Molecular Neurobiology

, Volume 56, Issue 4, pp 2339–2351 | Cite as

Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress

  • Ricardo Cabezas
  • Eliana Baez-Jurado
  • Oscar Hidalgo-Lanussa
  • Valentina Echeverria
  • Ghulam Md Ashrad
  • Amirhossein Sahebkar
  • George E. BarretoEmail author


Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.


PDGF-BB Neuroglobin Astrocyte Oxidative stress Neurodegeneration 


Funding Information

This work was supported in part by PUJ grants to GEB.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu B, Gao HM, Hong JS (2003) Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 111(8):1065–1073PubMedPubMedCentralGoogle Scholar
  2. 2.
    Dos Santos AB, Barreto GE, Kohlmeier KA (2014) Treatment of sleeping disorders should be considered in clinical management of Parkinson’s disease. Front Aging Neurosci 6:273PubMedPubMedCentralGoogle Scholar
  3. 3.
    dos Santos AB, Kohlmeier KA, Barreto GE (2015) Are sleep disturbances preclinical markers of Parkinson’s disease? Neurochem Res 40(3):421–427PubMedGoogle Scholar
  4. 4.
    Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26(1):6–17PubMedGoogle Scholar
  5. 5.
    Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10):8516–8525PubMedGoogle Scholar
  6. 6.
    Nutt JG, Wooten GF (2005) Clinical practice. diagnosis and initial management of Parkinson’s disease. N Engl J Med 353(10):1021–1027PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68(2):165PubMedGoogle Scholar
  8. 8.
    Hauser RA, McDermott MP, Messing S (2006) Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol 63(12):1756–1760PubMedGoogle Scholar
  9. 9.
    Post B, Muslimovic D, van Geloven N, Speelman JD, Schmand B, de Haan RJ, C.A.-s. group (2011) Progression and prognostic factors of motor impairment, disability and quality of life in newly diagnosed Parkinson’s disease. Mov Disord 26(3):449–456PubMedGoogle Scholar
  10. 10.
    Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46PubMedGoogle Scholar
  11. 11.
    Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2018) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol 55(3):2285–2300PubMedGoogle Scholar
  12. 12.
    Correia AS, Anisimov SV, Li JY, Brundin P (2005) Stem cell-based therapy for Parkinson’s disease. Ann Med 37(7):487–498PubMedGoogle Scholar
  13. 13.
    Paul G, Zachrisson O, Varrone A, Almqvist P, Jerling M, Lind G, Rehncrona S, Linderoth B et al (2015) Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest 125(3):1339–1346PubMedPubMedCentralGoogle Scholar
  14. 14.
    Falk T, Zhang S, Sherman SJ (2009) Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson’s disease. Mol Neurodegener 4:49PubMedPubMedCentralGoogle Scholar
  15. 15.
    Henriques A, Pitzer C, Schneider A (2010) Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci 4:32PubMedPubMedCentralGoogle Scholar
  16. 16.
    Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ramaswamy S, Kordower JH (2009) Are growth factors the answer? Parkinsonism Relat Disord 15(Suppl 3):S176–S180PubMedGoogle Scholar
  18. 18.
    Zachrisson O, Zhao M, Andersson A, Dannaeus K, Haggblad J, Isacson R, Nielsen E, Patrone C et al (2011) Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson’s disease. J Parkinson’s Dis 1(1):49–63Google Scholar
  19. 19.
    Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 1(1):14PubMedPubMedCentralGoogle Scholar
  20. 20.
    Iihara K, Hashimoto N, Tsukahara T, Sakata M, Yanamoto H, Taniguchi T (1997) Platelet-derived growth factor-BB, but not -AA, prevents delayed neuronal death after forebrain ischemia in rats. J Cereb Blood Flow Metab 17(10):1097–1106PubMedGoogle Scholar
  21. 21.
    Peng F, Yao H, Akturk HK, Buch S (2012) Platelet-derived growth factor CC-mediated neuroprotection against HIV Tat involves TRPC-mediated inactivation of GSK 3beta. PLoS One 7(10):e47572PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, Wang B, Wardega P et al (2010) Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation. J Exp Med 207(4):867–880PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ahmed Z, Asi YT, Lees AJ, Revesz T, Holton JL (2013) Identification and quantification of oligodendrocyte precursor cells in multiple system atrophy, progressive supranuclear palsy and Parkinson’s disease. Brain Pathol 23(3):263–273PubMedGoogle Scholar
  24. 24.
    McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23(4):474–483PubMedGoogle Scholar
  25. 25.
    Mena MA, Garcia de Yebenes J (2008) Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. Neuroscientist 14(6):544–560PubMedGoogle Scholar
  26. 26.
    More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediat Inflamm 2013:952375Google Scholar
  27. 27.
    Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH, Jin BK (2010) The role of neuroinflammation on the pathogenesis of Parkinson’s disease. BMB Rep 43(4):225–232PubMedGoogle Scholar
  28. 28.
    Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113PubMedGoogle Scholar
  29. 29.
    Cabezas R, El-Bacha RS, Gonzalez J, Barreto GE (2012) Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 74(2):80–90PubMedGoogle Scholar
  30. 30.
    Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797(6–7):607–618PubMedGoogle Scholar
  31. 31.
    Simpkins JW, Yi KD, Yang SH, Dykens JA (2010) Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta 1800(10):1113–1120PubMedGoogle Scholar
  32. 32.
    Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci 1147:283–292PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang HL, Chou AH, Wu AS, Chen SY, Weng YH, Kao YC, Yeh TH, Chu PJ et al (2011) PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim Biophys Acta 1812(6):674–684PubMedGoogle Scholar
  34. 34.
    Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS et al (2012) Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hashida K, Kitao Y, Sudo H, Awa Y, Maeda S, Mori K, Takahashi R, Iinuma M et al (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS One 7(10):e47950PubMedPubMedCentralGoogle Scholar
  36. 36.
    Varma D, Sen D (2015) Role of the unfolded protein response in the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp 75(1):1–26Google Scholar
  37. 37.
    Wang M, Wey S, Zhang Y, Ye R, Lee AS (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11(9):2307–2316PubMedPubMedCentralGoogle Scholar
  38. 38.
    Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17(7):1115–1125PubMedGoogle Scholar
  39. 39.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306PubMedGoogle Scholar
  40. 40.
    Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, Dicke A, Kusnekov A (2010) The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics 51(6):474–479PubMedPubMedCentralGoogle Scholar
  41. 41.
    Wachter B, Schurger S, Rolinger J, von Ameln-Mayerhofer A, Berg D, Wagner HJ, Kueppers E (2010) Effect of 6-hydroxydopamine (6-OHDA) on proliferation of glial cells in the rat cortex and striatum: evidence for de-differentiation of resident astrocytes. Cell Tissue Res 342(2):147–160PubMedGoogle Scholar
  42. 42.
    Klingelhoefer L, Reichmann H (2015) Pathogenesis of Parkinson disease—the gut-brain axis and environmental factors. Nat Rev Neurol 11(11):625–636PubMedGoogle Scholar
  43. 43.
    Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149PubMedGoogle Scholar
  44. 44.
    Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192PubMedGoogle Scholar
  45. 45.
    Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7(4):494–506PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7(4):338–353PubMedPubMedCentralGoogle Scholar
  47. 47.
    Parpura V, Grubisic V, Verkhratsky A (2011) Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813(5):984–991PubMedGoogle Scholar
  48. 48.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640PubMedGoogle Scholar
  49. 49.
    Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76(2):97–104PubMedGoogle Scholar
  50. 50.
    Barreto GE, White RE, Xu L, Palm CJ, Giffard RG (2012) Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 238(2):284–296PubMedPubMedCentralGoogle Scholar
  51. 51.
    Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 6(11):e27881PubMedPubMedCentralGoogle Scholar
  52. 52.
    Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 11(2):164–173PubMedPubMedCentralGoogle Scholar
  53. 53.
    Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM (2009) Rho-associated kinase II (ROCKII) limits axonal growth after trauma within the adult mouse spinal cord. J Neurosci 29(48):15266–15276PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301PubMedGoogle Scholar
  55. 55.
    Jarlestedt K, Rousset CI, Faiz M, Wilhelmsson U, Stahlberg A, Sourkova H, Pekna M, Mallard C et al (2010) Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 5(4):e10397PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kang W, Hebert JM (2011) Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol 43(3):147–154PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sugaya K, Chou S, Xu SJ, McKinney M (1998) Indicators of glial activation and brain oxidative stress after intraventricular infusion of endotoxin. Brain Res Mol Brain Res 58(1–2):1–9PubMedGoogle Scholar
  58. 58.
    Chen LW, Yung KL, Chan YS (2005) Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson’s disease. Curr Drug Targets 6(7):821–833PubMedGoogle Scholar
  59. 59.
    Episcopo FL, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2013) Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Curr Aging Sci 6(1):45–55Google Scholar
  60. 60.
    Song YJ, Halliday GM, Holton JL, Lashley T, O’Sullivan SS, McCann H, Lees AJ, Ozawa T et al (2009) Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol 68(10):1073–1083PubMedGoogle Scholar
  61. 61.
    Tong J, Ang LC, Williams B, Furukawa Y, Fitzmaurice P, Guttman M, Boileau I, Hornykiewicz O et al (2015) Low levels of astroglial markers in Parkinson’s disease: relationship to alpha-synuclein accumulation. Neurobiol Dis 82:243–253PubMedPubMedCentralGoogle Scholar
  62. 62.
    de Oliveira DM, Barreto G, Galeano P, Romero JI, Holubiec MI, Badorrey MS, Capani F, Alvarez LD (2011) Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity. Hum Exp Toxicol 30(9):1382–1391PubMedGoogle Scholar
  63. 63.
    de Oliveria DM, Barreto G, De Andrade DV, Saraceno E, Aon-Bertolino L, Capani F, Dos Santos R, El Bacha LDG (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34(2):215–220PubMedGoogle Scholar
  64. 64.
    Niranjan R, Nath C, Shukla R (2010) The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radic Res 44(11):1304–1316PubMedGoogle Scholar
  65. 65.
    Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146(2):741–755PubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhu X, Yao H, Peng F, Callen S, Buch S (2009) PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium. Toxicol Appl Pharmacol 240(2):286–291PubMedPubMedCentralGoogle Scholar
  67. 67.
    Valverde GDAD, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD (2008) Effects of the extract of Anemopaegma mirandum (Catuaba) on rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res 1198:188–196Google Scholar
  68. 68.
    Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66PubMedGoogle Scholar
  69. 69.
    Heinz S, Freyberger A, Lawrenz B, Schladt L, Schmuck G, Ellinger-Ziegelbauer H (2017) Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep 7:45465PubMedPubMedCentralGoogle Scholar
  70. 70.
    Swarnkar S, Singh S, Goswami P, Mathur R, Patro IK, Nath C (2012) Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem Res 37(10):2178–2189PubMedGoogle Scholar
  71. 71.
    Chen YY, Chen G, Fan Z, Luo J, Ke ZJ (2008) GSK3beta and endoplasmic reticulum stress mediate rotenone-induced death of SK-N-MC neuroblastoma cells. Biochem Pharmacol 76(1):128–138PubMedGoogle Scholar
  72. 72.
    Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Feger J, Champy P, Prigent A et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95(4):930–939PubMedGoogle Scholar
  73. 73.
    Ogawa N, Asanuma M, Miyazaki I, Diaz-Corrales FJ, Miyoshi K (2005) L-DOPA treatment from the viewpoint of neuroprotection. Possible mechanism of specific and progressive dopaminergic neuronal death in Parkinson's disease. J Neurol 252(Suppl 4):IV23–IV31PubMedGoogle Scholar
  74. 74.
    Sanchez M, Gastaldi L, Remedi M, Caceres A, Landa C (2008) Rotenone-induced toxicity is mediated by Rho-GTPases in hippocampal neurons. Toxicol Sci 104(2):352–361PubMedGoogle Scholar
  75. 75.
    Tiwari M, Lopez-Cruzan M, Morgan WW, Herman B (2011) Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem 286(10):8493–8506PubMedPubMedCentralGoogle Scholar
  76. 76.
    Watabe M, Nakaki T (2004) Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 311(3):948–953PubMedGoogle Scholar
  77. 77.
    Cabeza-Arvelaiz Y, Schiestl RH (2012) Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One 7(9):e44700PubMedPubMedCentralGoogle Scholar
  78. 78.
    Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764PubMedGoogle Scholar
  79. 79.
    Zhang S, Liang R, Zhou F, Huang X, Ding JH, Hu G (2011) Reversal of rotenone-induced dysfunction of astrocytic connexin43 by opening mitochondrial ATP-sensitive potassium channels. Cell Mol Neurobiol 31(1):111–117PubMedGoogle Scholar
  80. 80.
    Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–872PubMedPubMedCentralGoogle Scholar
  81. 81.
    Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211PubMedPubMedCentralGoogle Scholar
  82. 82.
    Greenamyre JT, Cannon JR, Drolet R, Mastroberardino PG (2010) Lessons from the rotenone model of Parkinson’s disease. Trends Pharmacol Sci 31(4):141–142 author reply 142-3PubMedPubMedCentralGoogle Scholar
  83. 83.
    Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116PubMedGoogle Scholar
  84. 84.
    Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1):e8762PubMedPubMedCentralGoogle Scholar
  85. 85.
    Perier C, Vila M (2012) Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009332PubMedPubMedCentralGoogle Scholar
  86. 86.
    Furlong M, Tanner CM, Goldman SM, Bhudhikanok GS, Blair A, Chade A, Comyns K, Hoppin JA et al (2015) Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson’s disease. Environ Int 75:144–150PubMedGoogle Scholar
  87. 87.
    Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–494PubMedPubMedCentralGoogle Scholar
  88. 88.
    Sonsalla PK, Zeevalk GD, German DC (2008) Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S116–S118PubMedPubMedCentralGoogle Scholar
  89. 89.
    Lee S, Williamson J, Lothman EW, Szele FG, Chesselet MF, Von Hagen S, Sapolsky RM, Mattson MP et al (1997) Early induction of mRNA for calbindin-D28k and BDNF but not NT-3 in rat hippocampus after kainic acid treatment. Brain Res Mol Brain Res 47(1–2):183–194PubMedGoogle Scholar
  90. 90.
    Hsuan SL, Klintworth HM, Xia Z (2006) Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. J Neurosci 26(17):4481–4491PubMedGoogle Scholar
  91. 91.
    Safi R, Gardaneh M, Panahi Y, Maghsoudi N, Zaefizadeh M, Gharib E (2012) Optimized quantities of GDNF overexpressed by engineered astrocytes are critical for protection of neuroblastoma cells against 6-OHDA toxicity. J Mol Neurosci 46(3):654–665PubMedGoogle Scholar
  92. 92.
    Aberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 6:53–80Google Scholar
  93. 93.
    Pang Y, Zheng B, Campbell LR, Fan LW, Cai Z, Rhodes PG (2010) IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain. Pediatr Res 67(6):579–584PubMedPubMedCentralGoogle Scholar
  94. 94.
    Toshkezi G, Kyle M, Longo SL, Chin LS, Zhao LR (2018) Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J Neurosurg 1–9. PubMedGoogle Scholar
  95. 95.
    Venugopal C, Prasad YSHC, Shobha K, Pinnelli VB, Dhanushkodi A (2017) HEK-293 secretome attenuates kainic acid neurotoxicity through insulin like growth factor-phosphatidylinositol-3-kinases pathway and by temporal regulation of antioxidant defense machineries. Neurotoxicology. PubMedGoogle Scholar
  96. 96.
    Jankovic J, Poewe W (2012) Therapies in Parkinson’s disease. Curr Opin Neurol 25(4):433–447PubMedGoogle Scholar
  97. 97.
    Proschel C, Stripay JL, Shih CH, Munger JC, Noble MD (2014) Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol Med 6(4):504–518PubMedPubMedCentralGoogle Scholar
  98. 98.
    Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684PubMedGoogle Scholar
  99. 99.
    Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312PubMedPubMedCentralGoogle Scholar
  100. 100.
    Yu J, Ustach C, Kim HR (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36(1):49–59PubMedGoogle Scholar
  101. 101.
    Fredriksson L, Li H, Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15(4):197–204PubMedGoogle Scholar
  102. 102.
    Heldin CH, Ostman A, Ronnstrand L (1998) Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1378(1):F79–F113PubMedGoogle Scholar
  103. 103.
    Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316PubMedGoogle Scholar
  104. 104.
    Torrente D, Cabezas R, Avila M, Sanchez Y, Morales L, Ashraf GM, Barreto GE, Gonzalez J et al (2015) Mechanisms of PDGFRalpha promiscuity and PDGFRbeta specificity in association with PDGFB. Front Biosci 7:434–446Google Scholar
  105. 105.
    Kazlauskas A, Cooper JA (1989) Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58(6):1121–1133PubMedGoogle Scholar
  106. 106.
    Ashino T, Yamamoto M, Yoshida T, Numazawa S (2013) Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia. Arterioscler Thromb Vasc Biol 33(4):760–768PubMedGoogle Scholar
  107. 107.
    Iqbal S, Zhang S, Driss A, Liu ZR, Kim HR, Wang Y, Ritenour C, Zhau HE et al (2012) PDGF upregulates Mcl-1 through activation of beta-catenin and HIF-1alpha-dependent signaling in human prostate cancer cells. PLoS One 7(1):e30764PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kang SW (2007) Two axes in platelet-derived growth factor signaling: tyrosine phosphorylation and reactive oxygen species. Cell Mol Life Sci 64(5):533–541PubMedGoogle Scholar
  109. 109.
    Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401(6748):86–90PubMedGoogle Scholar
  110. 110.
    Shin HW, Park SY, Lee KB, Shin E, Nam SW, Lee JY, Jang JJ (2009) Transcriptional profiling and Wnt signaling activation in proliferation of human hepatic stellate cells induced by PDGF-BB. Korean J Hepatol 15(4):486–495PubMedGoogle Scholar
  111. 111.
    Shim AH, Liu H, Focia PJ, Chen X, Lin PC, He X (2010) Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc Natl Acad Sci U S A 107(25):11307–11312PubMedGoogle Scholar
  112. 112.
    Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Updat 8(1–2):75–83PubMedGoogle Scholar
  113. 113.
    Funa K, Sasahara M (2014) The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 9(2):168–181PubMedGoogle Scholar
  114. 114.
    Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, Kaluza J (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28(3):564–573PubMedGoogle Scholar
  115. 115.
    Trojanowska M (2008) Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology 47(Suppl 5):v2–v4PubMedGoogle Scholar
  116. 116.
    Yu JC, Lokker NA, Hollenbach S, Apatira M, Li J, Betz A, Sedlock D, Oda S et al (2001) Efficacy of the novel selective platelet-derived growth factor receptor antagonist CT52923 on cellular proliferation, migration, and suppression of neointima following vascular injury. J Pharmacol Exp Ther 298(3):1172–1178PubMedGoogle Scholar
  117. 117.
    Wang Z, Ahmad A, Li Y, Kong D, Azmi AS, Banerjee S, Sarkar FH (2010) Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim Biophys Acta 1806(1):122–130PubMedPubMedCentralGoogle Scholar
  118. 118.
    Zheng L, Ishii Y, Tokunaga A, Hamashima T, Shen J, Zhao QL, Ishizawa S, Fujimori T et al (2010) Neuroprotective effects of PDGF against oxidative stress and the signaling pathway involved. J Neurosci Res 88(6):1273–1284PubMedGoogle Scholar
  119. 119.
    Ball SG, Shuttleworth A, Kielty CM (2012) Inhibition of platelet-derived growth factor receptor signaling regulates Oct4 and Nanog expression, cell shape, and mesenchymal stem cell potency. Stem Cells 30(3):548–560PubMedPubMedCentralGoogle Scholar
  120. 120.
    Li L, Li J, Wang JY, Yang CQ, Jia ML, Jiang W (2010) Role of RhoA in platelet-derived growth factor-BB-induced migration of rat hepatic stellate cells. Chin Med J 123(18):2502–2509PubMedGoogle Scholar
  121. 121.
    Nobes CD, Hawkins P, Stephens L, Hall A (1995) Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J Cell Sci 108(Pt 1):225–233PubMedGoogle Scholar
  122. 122.
    Gosslau A, Dittrich W, Willig A, Jaros PP (2001) Cytological effects of platelet-derived growth factor on mitochondrial ultrastructure in fibroblasts. Comp Biochem Physiol A Mol Integr Physiol 128(2):241–249PubMedGoogle Scholar
  123. 123.
    Simon AR, Takahashi S, Severgnini M, Fanburg BL, Cochran BH (2002) Role of the JAK-STAT pathway in PDGF-stimulated proliferation of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 282(6):L1296–L1304PubMedGoogle Scholar
  124. 124.
    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028PubMedGoogle Scholar
  125. 125.
    Arrazola MS, Silva-Alvarez C, Inestrosa NC (2015) How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci 9:166PubMedPubMedCentralGoogle Scholar
  126. 126.
    Lehwald N, Tao GZ, Jang KY, Papandreou I, Liu B, Liu B, Pysz MA, Willmann JK et al (2012) Beta-catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology 143(3):754–764PubMedGoogle Scholar
  127. 127.
    Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M (2010) Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells. Basic Clin Pharmacol Toxicol 106(1):53–61PubMedGoogle Scholar
  128. 128.
    Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C, Capeau J (2001) Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20(2):252–259PubMedGoogle Scholar
  129. 129.
    Cheng B, Mattson MP (1995) PDGFs protect hippocampal neurons against energy deprivation and oxidative injury: evidence for induction of antioxidant pathways. J Neurosci 15(11):7095–7104PubMedGoogle Scholar
  130. 130.
    Tseng HC, Dichter MA (2005) Platelet-derived growth factor-BB pretreatment attenuates excitotoxic death in cultured hippocampal neurons. Neurobiol Dis 19(1–2):77–83PubMedGoogle Scholar
  131. 131.
    Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73(6):689–701PubMedGoogle Scholar
  132. 132.
    Kato M, Yuan H, Xu ZG, Lanting L, Li SL, Wang M, Hu MC, Reddy MA et al (2006) Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol 17(12):3325–3335PubMedGoogle Scholar
  133. 133.
    Sakata M, Yanamoto H, Hashimoto N, Iihara K, Tsukahara T, Taniguchi T, Kikuchi H (1998) Induction of infarct tolerance by platelet-derived growth factor against reversible focal ischemia. Brain Res 784(1–2):250–255PubMedGoogle Scholar
  134. 134.
    Egawa-Tsuzuki T, Ohno M, Tanaka N, Takeuchi Y, Uramoto H, Faigle R, Funa K, Ishii Y et al (2004) The PDGF B-chain is involved in the ontogenic susceptibility of the developing rat brain to NMDA toxicity. Exp Neurol 186(1):89–98PubMedGoogle Scholar
  135. 135.
    Osborne A, Sanderson J, Martin KR (2018) Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells 36(1):65–78PubMedGoogle Scholar
  136. 136.
    Cabezas R, Avila MF, Gonzalez J, El-Bacha RS, Barreto GE (2015) PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 27(4):355–367PubMedGoogle Scholar
  137. 137.
    Cabezas R, Avila-Rodriguez M, Vega-Vela NE, Echeverria V, Gonzalez J, Hidalgo OA, Santos AB, Aliev G et al (2016) Growth factors and astrocytes metabolism: possible roles for platelet derived growth factor. Med Chem 12(3):204–210PubMedGoogle Scholar
  138. 138.
    Cabezas R, Vega-Vela NE, Gonzalez-Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, Barreto GE (2018) PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol 55(4):3085–3095PubMedGoogle Scholar
  139. 139.
    Hedberg KM, Bengtsson T, Safiejko-Mroczka B, Bell PB, Lindroth M (1993) PDGF and neomycin induce similar changes in the actin cytoskeleton in human fibroblasts. Cell Motil Cytoskeleton 24(2):139–149PubMedGoogle Scholar
  140. 140.
    Ruusala A, Sundberg C, Arvidsson AK, Rupp-Thuresson E, Heldin CH, Claesson-Welsh L (1998) Platelet-derived growth factor (PDGF)-induced actin rearrangement is deregulated in cells expressing a mutant Y778F PDGF beta-receptor. J Cell Sci 111(Pt 1):111–120PubMedGoogle Scholar
  141. 141.
    Svitkina T, Lin WH, Webb DJ, Yasuda R, Wayman GA, Van Aelst L, Soderling SH (2010) Regulation of the postsynaptic cytoskeleton: Roles in development, plasticity, and disorders. J Neurosci 30(45):14937–14942PubMedPubMedCentralGoogle Scholar
  142. 142.
    van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW (2003) Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23(2):211–217PubMedGoogle Scholar
  143. 143.
    Ramakers GJ, Moolenaar WH (1998) Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp Cell Res 245(2):252–262PubMedGoogle Scholar
  144. 144.
    Kagiyama S, Matsumura K, Goto K, Otsubo T, Iida M (2010) Role of Rho kinase and oxidative stress in cardiac fibrosis induced by aldosterone and salt in angiotensin type 1a receptor knockout mice. Regul Pept 160(1–3):133–139PubMedGoogle Scholar
  145. 145.
    Noma K, Goto C, Nishioka K, Jitsuiki D, Umemura T, Ueda K, Kimura M, Nakagawa K et al (2007) Roles of rho-associated kinase and oxidative stress in the pathogenesis of aortic stiffness. J Am Coll Cardiol 49(6):698–705PubMedPubMedCentralGoogle Scholar
  146. 146.
    Fujimura M, Usuki F (2012) Differing effects of toxicants (methylmercury, inorganic mercury, lead, amyloid beta, and rotenone) on cultured rat cerebrocortical neurons: differential expression of rho proteins associated with neurotoxicity. Toxicol Sci 126(2):506–514PubMedGoogle Scholar
  147. 147.
    Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M (2009) Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res 29(1):119–123PubMedGoogle Scholar
  148. 148.
    Pinzani M (2002) PDGF and signal transduction in hepatic stellate cells. Front Biosci 7:d1720–d1726PubMedGoogle Scholar
  149. 149.
    Powis G, Seewald MJ, Sehgal I, Iaizzo PA, Olsen RA (1990) Platelet-derived growth factor stimulates non-mitochondrial Ca2+ uptake and inhibits mitogen-induced Ca2+ signaling in Swiss 3T3 fibroblasts. J Biol Chem 265(18):10266–10273PubMedGoogle Scholar
  150. 150.
    Ridefelt P, Yokote K, Claesson-Welsh L, Siegbahn A (1995) PDGF-BB triggered cytoplasmic calcium responses in cells with endogenous or stably transfected PDGF beta-receptors. Growth Factors 12(3):191–201PubMedGoogle Scholar
  151. 151.
    Baez E, Echeverria V, Cabezas R, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Protection by neuroglobin expression in brain pathologies. Front Neurol 7:146PubMedPubMedCentralGoogle Scholar
  152. 152.
    Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P (2015) Long-term neuroglobin expression of human astrocytes following brain trauma. Neurosci Lett 606:194–199PubMedGoogle Scholar
  153. 153.
    Emara M, Salloum N, Allalunis-Turner J (2009) Expression and hypoxic up-regulation of neuroglobin in human glioblastoma cells. Mol Oncol 3(1):45–53PubMedGoogle Scholar
  154. 154.
    Xie LK, Yang SH (2016) Brain globins in physiology and pathology. Med Gas Res 6(3):154–163PubMedPubMedCentralGoogle Scholar
  155. 155.
    Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11(9):1087–1095PubMedGoogle Scholar
  156. 156.
    Amri F, Ghouili I, Amri M, Carrier A, Masmoudi-Kouki O (2017) Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. J Neurochem 140(1):151–169PubMedGoogle Scholar
  157. 157.
    Brittain T (2012) The anti-apoptotic role of neuroglobin. Cells 1(4):1133–1155PubMedPubMedCentralGoogle Scholar
  158. 158.
    Fago A, Mathews AJ, Brittain T (2008) A role for neuroglobin: resetting the trigger level for apoptosis in neuronal and retinal cells. IUBMB Life 60(6):398–401PubMedGoogle Scholar
  159. 159.
    Sugitani K, Koriyama Y, Sera M, Arai K, Ogai K, Wakasugi K (2017) A novel function of neuroglobin for neuroregeneration in mice after optic nerve injury. Biochem Biophys Res Commun 493(3):1254–1259PubMedGoogle Scholar
  160. 160.
    Haines B, Demaria M, Mao X, Xie L, Campisi J, Jin K, Greenberg DA (2012) Hypoxia-inducible factor-1 and neuroglobin expression. Neurosci Lett 514(2):137–140PubMedPubMedCentralGoogle Scholar
  161. 161.
    Liu N, Yu Z, Li Y, Yuan J, Zhang J, Xiang S, Wang X (2013) Transcriptional regulation of mouse neuroglobin gene by cyclic AMP responsive element binding protein (CREB) in N2a cells. Neurosci Lett 534:333–337PubMedGoogle Scholar
  162. 162.
    Liu N, Yu Z, Xiang S, Zhao S, Tjarnlund-Wolf A, Xing C, Zhang J, Wang X (2012) Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression. Biochem J 443(1):153–164PubMedGoogle Scholar
  163. 163.
    Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212(Pt 10):1423–1428PubMedGoogle Scholar
  164. 164.
    De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, Garcia-Segura LM (2013) 17beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J Neuroendocrinol 25(3):260–270PubMedGoogle Scholar
  165. 165.
    Kakar S, Hoffman FG, Storz JF, Fabian M, Hargrove MS (2010) Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 152(1–3):1–14PubMedPubMedCentralGoogle Scholar
  166. 166.
    Trent JT 3rd, Watts RA, Hargrove MS (2001) Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 276(32):30106–30110PubMedGoogle Scholar
  167. 167.
    Taylor JM, Kelley B, Gregory EJ, Berman NE (2014) Neuroglobin overexpression improves sensorimotor outcomes in a mouse model of traumatic brain injury. Neurosci Lett 577:125–129PubMedGoogle Scholar
  168. 168.
    Van Leuven W, Van Dam D, Moens L, De Deyn PP, Dewilde S (2013) A behavioural study of neuroglobin-overexpressing mice under normoxic and hypoxic conditions. Biochim Biophys Acta 1834(9):1764–1771PubMedGoogle Scholar
  169. 169.
    Yu Z, Poppe JL, Wang X (2013) Mitochondrial mechanisms of neuroglobin’s neuroprotection. Oxidative Med Cell Longev 2013:756989Google Scholar
  170. 170.
    Yu Z, Xu J, Liu N, Wang Y, Li X, Pallast S, van Leyen K, Wang X (2012) Mitochondrial distribution of neuroglobin and its response to oxygen-glucose deprivation in primary-cultured mouse cortical neurons. Neuroscience 218:235–242PubMedPubMedCentralGoogle Scholar
  171. 171.
    Ye SQ, Zhou XY, Lai XJ, Zheng L, Chen XQ (2009) Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3gamma. Acta Pharmacol Sin 30(7):913–918PubMedPubMedCentralGoogle Scholar
  172. 172.
    Antao ST, Duong TT, Aran R, Witting PK (2010) Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K (ATP) channel. Antioxid Redox Signal 13(6):769–781PubMedGoogle Scholar
  173. 173.
    Garofalo T, Ferri A, Sorice M, Azmoon P, Grasso M, Mattei V, Capozzi A, Manganelli V et al (2018) Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells. Mol Cell Neurosci 88:167–176PubMedGoogle Scholar
  174. 174.
    Jin K, Mao X, Xie L, Greenberg DA (2012) Interactions between vascular endothelial growth factor and neuroglobin. Neurosci Lett 519(1):47–50PubMedPubMedCentralGoogle Scholar
  175. 175.
    Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, Seki S, Kawada N et al (2004) Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Investig 84(1):91–101PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotá D.C.Colombia
  2. 2.Departamento de Ciencias BásicasUniversidad Santo TomásBucaramangaColombia
  3. 3.Facultad de Ciencias de la SaludUniversidad San SebastiánConcepciónChile
  4. 4.Research and DevelopmentBay Pines VA Healthcare SystemBay PinesUSA
  5. 5.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  7. 7.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  8. 8.School of PharmacyMashhad University of Medical SciencesMashhadIran
  9. 9.Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile

Personalised recommendations