Advertisement

Anti-prion Protein Antibody 6D11 Restores Cellular Proteostasis of Prion Protein Through Disrupting Recycling Propagation of PrPSc and Targeting PrPSc for Lysosomal Degradation

  • Joanna E. Pankiewicz
  • Sandrine Sanchez
  • Kent Kirshenbaum
  • Regina B. Kascsak
  • Richard J. Kascsak
  • Martin J. Sadowski
Article
  • 117 Downloads

Abstract

PrPSc is an infectious and disease-specific conformer of the prion protein, which accumulation in the CNS underlies the pathology of prion diseases. PrPSc replicates by binding to the cellular conformer of the prion protein (PrPC) expressed by host cells and rendering its secondary structure a likeness of itself. PrPC is a plasma membrane anchored protein, which constitutively recirculates between the cell surface and the endocytic compartment. Since PrPSc engages PrPC along this trafficking pathway, its replication process is often referred to as “recycling propagation.” Certain monoclonal antibodies (mAbs) directed against prion protein can abrogate the presence of PrPSc from prion-infected cells. However, the precise mechanism(s) underlying their therapeutic propensities remains obscure. Using N2A murine neuroblastoma cell line stably infected with 22L mouse-adapted scrapie strain (N2A/22L), we investigated here the modus operandi of the 6D11 clone, which was raised against the PrPSc conformer and has been shown to permanently clear prion-infected cells from PrPSc presence. We determined that 6D11 mAb engages and sequesters PrPC and PrPSc at the cell surface. PrPC/6D11 and PrPSc/6D11 complexes are then endocytosed from the plasma membrane and are directed to lysosomes, therefore precluding recirculation of nascent PrPSc back to the cell surface. Targeting PrPSc by 6D11 mAb to the lysosomal compartment facilitates its proteolysis and eventually shifts the balance between PrPSc formation and degradation. Ongoing translation of PrPC allows maintaining the steady-state level of prion protein within the cells, which was not depleted under 6D11 mAb treatment. Our findings demonstrate that through disrupting recycling propagation of PrPSc and promoting its degradation, 6D11 mAb restores cellular proteostasis of prion protein.

Keywords

Endo-lysosomal system Proteostasis Monoclonal antibody Passive immunization Prion protein PrPSc conformer Recycling propagation 

Notes

Funding

This work was supported by the following awards from the National Institute on Aging R01 AG029635 (MJS), R01 AG031221 (MJS), and R01 AG053990 (MJS), and by the following award from the National Science Foundation CHE-1507946 (KK).

Compliance with Ethical Standards

All mouse care and experimental procedures were approved by the Institutional Animal Care and Use Committee of the New York University School of Medicine.

Conflict of Interest

JEP, SS, KK, and MJS declare no competing interests. RBK and RJK receive royalties for licensing the 6D11 clones, which currently is marketed by BioLegend (San Diego, CA).

References

  1. 1.
    Sadowski M, Kumar A, Wisniewski T (2008) Prion diseases. In: Bradley WG (ed) Neurology in clinical practice,. 5th edition edn. Butterworth-Heinemann, pp. 1567–1581Google Scholar
  2. 2.
    Mackenzie G, Will R (2017) Creutzfeldt-Jakob disease: recent developments. F1000Research 6:2053.  https://doi.org/10.12688/f1000research.12681.1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Geschwind MD (2015) Prion diseases. Continuum (MinneapMinn):1612-1638. doi: https://doi.org/10.1212/CON.0000000000000251 00132979-201512000-00011
  4. 4.
    Aguilar-Calvo P, Garcia C, Espinosa JC, Andreoletti O, Torres JM (2015) Prion and prion-like diseases in animals. Virus Res 207:82–93.  https://doi.org/10.1016/j.virusres.2014.11.026 CrossRefPubMedGoogle Scholar
  5. 5.
    Aguzzi A, Lakkaraju AK (2016) Cell biology of prions and prionoids: a status report. Trends Cell Biol 26(1):40–51.  https://doi.org/10.1016/j.tcb.2015.08.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Prusiner SB (2001) Neurodegenerative diseases and prions. N Engl J Med 344(20):1516–1526CrossRefPubMedGoogle Scholar
  7. 7.
    Borchelt DR, Scott M, Taraboulos A, Stahl N, Prusiner SB (1990) Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 110(3):743–752CrossRefPubMedGoogle Scholar
  8. 8.
    Harris DA (1999) Cell biological studies of the prion protein. Curr Issues Mol Biol 1(1–2):65–75PubMedGoogle Scholar
  9. 9.
    Shyng SL, Huber MT, Harris DA (1993) A prion protein cycles between the cell surface and endocytic compartment in cultured neuroblastoma cells. J Biol Chem 268:15922–15928PubMedGoogle Scholar
  10. 10.
    Harris DA (1999) Cellular biology of prion diseases. Clin Microbiol Rev 12(3):429–444PubMedPubMedCentralGoogle Scholar
  11. 11.
    Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267(23):16188–16199PubMedGoogle Scholar
  12. 12.
    Jeffrey M, McGovern G, Siso S, Gonzalez L (2011) Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 121(1):113–134.  https://doi.org/10.1007/s00401-010-0700-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Goold R, McKinnon C, Tabrizi SJ (2015) Prion degradation pathways: potential for therapeutic intervention. Mol Cell Neurosci 66, 12:–20.  https://doi.org/10.1016/j.mcn.2014.12.009
  14. 14.
    Daude N, Marella M, Chabry J (2003) Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci 116:2775–2779CrossRefPubMedGoogle Scholar
  15. 15.
    Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302(5646):871–874.  https://doi.org/10.1126/science.1090187 CrossRefPubMedGoogle Scholar
  16. 16.
    Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG et al (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53(3):325–335.  https://doi.org/10.1016/j.neuron.2007.01.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Pankiewicz J, Prelli F, Sy MS, Kascsak RJ, Kascsak RB, Spinner DS, Carp RI, Meeker HC et al (2006) Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur J Neurosci 23(10):2635–2647CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Perrier V, Solassol J, Crozet C, Frobert Y, Mourton-Gilles C, Grassi J, Lehmann S (2004) Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrP degradation. J Neurochem 89(2):454–463CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Enari M, Flechsig E, Weissmann C (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci U S A 98(16):9295–9299CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM et al (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34(29):9607–9620.  https://doi.org/10.1523/JNEUROSCI.3788-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G et al (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412(6848):739–743CrossRefPubMedGoogle Scholar
  22. 22.
    Sadowski MJ, Pankiewicz J, Prelli F, Scholtzova H, Spinner DS, Kascsak RB, Kascsak RJ, Wisniewski T (2009) Anti-PrP Mab 6D11 suppresses PrPSc replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol Dis 34(2):267–278CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    White AR, Enever P, Tayebl M, Mushens R, Linehan J, Brandner S, Anstee D, Collinge J et al (2003) Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422:80–83CrossRefPubMedGoogle Scholar
  24. 24.
    Heppner FL, Musahl C, Arrighi I, Klein MA, Rulicke T, Oesch B, Zinkernagel RM, Kalinke U et al (2001) Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294(5540):178–182CrossRefPubMedGoogle Scholar
  25. 25.
    Spinner DR, Kascsak RB, LaFauci G, Meeker HC, Ye X, Flory MJ, Kim JI, Schuller-Lewis GB et al (2007) CpG oligodeoxynucleotide-enhanced humoral immune response and production of antibodies to prion protein PrPSc in mice immunized with 139A scrapie-associated fibrils. J Leukoc Biol 81(6):1374–1385CrossRefPubMedGoogle Scholar
  26. 26.
    Jimenez-Huete A, Alfonso P, Soto C, Albar JP, Rabano A, Ghiso J, Frangione B (1998) Antibodies directed to the carboxyl terminus of amyloid beta-peptide recognize sequence epitopes and distinct immunoreactive deposits in Alzheimer’s disease brain. Alzheimers Reports 1(1):41–47Google Scholar
  27. 27.
    Asuni AA, Pankiewicz JE, Sadowski MJ (2013) Differential molecular chaperone response associated with various mouse adapted scrapie strains. Neurosci Lett 538:26–31CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Asuni AA, Guridi M, Pankiewicz JE, Sanchez S, Sadowski MJ (2014) Modulation of amyloid precursor protein expression reduces beta-amyloid deposition in a mouse model. Ann Neurol 75(5):684–699.  https://doi.org/10.1002/ana.24149 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107(28):12564–12569.  https://doi.org/10.1073/pnas.0914191107 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13(9):1400–1412.  https://doi.org/10.4161/cc.28401 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wisniewski HM, Sadowski M, Jakubowska-Sadowska K, Tarnawski M, Wegiel J (1998) Diffuse, lake-like amyloid-beta deposits in the parvopyramidal layer of the presubiculum in Alzheimer disease. J Neuropath Exp Neurol 57(7):674–683CrossRefPubMedGoogle Scholar
  32. 32.
    Adler J, Parmryd I (2010) Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry 77((8):733–742.  https://doi.org/10.1002/cyto.a.20896 CrossRefGoogle Scholar
  33. 33.
    Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86(6):3993–4003.  https://doi.org/10.1529/biophysj.103.038422 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Utku Y, Dehan E, Ouerfelli O, Piano F, Zuckermann RN, Pagano M, Kirshenbaum K (2006) A peptidomimetic siRNA transfection reagent for highly effective gene silencing. Mol BioSyst 2(6–7):312–317CrossRefPubMedGoogle Scholar
  35. 35.
    Tzaban S, Friedlander G, Schonberger O, Horonchik L, Yedidia Y, Shaked G, Gabizon R, Taraboulos A (2002) Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41(42):12868–12875CrossRefPubMedGoogle Scholar
  36. 36.
    Pastrana MA, Sajnani G, Onisko B, Castilla J, Morales R, Soto C, Requena JR (2006) Isolation and characterization of a proteinase K-sensitive PrPSc fraction. Biochemistry 45(51):15710–15717.  https://doi.org/10.1021/bi0615442 CrossRefPubMedGoogle Scholar
  37. 37.
    Daude N, Lehmann S, Harris DA (1997) Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J Biol Chem 272(17):11604–11612CrossRefPubMedGoogle Scholar
  38. 38.
    Lehmann S, Harris DA (1996) Mutant and infectious prion proteins display common biochemical properties in cultured cells. J Biol Chem 271(3):1633–1637CrossRefPubMedGoogle Scholar
  39. 39.
    Liberski PP, Sikorska B, Hauw JJ, Kopp N, Streichenberger N, Giraud P, Boellaard J, Budka H et al (2010) Ultrastructural characteristics (or evaluation) of Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies or prion diseases. Ultrastruct Pathol 34(6):351–361.  https://doi.org/10.3109/01913123.2010.491175 CrossRefPubMedGoogle Scholar
  40. 40.
    Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36(12):2563–2573.  https://doi.org/10.1016/j.biocel.2004.04.014 CrossRefPubMedGoogle Scholar
  41. 41.
    Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C, Vilette D, Lehmann S et al (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280(12):11247–11258CrossRefPubMedGoogle Scholar
  42. 42.
    Scott MR, Groth D, Tatzelt J, Torchia M, Tremblay P, DeArmond SJ, Prusiner SB (1997) Propagation of prion strains through specific conformers of the prion protein. J Virol 71(12):9032–9044PubMedPubMedCentralGoogle Scholar
  43. 43.
    Prusiner SB, Scott MR, DeArmond SJ, Cohen FE (1998) Prion protein biology. Cell 93:337–348CrossRefPubMedGoogle Scholar
  44. 44.
    Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S et al (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537(7618):50–56.  https://doi.org/10.1038/nature19323 CrossRefPubMedGoogle Scholar
  45. 45.
    Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R, Vince-Kazmerova Z, Katina S et al (2017) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Neurol 16(2):123–134.  https://doi.org/10.1016/S1474-4422(16)30331-3 CrossRefPubMedGoogle Scholar
  46. 46.
    West T, Hu Y, Verghese PB, Bateman RJ, Braunstein JB, Fogelman I, Budur K, Florian H et al (2017) Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alz Dis 4(4):236–241.  https://doi.org/10.14283/jpad.2017.36 Google Scholar
  47. 47.
    Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868CrossRefPubMedGoogle Scholar
  48. 48.
    Ward HJT, Head MW, Will RG, Ironside JW (2003) Variant Creutzfeldt-Jakob disease. Clin Lab Med 23(1):87–108CrossRefPubMedGoogle Scholar
  49. 49.
    Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364(9433):527–529CrossRefPubMedGoogle Scholar
  50. 50.
    Peden A, McCardle L, Head MW, Love S, Ward HJ, Cousens SN, Keeling DM, Millar CM et al (2010) Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia 16(2):296–304CrossRefPubMedGoogle Scholar
  51. 51.
    Bishop MT, Diack AB, Ritchie DL, Ironside JW, Will RG, Manson JC (2013) Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. Brain 136:1139–1145.  https://doi.org/10.1093/brain/awt032 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bishop MT, Hart P, Aitchison L, Baybutt HN, Plinston C, Thomson V, Tuzi NL, Head MW et al (2006) Predicting susceptibility and incubation time of human-to-human transmission of vCJD. The Lancet Neurology 5(5):393–398.  https://doi.org/10.1016/S1474-4422(06)70413-6 CrossRefPubMedGoogle Scholar
  53. 53.
    Mok T, Jaunmuktane Z, Joiner S, Campbell T, Morgan C, Wakerley B, Golestani F, Rudge P et al (2017) Variant Creutzfeldt-Jakob disease in a patient with heterozygosity at PRNP codon 129. N Engl J Med 376(3):292–294.  https://doi.org/10.1056/NEJMc1610003 CrossRefPubMedGoogle Scholar
  54. 54.
    Collinge J, Whitfield J, McKintosh E, Beck J, Mead S, Thomas DJ, Alpers MP (2006) Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367(9528):2068–2074CrossRefPubMedGoogle Scholar
  55. 55.
    Diack AB, Will RG, Manson JC (2017) Public health risks from subclinical variant CJD. PLoS Pathog 13(11):e1006642.  https://doi.org/10.1371/journal.ppat.1006642 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Urwin PJ, Mackenzie JM, Llewelyn CA, Will RG, Hewitt PE (2016) Creutzfeldt-Jakob disease and blood transfusion: updated results of the UK Transfusion Medicine Epidemiology Review Study. Vox Sang 110(4):310–316.  https://doi.org/10.1111/vox.12371 CrossRefPubMedGoogle Scholar
  57. 57.
    Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R, Boyes L, Linehan J, Simmons M et al (2013) Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 347:f5675.  https://doi.org/10.1136/bmj.f5675 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Song CH, Furuoka H, Kim CL, Ogino M, Suzuki A, Hasebe R, Horiuchi M (2008) Effect of intraventricular infusion of anti-prion protein monoclonal antibodies on disease progression in prion-infected mice. J gen Virol 89:1533–1544.  https://doi.org/10.1099/vir.0.83578-0 CrossRefPubMedGoogle Scholar
  59. 59.
    Luginbuhl B, Kanyo Z, Jones RM, Fletterick RJ, Prusiner SB, Cohen FE, Williamson RA, Burton DR et al (2006) Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J Mol Biol 363(1):75–97.  https://doi.org/10.1016/j.jmb.2006.07.027 CrossRefPubMedGoogle Scholar
  60. 60.
    Padiolleau-Lefevre S, Alexandrenne C, Dkhissi F, Clement G, Essono S, Blache C, Couraud JY, Wijkhuisen A et al (2007) Expression and detection strategies for an scFv fragment retaining the same high affinity than Fab and whole antibody: implications for therapeutic use in prion diseases. Mol Immunol 44(8):1888–1896.  https://doi.org/10.1016/j.molimm.2006.09.035 CrossRefPubMedGoogle Scholar
  61. 61.
    Wuertzer CA, Sullivan MA, Qiu X, Federoff HJ (2008) CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol Ther 16(3):481–486.  https://doi.org/10.1038/sj.mt.6300387 CrossRefPubMedGoogle Scholar
  62. 62.
    Moda F, Vimercati C, Campagnani I, Ruggerone M, Giaccone G, Morbin M, Zentilin L, Giacca M et al (2012) Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion 6(4):383–390.  https://doi.org/10.4161/pri.20197 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Klohn PC, Farmer M, Linehan JM, O'Malley C, Fernandez de Marco M, Taylor W, Farrow M, Khalili-Shirazi A et al (2012) PrP antibodies do not trigger mouse hippocampal neuron apoptosis. Science 335(6064):52.  https://doi.org/10.1126/science.1215579 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyNew York University School of MedicineNew YorkUSA
  2. 2.Department of PsychiatryNew York University School of MedicineNew YorkUSA
  3. 3.Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUSA
  4. 4.Department of ChemistryNew York UniversityNew YorkUSA
  5. 5.New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUSA

Personalised recommendations