Advertisement

Targeting the Brain with a Neuroprotective Omega-3 Fatty Acid to Enhance Neurogenesis in Hypoxic Condition in Culture

  • Amanda Lo Van
  • Nobuyuki Sakayori
  • Mayssa Hachem
  • Mounir Belkouch
  • Madeleine Picq
  • Baptiste Fourmaux
  • Michel Lagarde
  • Noriko Osumi
  • Nathalie Bernoud-Hubac
Article

Abstract

Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases. We previously synthesized a stabilized form of DHA-containing lysophosphatidylcholine a major vector of DHA transportation to the brain, which is 1-acetyl,2-docoshexaenoyl-glycerophosphocholine, named AceDoPC®. Injection of AceDoPC® or DHA after experimental ischemic stroke showed that both molecules had neuroprotective effects but AceDoPC® was the most potent. This study aims to investigate the beneficial effects of DHA either unesterified or esterified within AceDoPC® on a model of neurogenesis in vitro, under physiological or pathological conditions. The effect of protectin DX (PDX, a double lipoxygenase product of DHA) was also tested. We cultured neural stem progenitor cells (NSPCs) derived from the adult mouse brain under normal or hypoxigenic (ischemic) conditions in vitro. Neurogenesis study of cell cultures with AceDoPC® showed enhanced neurogenesis compared to addition of unesterified DHA, PDX, or vehicle control, especially under pathological conditions. Our studies of the potential mechanisms involved in neuroprotection hinted that AceDoPC® neuroprotective and regenerative effects might be due in part to its anti-oxidative effects. These results indicate the potential for novel therapeutics against stroke that target the brain.

Keywords

Docosahexaenoic acid 1-acetyl,2-docoshexaenoyl-glycerophosphocholine Protectin Neuroprotection Neurogenesis Stroke Brain 

Notes

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science and Core-to-Core Program, LISA Carnot institute, National Institute of Applied Sciences-Lyon and the French Ministry of Education and Research. We thank the Functional Lipidomics Platform for lipid analyses.

Supplementary material

12035_2018_1139_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1233 kb)

References

  1. 1.
    Thies F, Garry JMC, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, et al. (2003) Mechanisms of disease association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–485 . doi:  https://doi.org/10.1016/S0140-6736(03)12468-3
  2. 2.
    Colussi G, Catena C, Dialti V, Mos L, Sechi AL (2014) Effects of the consumption of fish meals on the carotid intimamedia thickness in patients with hypertension: a prospective study. J Atheroscler Thromb 941–956 . doi: DN/JST.JSTAGE/jat/22921 [pii] Google Scholar
  3. 3.
    Hashimoto M, Shahdat HM, Katakura M, Tanabe Y, Gamoh S, Miwa K, Shimada T, Shido O (2009) Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25-35 fibrillation. Biochim Biophys Acta 1791:289–296.  https://doi.org/10.1016/j.bbalip.2009.01.012 CrossRefPubMedGoogle Scholar
  4. 4.
    Chauveau F, Cho T-H, Perez M, Guichardant M, Riou A, Aguettaz P, Picq M, Lagarde M, et al. (2011) Brain-targeting form of docosahexaenoic acid for experimental stroke treatment: MRI evaluation and anti-oxidant impact. Curr Neurovasc Res 8:95–102 . doi:  https://doi.org/10.2174/156720211795495349
  5. 5.
    Young G, Conquer J (2005) Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 45:1–28CrossRefPubMedGoogle Scholar
  6. 6.
    Peet M, Stokes C (2005) Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65:1051–1059CrossRefPubMedGoogle Scholar
  7. 7.
    Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A (2007) Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 86:1486–1494CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Belayev L, Marcheselli VL, Khoutorova L, Rodriguez de Turco EB, Busto R, Ginsberg MD, Bazan NG (2005) Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:118–123.  https://doi.org/10.1161/01.STR.0000149620.74770.2e CrossRefPubMedGoogle Scholar
  9. 9.
    Belayev L, Khoutorova L, Atkins KD, Bazan NG (2009) Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 40:3121–3126.  https://doi.org/10.1161/STROKEAHA.109.555979 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hong S-H, Belayev L, Khoutorova L, Obenaus A, Bazan NG (2014) Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci 338:135–141.  https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations CrossRefPubMedGoogle Scholar
  11. 11.
    Calon F, Cole G (2007) Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 77:287–293.  https://doi.org/10.1016/j.plefa.2007.10.019 CrossRefPubMedGoogle Scholar
  12. 12.
    Brenna JT, Salem N, Sinclair AJ, Cunnane SC (2009) Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fat Acids 80:85–91.  https://doi.org/10.1016/j.plefa.2009.01.004 CrossRefGoogle Scholar
  13. 13.
    Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J (1994) Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Phys 267:R1273–R1279Google Scholar
  14. 14.
    Bernoud N, Fenart L, Molière P, Dehouck MP, Lagarde M, Cecchelli R, Lecerf J (1999) Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J Neurochem 72:338–345.  https://doi.org/10.1046/j.1471-4159.1999.0720338.x CrossRefPubMedGoogle Scholar
  15. 15.
    Lagarde M, Bernoud N, Thies F, Brossard N, Lemaitre-Delaunay D, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a carrier of docosahexaenoic acid to target tissues. J Mol Neurosci 88:173–177Google Scholar
  16. 16.
    Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh ELK, et al. (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506 . doi:  https://doi.org/10.1038/nature13241
  17. 17.
    Quek DQY, Nguyen LN, Fan H, Silver DL (2016) Structural insights into the transport mechanism of the human sodium-dependent Lysophosphatidylcholine transporter MFSD2A. J Biol Chem 291:9383–9394.  https://doi.org/10.1074/jbc.M116.721035 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV (2017) Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-11766-0 CrossRefGoogle Scholar
  19. 19.
    Hachem M, Géloën A, Lo Van A, Fourmaux B, Fenart L, Gosselet F, Da Silva P, Breton G, et al. (2016) Efficient docosahexaenoic acid uptake by the brain from a structured phospholipid. Mol Neurobiol 53:3205–3215. doi:  https://doi.org/10.1007/s12035-015-9228-9
  20. 20.
    Lagarde M, Hachem M, Bernoud-Hubac N, Picq M, Véricel E, Guichardant M (2015) Biological properties of a DHA-containing structured phospholipid (AceDoPC) to target the brain. Prostaglandins Leukot Essent Fat Acids 92:63–65.  https://doi.org/10.1016/j.plefa.2014.01.005 CrossRefGoogle Scholar
  21. 21.
    Goldberg M, Choi W (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, Hu X, Sun B, et al. (2014) Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 34:1903–1915 . doi:  https://doi.org/10.1523/JNEUROSCI.4043-13.2014
  23. 23.
    Lo Van A, Sakayori N, Hachem M, Belkouch M, Picq M, Lagarde M, Osumi N, Bernoud-Hubac N (2016) Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie 130:163–167.  https://doi.org/10.1016/j.biochi.2016.07.011 CrossRefPubMedGoogle Scholar
  24. 24.
    Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801:1260–1273.  https://doi.org/10.1016/j.bbalip.2010.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Spite M, Clària J, Serhan CN (2014) Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab 19:21–36.  https://doi.org/10.1016/j.cmet.2013.10.006 CrossRefPubMedGoogle Scholar
  26. 26.
    Chen P, Fenet B, Michaud S, Tomczyk N, Véricel E, Lagarde M, Guichardant M (2009) Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett 583:3478–3484.  https://doi.org/10.1016/j.febslet.2009.10.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Bazan NG, Marcheselli VL, Cole-Edwards K (2005) Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann N Y Acad Sci 1053:137–147.  https://doi.org/10.1196/annals.1344.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, et al. (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176:1848–1859Google Scholar
  29. 29.
    Levy BD (2010) Resolvins and protectins: natural pharmacophores for resolution biology. Prostaglandins Leukot Essent Fatty Acids 82:327–332.  https://doi.org/10.1016/j.plefa.2010.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen P, Véricel E, Lagarde M, Guichardant M (2011) Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J 25:382–388.  https://doi.org/10.1096/fj.10-161836 CrossRefPubMedGoogle Scholar
  31. 31.
    Liu M, Boussetta T, Makni-Maalej K, Fay M, Driss F, El-Benna J, Lagarde M, Guichardant M (2014) Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. Lipids 49:49–57.  https://doi.org/10.1007/s11745-013-3863-6 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu M, Wang X, Hjorth E, Colas RA, Schroeder L, Granholm A-C, Serhan CN, Schultzberg M (2016) Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol Neurobiol 53:2733–2749.  https://doi.org/10.1159/000381474.A CrossRefPubMedGoogle Scholar
  33. 33.
    Jung TW, Kim HC, Abd El-Aty AM, Jeong JH (2017) Protectin DX ameliorates palmitate-or high-fat diet-induced insulin resistance and inflammation through an AMPK-PPARα-dependent pathway in mice. Sci Rep 7:1–9.  https://doi.org/10.1038/s41598-017-01603-9 CrossRefGoogle Scholar
  34. 34.
    Holte LL, Separovic F, Gawrisch K (1996) Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids 31:S199–S203CrossRefPubMedGoogle Scholar
  35. 35.
    Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137CrossRefPubMedGoogle Scholar
  36. 36.
    Hashimoto M, Hossain S, Shido O (2006) Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol Cell Biochem 293:1–8CrossRefPubMedGoogle Scholar
  37. 37.
    Yehuda S, Rabinovitz S, Mostofsky DI (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 56:565–570CrossRefPubMedGoogle Scholar
  38. 38.
    Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372CrossRefPubMedGoogle Scholar
  39. 39.
    Sakayori N, Maekawa M, Numayama-Tsuruta K, Katura T, Moriya T, Osumi N (2011) Distinctive effects of arachidonic acid and docosahexaenoic acid on neural stem/progenitor cells. Genes Cells 16:778–790.  https://doi.org/10.1111/j.1365-2443.2011.01527.x CrossRefPubMedGoogle Scholar
  40. 40.
    Ming G, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702.  https://doi.org/10.1016/j.neuron.2011.05.001.Adult CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD (2006) Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc B Biol Sci 361:1477–1497.  https://doi.org/10.1098/rstb.2006.1887 CrossRefGoogle Scholar
  42. 42.
    Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139:991–997.  https://doi.org/10.1016/j.neuroscience.2006.01.021 CrossRefPubMedGoogle Scholar
  43. 43.
    He C, Qu X, Cui L, Wang J, Kang JX (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A 106:11370–11375.  https://doi.org/10.1073/pnas.0904835106 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Reynolds BA, Weiss S (1992) Nervous system generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefPubMedGoogle Scholar
  45. 45.
    Sakayori N, Kikkawa T, Tokuda H, Kiryu E, Yoshizaki K, Kawashima H, Yamada T, Arai H et al. (2016) Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells 34:470–482 . doi:  https://doi.org/10.1002/stem.2246
  46. 46.
    Katakura M, Hashimoto M, Shahdat HM, Gamoh S, Okui T, Matsuzaki K, Shido O (2009) Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience 160:651–660.  https://doi.org/10.1016/j.neuroscience.2009.02.057 CrossRefPubMedGoogle Scholar
  47. 47.
    Song JH, Fujimoto K, Miyazawa T (2000) Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils. J Nutr 130:3028–3033CrossRefPubMedGoogle Scholar
  48. 48.
    Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496.  https://doi.org/10.1073/pnas.0402531101 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H (2008) Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. J Nutr Sci Vitaminol (Tokyo) 54:501–506.  https://doi.org/10.3177/jnsv.54.501 CrossRefGoogle Scholar
  50. 50.
    Song JH, Miyazawa T (2001) Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil. Atherosclerosis 155:9–18.  https://doi.org/10.1016/S0021-9150(00)00523-2 CrossRefPubMedGoogle Scholar
  51. 51.
    Lukiw WJ, Cui J-G, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783.  https://doi.org/10.1172/JCI25420 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, et al. (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817 . doi:  https://doi.org/10.1074/jbc.M305841200
  53. 53.
    Begum G, Kintner D, Liu Y, Cramer SW, Sun D (2012) DHA inhibits ER ca 2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem 120:622–630.  https://doi.org/10.1111/j.1471-4159.2011.07606.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Katakura M, Hashimoto M, Okui T (2013) Omega-3 polyunsaturated fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int 2013:1–9.  https://doi.org/10.1155/2013/490476 CrossRefGoogle Scholar
  55. 55.
    Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation. Neuron 28:69–80.  https://doi.org/10.1016/S0896-6273(00)00086-6 CrossRefPubMedGoogle Scholar
  56. 56.
    Okada Y, Matsumoto A, Shimazaki T, Enoki R, Koizumi A, Ishii S, Itoyama Y, Sobue G, et al. (2008) Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem Cells 26:3086–3098 . doi:  https://doi.org/10.1634/stemcells.2008-0293
  57. 57.
    Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:129–138.  https://doi.org/10.1016/S0022-3476(05)81247-8 CrossRefGoogle Scholar
  58. 58.
    Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW (1980) Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev 4:121–129.  https://doi.org/10.1016/0378-3782(80)90015-8 CrossRefPubMedGoogle Scholar
  59. 59.
    Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94.  https://doi.org/10.1016/S0163-7827(00)00017-5 CrossRefPubMedGoogle Scholar
  60. 60.
    Hattiangady B, Shuai B, Cai J, Coksaygan T, Rao MS, Shetty AK (2007) Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus. Stem Cells 25:2104–2117.  https://doi.org/10.1634/stemcells.2006-0726 CrossRefPubMedGoogle Scholar
  61. 61.
    Ma DK, Ming GL, Song H (2005) Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol 15:514–520.  https://doi.org/10.1016/j.conb.2005.08.003 CrossRefPubMedGoogle Scholar
  62. 62.
    Sairanen T, Ristimaki A, Paetau A, Kaste M, Lindsberg PJ, Karjalainen-lindsberg M (1998) Cyclooxygenase-2 is induced globally in infarcted human Brian. Ann Neurol 738–747Google Scholar
  63. 63.
    Tomimoto H, Shibata M, Ihara M, Akiguchi I, Ohtani R, Budka H (2002) A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol 104:601–607.  https://doi.org/10.1007/s00401-002-0590-0 PubMedCrossRefGoogle Scholar
  64. 64.
    Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T (1995) Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain. Am J Physiol Heart Circ Physiol 268:H1249–H1257CrossRefGoogle Scholar
  65. 65.
    Ciceri P, Rabuffetti M, Monopoli A, Nicosia S (2001) Production of leukotrienes in a model of focal cerebral ischaemia in the rat. Br J Pharmacol 133:1323–1329.  https://doi.org/10.1038/sj.bjp.0704189 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Usui M, Asano T, Takakura K, Model O, Instruments M, Ka-Y (1987) Identification and quantitative analysis of hydroxy-eicosatetraenoic acids in rat brains exposed to regional ischemia. Stroke 18:490–494Google Scholar
  67. 67.
    Sun L, Xu Y-W, Han J, Liang H, Wang N, Cheng Y (2015) 12/15-lipoxygenase metabolites of arachidonic acid activate PPARγ: A possible neuroprotective effect in ischemic brain. J Lipid Res 56:502–514.  https://doi.org/10.1194/jlr.M053058 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yagami T, Koma H, Yamamoto Y (2016) Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol 53:4754–4771.  https://doi.org/10.1007/s12035-015-9355-3 CrossRefPubMedGoogle Scholar
  69. 69.
    Lin H-J, Chen S-T, Wu H-Y, Hsu H-C, Chen M-F, Lee Y-T, Wu K-Y, Chien K-L (2015) Urinary biomarkers of oxidative and nitrosative stress and the risk for incident stroke: a nested case-control study from a community-based cohort. Int J Cardiol 183:214–220.  https://doi.org/10.1016/j.ijcard.2015.01.043 CrossRefPubMedGoogle Scholar
  70. 70.
    Tyurin VA, Tyurina YY, Borisenko GG, Sokolova T V, Ritov VB, Quinn PJ, Rose M, Kochanek P, et al. (2000) Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J Neurochem 75:2178–2189 . doi:  https://doi.org/10.1046/j.1471-4159.2000.0752178.x
  71. 71.
    Brault S, Martinez-Bermudez AK, Marrache AM, Gobeil F, Hou X, Beauchamp M, Quiniou C, Almazan G, et al. (2003) Selective neuromicrovascular endothelial cell death by 8-iso-prostaglandin f2: possible role in ischemic brain injury. Stroke 34:776–782 . doi:  https://doi.org/10.1161/01.STR.0000055763.76479.E6
  72. 72.
    Yokose J, Ishizuka T, Yoshida T, Aoki J, Koyanagi Y, Yawo H (2011) Lineage analysis of newly generated neurons in organotypic culture of rat hippocampus. Neurosci Res 69:223–233.  https://doi.org/10.1016/j.neures.2010.11.010 CrossRefPubMedGoogle Scholar
  73. 73.
    Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563–572.  https://doi.org/10.1002/cne.10675 CrossRefPubMedGoogle Scholar
  74. 74.
    Sasaki T, Kitagawa K, Yagita Y, Sugiura S, Omura-Matsuoka E, Tanaka S, Matsushita K, Okano H, et al. (2006) Bcl2 enhances survival of newborn neurons in the normal and ischemic hippocampus. J Neurosci Res 84:1187–1196 . doi:  https://doi.org/10.1002/jnr.21036
  75. 75.
    Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, Chuang YH, Liao SL, et al. (2009) Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem 20:715–725 . doi:  https://doi.org/10.1016/j.jnutbio.2008.06.014

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amanda Lo Van
    • 1
    • 2
  • Nobuyuki Sakayori
    • 2
  • Mayssa Hachem
    • 1
  • Mounir Belkouch
    • 1
  • Madeleine Picq
    • 1
  • Baptiste Fourmaux
    • 1
  • Michel Lagarde
    • 1
  • Noriko Osumi
    • 2
  • Nathalie Bernoud-Hubac
    • 1
  1. 1.Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397Université Claude Bernard Lyon 1VilleurbanneFrance
  2. 2.Center for Neuroscience, ART, Department of Developmental Neuroscience, Graduate School of MedicineTohoku UniversitySendaiJapan

Personalised recommendations