2011) Neuroglobin and myoglobin in non-small cell lung cancer: expression, regulation and prognosis. Lung Cancer 74(3):411–418.  https://doi.org/10.1016/j.lungcan.2011.05.001 PubMedCrossRefGoogle Scholar
  138. 138.
    Emara M, Turner AR, Allalunis-Turner J (2010) Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int 10:33.  https://doi.org/10.1186/1475-2867-10-33 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gorr TA, Wichmann D, Pilarsky C, Theurillat JP, Fabrizius A, Laufs T, Bauer T, Koslowski M et al (2011) Old proteins - new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells. Acta Physiol (Oxford) 202(3):563–581.  https://doi.org/10.1111/j.1748-1716.2010.02205.x CrossRefGoogle Scholar
  140. 140.
    Fiocchetti M, Cipolletti M, Leone S, Naldini A, Carraro F, Giordano D, Verde C, Ascenzi P et al (2016) Neuroglobin in breast Cancer cells: effect of hypoxia and oxidative stress on protein level, localization, and anti-apoptotic function. PLoS One 11(5):e0154959.  https://doi.org/10.1371/journal.pone.0154959 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Guo ZL, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GC (2016) The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol 9(1):98.  https://doi.org/10.1186/s13045-016-0330-x PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Fiocchetti M, Cipolletti M, Leone S, Ascenzi P, Marino M (2016) Neuroglobin overexpression induced by the 17beta-estradiol-estrogen receptor-alpha pathway reduces the sensitivity of MCF-7 breast cancer cell to paclitaxel. IUBMB Life.  https://doi.org/10.1002/iub.1522
  143. 143.
    Chen XQ, Qin LY, Zhang CG, Yang LT, Gao Z, Liu S, Lau LT, Fung YW et al (2005) Presence of neuroglobin in cultured astrocytes. Glia 50(2):182–186.  https://doi.org/10.1002/glia.20147 PubMedCrossRefGoogle Scholar
  144. 144.
    Laufs TL, Wystub S, Reuss S, Burmester T, Saaler-Reinhardt S, Hankeln T (2004) Neuron-specific expression of neuroglobin in mammals. Neurosci Lett 362(2):83–86.  https://doi.org/10.1016/j.neulet.2004.02.072 PubMedCrossRefGoogle Scholar
  145. 145.
    Haines B, Mao X, Xie L, Spusta S, Zeng X, Jin K, Greenberg DA (2013) Neuroglobin expression in neurogenesis. Neurosci Lett 549:3–6.  https://doi.org/10.1016/j.neulet.2013.04.039 PubMedCrossRefGoogle Scholar
  146. 146.
    Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE (2016) Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front Aging Neurosci 8:152.  https://doi.org/10.3389/fnagi.2016.00152 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Schneuer M, Flachsbarth S, Czech-Damal NU, Folkow LP, Siebert U, Burmester T (2012) Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience 223:35–44.  https://doi.org/10.1016/j.neuroscience.2012.07.052 PubMedCrossRefGoogle Scholar
  148. 148.
    Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: Molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79(2):77–89.  https://doi.org/10.1016/j.bcp.2009.09.014 PubMedCrossRefGoogle Scholar
  149. 149.
    Cabezas R, Vega-Vela NE, Gonzalez-Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, Barreto GE (2017) PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0567-6
  150. 150.
    Jin K, Mao Y, Mao X, Xie L, Greenberg DA (2010) Neuroglobin expression in ischemic stroke. Stroke 41(3):557–559.  https://doi.org/10.1161/STROKEAHA.109.567149 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lechauve C, Augustin S, Cwerman-Thibault H, Reboussin E, Roussel D, Lai-Kuen R, Saubamea B, Sahel JA et al (2014) Neuroglobin gene therapy prevents optic atrophy and preserves durably visual function in Harlequin mice. Mol Ther 22(6):1096–1109.  https://doi.org/10.1038/mt.2014.44 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Dobolyi A, Vincze C, Pal G, Lovas G (2012) The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 13(7):8219–8258.  https://doi.org/10.3390/ijms13078219 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Khundakar A, Morris C, Slade J, Thomas AJ (2011) Examination of glucose transporter-1, transforming growth factor-beta and neuroglobin immunoreactivity in the orbitofrontal cortex in late-life depression. Psychiatry Clin Neurosci 65(2):158–164.  https://doi.org/10.1111/j.1440-1819.2010.02176.x PubMedCrossRefGoogle Scholar
  154. 154.
    Lechauve C, Augustin S, Roussel D, Sahel JA, Corral-Debrinski M (2013) Neuroglobin involvement in visual pathways through the optic nerve. Biochim Biophys Acta 1834(9):1772–1778.  https://doi.org/10.1016/j.bbapap.2013.04.014 PubMedCrossRefGoogle Scholar
  155. 155.
    Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2017) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0481-y
  156. 156.
    Luyckx E, Everaert BR, Van der Veken B, Van Leuven W, Timmermans JP, Vrints CJ, De Meyer GRY, Martinet W et al (2017) Cytoprotective effects of transgenic neuroglobin overexpression in an acute and chronic mouse model of ischemic heart disease. Heart Vessel.  https://doi.org/10.1007/s00380-017-1065-5
  157. 157.
    Cutrupi S, Ferrero G, Reineri S, Cordero F, De Bortoli M (2014) Genomic lens on neuroglobin transcription. IUBMB Life 66(1):46–51.  https://doi.org/10.1002/iub.1235 PubMedCrossRefGoogle Scholar
  158. 158.
    D'Aprile A, Scrima R, Quarato G, Tataranni T, Falzetti F, Di Ianni M, Gemei M, Del Vecchio L et al (2014) Hematopoietic stem/progenitor cells express myoglobin and neuroglobin: adaptation to hypoxia or prevention from oxidative stress? Stem Cells 32(5):1267–1277.  https://doi.org/10.1002/stem.1646 PubMedCrossRefGoogle Scholar
  159. 159.
    Tam KT, Chan PK, Zhang W, Law PP, Tian Z, Fung Chan GC, Philipsen S, Festenstein R et al (2016) Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkw820
  160. 160.
    Nefzger CM, Haynes JM, Pouton CW (2011) Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 29(6):928–939.  https://doi.org/10.1002/stem.640 PubMedCrossRefGoogle Scholar
  161. 161.
    Willett RT, Greene LA (2011) Gata2 is required for migration and differentiation of retinorecipient neurons in the superior colliculus. J Neurosci 31(12):4444–4455.  https://doi.org/10.1523/JNEUROSCI.4616-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Droge J, Pande A, Englander EW, Makalowski W (2012) Comparative genomics of neuroglobin reveals its early origins. PLoS One 7(10):e47972.  https://doi.org/10.1371/journal.pone.0047972 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Wilber A, Nienhuis AW, Persons DA (2011) Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 117(15):3945–3953.  https://doi.org/10.1182/blood-2010-11-316893 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Yan Z, Serrano AL, Schiaffino S, Bassel-Duby R, Williams RS (2001) Regulatory elements governing transcription in specialized myofiber subtypes. J Biol Chem 276(20):17361–17366.  https://doi.org/10.1074/jbc.M101251200 PubMedCrossRefGoogle Scholar
  165. 165.
    Jin K, Wang X, Xie L, Mao XO, Greenberg DA (2010) Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A 107(17):7993–7998.  https://doi.org/10.1073/pnas.1000154107 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Li L, Liu QR, Xiong XX, Liu JM, Lai XJ, Cheng C, Pan F, Chen Y et al (2014) Neuroglobin promotes neurite outgrowth via differential binding to PTEN and Akt. Mol Neurobiol 49(1):149–162.  https://doi.org/10.1007/s12035-013-8506-7 PubMedCrossRefGoogle Scholar
  167. 167.
    Sugitani K, Koriyama Y, Ogai K, Wakasugi K, Kato S (2016) A possible role of neuroglobin in the retina after optic nerve injury: a comparative study of zebrafish and mouse retina. Adv Exp Med Biol 854:671–675.  https://doi.org/10.1007/978-3-319-17121-0_89 PubMedCrossRefGoogle Scholar
  168. 168.
    Liang H, Studach L, Hullinger RL, Xie J, Andrisani OM (2014) Down-regulation of RE-1 silencing transcription factor (REST) in advanced prostate cancer by hypoxia-induced miR-106b~25. Exp Cell Res 320(2):188–199.  https://doi.org/10.1016/j.yexcr.2013.09.020 PubMedCrossRefGoogle Scholar
  169. 169.
    Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209(Pt 11):2129–2137.  https://doi.org/10.1242/jeb.02243 PubMedCrossRefGoogle Scholar
  170. 170.
    Di Giulio C, Zara S, Cataldi A, Porzionato A, Pokorski M, De Caro R (2012) Human carotid body HIF and NGB expression during human development and aging. Adv Exp Med Biol 758:265–271.  https://doi.org/10.1007/978-94-007-4584-1_36 PubMedCrossRefGoogle Scholar
  171. 171.
    Verratti V, Di Giulio C, Bianchi G, Cacchio M, Petruccelli G, Artese L, Lahiri S, Iturriaga R (2009) Neuroglobin in aging carotid bodies. Adv Exp Med Biol 648:191–195.  https://doi.org/10.1007/978-90-481-2259-2_22 PubMedCrossRefGoogle Scholar
  172. 172.
    Williams TM, Zavanelli M, Miller MA, Goldbeck RA, Morledge M, Casper D, Pabst DA, McLellan W et al (2008) Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc Biol Sci 275(1636):751–758.  https://doi.org/10.1098/rspb.2007.1484 PubMedCrossRefGoogle Scholar
  173. 173.
    Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275(14):3633–3643.  https://doi.org/10.1111/j.1742-4658.2008.06508.x PubMedCrossRefGoogle Scholar
  174. 174.
    Wawrowski A, Gerlach F, Hankeln T, Burmester T (2011) Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J Comp Physiol B 181(2):199–208.  https://doi.org/10.1007/s00360-010-0518-2 PubMedCrossRefGoogle Scholar
  175. 175.
    Hoffmann FG, Opazo JC, Storz JF (2012) Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates. Mol Biol Evol 29(1):303–312.  https://doi.org/10.1093/molbev/msr207 PubMedCrossRefGoogle Scholar
  176. 176.
    Lechauve C, Jager M, Laguerre L, Kiger L, Correc G, Leroux C, Vinogradov S, Czjzek M et al (2013) Neuroglobins, pivotal proteins associated with emerging neural systems and precursors of metazoan globin diversity. J Biol Chem 288(10):6957–6967.  https://doi.org/10.1074/jbc.M112.407601 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M (2016) Neuroglobin: from structure to function in health and disease. Mol Asp Med 52:1–48.  https://doi.org/10.1016/j.mam.2016.10.004 CrossRefGoogle Scholar
  178. 178.
    Van Leuven W, Van Dam D, Moens L, De Deyn PP, Dewilde S (2013) A behavioural study of neuroglobin-overexpressing mice under normoxic and hypoxic conditions. Biochim Biophys Acta 1834(9):1764–1771.  https://doi.org/10.1016/j.bbapap.2013.04.015 PubMedCrossRefGoogle Scholar
  179. 179.
    Ye SQ, Zhou XY, Lai XJ, Zheng L, Chen XQ (2009) Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3gamma. Acta Pharmacol Sin 30(7):913–918.  https://doi.org/10.1038/aps.2009.70 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Nowotny M, Kiefer L, Andre D, Hankeln T, Reuss S (2017) Hearing without neuroglobin. Neuroscience.  https://doi.org/10.1016/j.neuroscience.2017.10.010
  181. 181.
    Totzeck M, Hendgen-Cotta UB, Luedike P, Berenbrink M, Klare JP, Steinhoff HJ, Semmler D, Shiva S et al (2012) Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation 126(3):325–334.  https://doi.org/10.1161/CIRCULATIONAHA.111.087155 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical SciencesUniversity of AntwerpWilrijkBelgium

Personalised recommendations