Advertisement

Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity

  • Katiuscia Pagano
  • Denise Galante
  • Cristina D’Arrigo
  • Alessandro Corsaro
  • Mario Nizzari
  • Tullio Florio
  • Henriette Molinari
  • Simona Tomaselli
  • Laura Ragona
Article

Abstract

Soluble Aβ oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aβ receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aβ oligomers. The interactions of PrP with both Aβ42 and the highly toxic N-truncated pyroglutamylated species (AβpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aβ42 and AβpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aβ42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aβ42 sample. A distinct behavior is observed for Aβ42 1-30 region and C-terminal residues, suggesting that PrP protects Aβ42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aβ42 N-tail is the locus of interaction with PrP. PrP/AβpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aβ oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aβ oligomers bears relevance for studies of druggable pathways.

Keywords

Alzheimer disease Cellular prion protein Amyloid beta peptides Nuclear magnetic resonance Interaction studies Cell internalization 

Abbreviations

AD

Alzheimer disease

PrP

Cellular prion protein

HM

High monomer content

LM

Low monomer content

NMR

Nuclear magnetic resonance

ThT

Thioflavin

TEM

Trasmission electron microscopy

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolimu bromide

DMSO

Dimethyl sulfoxide

Notes

Funding Information

This work was supported by the Alzheimer Association (NIRG-14-321500 Grant) and CARIPLO Foundation (2015-0503). LR, KP, ST acknowledge financial support of University of Verona (Bando JOINT Projects 2017, Prof. Michael Assfalg - Dr. Laura Ragona). KP, HM and LR acknowledge Fondazione Antonio De Marco for financial support.

Supplementary material

12035_2018_1202_MOESM1_ESM.docx (669 kb)
ESM 1 (DOCX 668 kb)

References

  1. 1.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608.  https://doi.org/10.15252/emmm.201606210 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ono K (2017) Alzheimer’s disease as oligomeropathy. Neurochem Int.  https://doi.org/10.1016/j.neuint.2017.08.010
  3. 3.
    Forloni G, Artuso V, La Vitola P, Balducci C (2016) Oligomeropathies and pathogenesis of Alzheimer and Parkinson’s diseases. Mov Disord 31(6):771–781.  https://doi.org/10.1002/mds.26624 CrossRefPubMedGoogle Scholar
  4. 4.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367(9):795–804.  https://doi.org/10.1056/NEJMoa1202753 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cynis H, Frost JL, Crehan H, Lemere CA (2016) Immunotherapy targeting pyroglutamate-3 Abeta: prospects and challenges. Mol Neurodegener 11(1):48.  https://doi.org/10.1186/s13024-016-0115-2 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B et al (2012) Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta. Nature 485(7400):651–655.  https://doi.org/10.1038/nature11060 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tomaselli S, Pagano K, D'Arrigo C, Molinari H, Ragona L (2017) Evidence of molecular interactions of Abeta1-42 with N-terminal truncated beta amyloids by NMR. ACS Chem Neurosci 8(4):759–765.  https://doi.org/10.1021/acschemneuro.6b00456 CrossRefPubMedGoogle Scholar
  8. 8.
    Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276(2):422–427.  https://doi.org/10.1006/bbrc.2000.3490 CrossRefPubMedGoogle Scholar
  9. 9.
    Piechotta A, Parthier C, Kleinschmidt M, Gnoth K, Pillot T, Lues I, Demuth HU, Schilling S et al (2017) Structural and functional analyses of pyroglutamate-amyloid-beta-specific antibodies as a basis for Alzheimer immunotherapy. J Biol Chem 292(30):12713–12724.  https://doi.org/10.1074/jbc.M117.777839 CrossRefPubMedGoogle Scholar
  10. 10.
    Dammers C, Schwarten M, Buell AK, Willbold D (2017) Pyroglutamate-modified Aβ(3-42) affects aggregation kinetics of Aβ(1-42) by accelerating primary and secondary pathways. Chem Sci 8:8–5004.  https://doi.org/10.1039/c6sc04797a CrossRefGoogle Scholar
  11. 11.
    Smith LM, Strittmatter SM (2017) Binding sites for amyloid-beta oligomers and synaptic toxicity. Cold Spring Harb Perspect Med 7(5).  https://doi.org/10.1101/cshperspect.a024075
  12. 12.
    Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240CrossRefPubMedGoogle Scholar
  13. 13.
    Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L et al (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A 107(5):2295–2300.  https://doi.org/10.1073/pnas.0911829107 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesne SE (2012) The complex PrP(c)-Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer’s disease. J Neurosci 32(47):16857–16871a.  https://doi.org/10.1523/JNEUROSCI.1858-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Salazar SV, Strittmatter SM (2017) Cellular prion protein as a receptor for amyloid-beta oligomers in Alzheimer’s disease. Biochem Biophys Res Commun 483(4):1143–1147.  https://doi.org/10.1016/j.bbrc.2016.09.062 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou J, Liu B (2013) Alzheimer’s disease and prion protein. Intractable Rare Dis Res 2(2):35–44.  https://doi.org/10.5582/irdr.2013.v2.2.35 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Beraldo FH, Ostapchenko VG, Caetano FA, Guimaraes AL, Ferretti GD, Daude N, Bertram L, Nogueira KO et al (2016) Regulation of amyloid beta oligomer binding to neurons and neurotoxicity by the prion protein-mGluR5 complex. J Biol Chem 291(42):21945–21955.  https://doi.org/10.1074/jbc.M116.738286 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Linden R (2017) The biological function of the prion protein: a cell surface scaffold of signaling modules. Front Mol Neurosci 10:77.  https://doi.org/10.3389/fnmol.2017.00077 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132.  https://doi.org/10.1038/nature07761 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nieznanski K, Choi JK, Chen S, Surewicz K, Surewicz WK (2012) Soluble prion protein inhibits amyloid-beta (Abeta) fibrillization and toxicity. J Biol Chem 287(40):33104–33108.  https://doi.org/10.1074/jbc.C112.400614 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Scott-McKean JJ, Surewicz K, Choi JK, Ruffin VA, Salameh AI, Nieznanski K, Costa AC, Surewicz WK (2016) Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Abeta oligomers: implications for novel therapeutic strategy in Alzheimer’s disease. Neurobiol Dis 91:124–131.  https://doi.org/10.1016/j.nbd.2016.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M et al (2015) Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain 138(Pt 4):1009–1022.  https://doi.org/10.1093/brain/awv006 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xue C, Lin TY, Chang D, Guo Z (2017) Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci 4(1):160696.  https://doi.org/10.1098/rsos.160696 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu G, Gaines JC, Robbins KJ, Lazo ND (2012) Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance. ACS Med Chem Lett 3(10):856–859.  https://doi.org/10.1021/ml300147m CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A et al (2012) Differential toxicity, conformation and morphology of typical initial aggregation states of Abeta1-42 and Abetapy3-42 beta-amyloids. Int J Biochem Cell Biol 44(11):2085–2093.  https://doi.org/10.1016/j.biocel.2012.08.010 CrossRefPubMedGoogle Scholar
  26. 26.
    Hung LW, Ciccotosto GD, Giannakis E, Tew DJ, Perez K, Masters CL, Cappai R, Wade JD et al (2008) Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J Neurosci 28(46):11950–11958.  https://doi.org/10.1523/JNEUROSCI.3916-08.2008 CrossRefPubMedGoogle Scholar
  27. 27.
    Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40(20):6036–6046CrossRefPubMedGoogle Scholar
  28. 28.
    Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J (2011) A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel 24(9):743–750.  https://doi.org/10.1093/protein/gzr020 CrossRefPubMedGoogle Scholar
  29. 29.
    Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F et al (2012) Structural basis for increased toxicity of pathological abeta42: abeta40 ratios in Alzheimer disease. J Biol Chem 287(8):5650–5660.  https://doi.org/10.1074/jbc.M111.264473 CrossRefPubMedGoogle Scholar
  30. 30.
    Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 Hsqc experiments optimized to retain full sensitivity. J Magn Reson Ser A 102(2):241–245.  https://doi.org/10.1006/jmra.1993.1098 CrossRefGoogle Scholar
  31. 31.
    Mori S, Abeygunawardana C, Johnson MO, Vanzijl PCM (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson Ser B 108(1):94–98.  https://doi.org/10.1006/jmrb.1995.1109 CrossRefGoogle Scholar
  32. 32.
    Ikura M, Bax A (1992) Isotope-filtered 2d NMR of a protein peptide complex: study of a skeletal-muscle myosin light chain kinase fragment bound to calmodulin. J Am Chem Soc 114(7):2433–2440.  https://doi.org/10.1021/ja00033a019 CrossRefGoogle Scholar
  33. 33.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefPubMedGoogle Scholar
  34. 34.
    Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352.  https://doi.org/10.1385/1-59259-809-9:313 PubMedGoogle Scholar
  35. 35.
    Gentile MT, Nawa Y, Lunardi G, Florio T, Matsui H, Colucci-D'Amato L (2012) Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity. J Neurochem 123(6):963–970.  https://doi.org/10.1111/jnc.12004 CrossRefPubMedGoogle Scholar
  36. 36.
    Corsaro A, Bajetto A, Thellung S, Begani G, Villa V, Nizzari M, Pattarozzi A, Solari A et al (2016) Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 7(25):38638–38657.  https://doi.org/10.18632/oncotarget.9575 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M et al (2016) Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol Res 113(Pt A):500–514.  https://doi.org/10.1016/j.phrs.2016.09.010 CrossRefPubMedGoogle Scholar
  38. 38.
    Thellung S, Gatta E, Pellistri F, Villa V, Corsaro A, Nizzari M, Robello M, Florio T (2017) Different molecular mechanisms mediate direct or glia-dependent prion protein fragment 90-231 neurotoxic effects in cerebellar granule neurons. Neurotox Res 32:381–397.  https://doi.org/10.1007/s12640-017-9749-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Villa V, Thellung S, Corsaro A, Novelli F, Tasso B, Colucci-D'Amato L, Gatta E, Tonelli M et al (2016) Celecoxib inhibits prion protein 90-231-mediated pro-inflammatory responses in microglial cells. Mol Neurobiol 53(1):57–72.  https://doi.org/10.1007/s12035-014-8982-4 CrossRefPubMedGoogle Scholar
  40. 40.
    Lauren J (2014) Cellular prion protein as a therapeutic target in Alzheimer’s disease. J Alzheimers Dis 38(2):227–244.  https://doi.org/10.3233/JAD-130950 CrossRefPubMedGoogle Scholar
  41. 41.
    Corsaro A, Thellung S, Villa V, Nizzari M, Florio T (2012) Role of prion protein aggregation in neurotoxicity. Int J Mol Sci 13(7):8648–8669.  https://doi.org/10.3390/ijms13078648 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zou WQ, Capellari S, Parchi P, Sy MS, Gambetti P, Chen SG (2003) Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. J Biol Chem 278(42):40429–40436.  https://doi.org/10.1074/jbc.M308550200 CrossRefPubMedGoogle Scholar
  43. 43.
    Dammers C, Gremer L, Neudecker P, Demuth HU, Schwarten M, Willbold D (2015) Purification and characterization of recombinant N-terminally pyroglutamate-modified amyloid-beta variants and structural analysis by solution NMR spectroscopy. PLoS One 10(10):e0139710.  https://doi.org/10.1371/journal.pone.0139710 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wulff M, Baumann M, Thummler A, Yadav JK, Heinrich L, Knupfer U, Schlenzig D, Schierhorn A et al (2016) Enhanced fibril fragmentation of N-terminally truncated and pyroglutamyl-modified Abeta peptides. Angew Chem Int Ed Engl 55(16):5081–5084.  https://doi.org/10.1002/anie.201511099 CrossRefPubMedGoogle Scholar
  45. 45.
    Scheidt HA, Adler J, Krueger M, Huster D (2016) Fibrils of truncated pyroglutamyl-modified Abeta peptide exhibit a similar structure as wildtype mature Abeta fibrils. Sci Rep 6:33531.  https://doi.org/10.1038/srep33531 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Schilling S, Lauber T, Schaupp M, Manhart S, Scheel E, Bohm G, Demuth HU (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45(41):12393–12399.  https://doi.org/10.1021/bi0612667 CrossRefPubMedGoogle Scholar
  47. 47.
    Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH (2013) The cellular prion protein traps Alzheimer’s Abeta in an oligomeric form and disassembles amyloid fibers. FASEB J 27(5):1847–1858.  https://doi.org/10.1096/fj.12-222588 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bove-Fenderson E, Urano R, Straub JE, Harris DA (2017) Cellular prion protein targets amyloid-beta fibril ends via its C-terminal domain to prevent elongation. J Biol Chem 292:16858–16871.  https://doi.org/10.1074/jbc.M117.789990 CrossRefPubMedGoogle Scholar
  49. 49.
    Suvorina MY, Selivanova OM, Grigorashvili EI, Nikulin AD, Marchenkov VV, Surin AK, Galzitskaya OV (2015) Studies of polymorphism of amyloid-beta42 peptide from different suppliers. J Alzheimers Dis 47(3):583–593.  https://doi.org/10.3233/JAD-150147 CrossRefPubMedGoogle Scholar
  50. 50.
    Editorial NN (2011) State of aggregation. Nat Neurosci 14(4):399.  https://doi.org/10.1038/nn0411-399 CrossRefGoogle Scholar
  51. 51.
    Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480(7376):268–272.  https://doi.org/10.1038/nature10577 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Algamal M, Ahmed R, Jafari N, Ahsan B, Ortega J, Melacini G (2017) Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid beta (Abeta) peptides in the monomer and protofibril states. J Biol Chem 292(42):17158–17168.  https://doi.org/10.1074/jbc.M117.792853 CrossRefPubMedGoogle Scholar
  53. 53.
    Cremades N, Dobson CM (2018) The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiol Dis 109(Pt B):178–190.  https://doi.org/10.1016/j.nbd.2017.07.009 CrossRefPubMedGoogle Scholar
  54. 54.
    Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M et al (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110(24):9758–9763.  https://doi.org/10.1073/pnas.1218402110 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ganzinger KA, Narayan P, Qamar SS, Weimann L, Ranasinghe RT, Aguzzi A, Dobson CM, McColl J et al (2014) Single-molecule imaging reveals that small amyloid-beta1-42 oligomers interact with the cellular prion protein (PrP(C)). Chembiochem 15(17):2515–2521.  https://doi.org/10.1002/cbic.201402377 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tomaselli S, Esposito V, Vangone P, van Nuland NA, Bonvin AM, Guerrini R, Tancredi T, Temussi PA et al (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem 7(2):257–267.  https://doi.org/10.1002/cbic.200500223 CrossRefPubMedGoogle Scholar
  57. 57.
    Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fandrich M, Grigorieff N (2015) Peptide dimer structure in an Abeta (1-42) fibril visualized with cryo-EM. Proc Natl Acad Sci U S A 112(38):11858–11863.  https://doi.org/10.1073/pnas.1503455112 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B et al (2016) Atomic resolution structure of monomorphic Abeta42 amyloid fibrils. J Am Chem Soc 138(30):9663–9674.  https://doi.org/10.1021/jacs.6b05129 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Galante D, Ruggeri FS, Dietler G, Pellistri F, Gatta E, Corsaro A, Florio T, Perico A et al (2016) A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int J Biochem Cell Biol 79:261–270.  https://doi.org/10.1016/j.biocel.2016.08.037 CrossRefPubMedGoogle Scholar
  60. 60.
    Corsaro A, Paludi D, Villa V, D'Arrigo C, Chiovitti K, Thellung S, Russo C, Di Cola D et al (2006) Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90-231. Int J Immunopathol Pharmacol 19(2):339–356.  https://doi.org/10.1177/039463200601900211 CrossRefPubMedGoogle Scholar
  61. 61.
    Chiovitti K, Corsaro A, Thellung S, Villa V, Paludi D, D'Arrigo C, Russo C, Perico A et al (2007) Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects. J Neurochem 103(6):2597–2609.  https://doi.org/10.1111/j.1471-4159.2007.04965.x PubMedGoogle Scholar
  62. 62.
    Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, La Vitola P, Messa M et al (2013) An N-terminal fragment of the prion protein binds to amyloid-beta oligomers and inhibits their neurotoxicity in vivo. J Biol Chem 288(11):7857–7866.  https://doi.org/10.1074/jbc.M112.423954 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Goldblatt G, Cilenti L, Matos JO, Lee B, Ciaffone N, Wang QX, Tetard L, Teter K et al (2017) Unmodified and pyroglutamylated amyloid beta peptides form hypertoxic hetero-oligomers of unique secondary structure. FEBS J 284(9):1355–1369.  https://doi.org/10.1111/febs.14058 CrossRefPubMedGoogle Scholar
  64. 64.
    Audano M, Schneider A, Mitro N (2018) Mitochondria, lysosomes and dysfunction: their meaning in neurodegeneration. J Neurochem.  https://doi.org/10.1111/jnc.14471
  65. 65.
    Thellung S, Corsaro A, Villa V, Simi A, Vella S, Pagano A, Florio T (2011) Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis 2:e138.  https://doi.org/10.1038/cddis.2011.21 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Thellung S, Scoti B, Corsaro A, Villa V, Nizzari M, Gagliani MC, Porcile C, Russo C et al (2018) Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death Dis 9(2):166.  https://doi.org/10.1038/s41419-017-0252-8 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC et al (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15(9):1227–1235.  https://doi.org/10.1038/nn.3178 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A et al (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79(5):887–902.  https://doi.org/10.1016/j.neuron.2013.06.036 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ahmed R, Melacini G (2018) A solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors. Chem Commun (Camb) 54(37):4644–4652.  https://doi.org/10.1039/c8cc01380b CrossRefGoogle Scholar
  70. 70.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE et al (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567.  https://doi.org/10.1038/nsmb.1799 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Milojevic J, Esposito V, Das R, Melacini G (2007) Understanding the molecular basis for the inhibition of the Alzheimer’s Abeta-peptide oligomerization by human serum albumin using saturation transfer difference and off-resonance relaxation NMR spectroscopy. J Am Chem Soc 129(14):4282–4290.  https://doi.org/10.1021/ja067367+ CrossRefPubMedGoogle Scholar
  72. 72.
    Garai K, Frieden C (2013) Quantitative analysis of the time course of Abeta oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Abeta. Proc Natl Acad Sci U S A 110(9):3321–3326.  https://doi.org/10.1073/pnas.1222478110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto per lo Studio delle Macromolecole (ISMAC)CNRMilanItaly
  2. 2.ISMACCNRGenoaItaly
  3. 3.Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR)University of GenoaGenoaItaly

Personalised recommendations