Skip to main content

Advertisement

Log in

Targeting the Brain with a Neuroprotective Omega-3 Fatty Acid to Enhance Neurogenesis in Hypoxic Condition in Culture

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases. We previously synthesized a stabilized form of DHA-containing lysophosphatidylcholine a major vector of DHA transportation to the brain, which is 1-acetyl,2-docoshexaenoyl-glycerophosphocholine, named AceDoPC®. Injection of AceDoPC® or DHA after experimental ischemic stroke showed that both molecules had neuroprotective effects but AceDoPC® was the most potent. This study aims to investigate the beneficial effects of DHA either unesterified or esterified within AceDoPC® on a model of neurogenesis in vitro, under physiological or pathological conditions. The effect of protectin DX (PDX, a double lipoxygenase product of DHA) was also tested. We cultured neural stem progenitor cells (NSPCs) derived from the adult mouse brain under normal or hypoxigenic (ischemic) conditions in vitro. Neurogenesis study of cell cultures with AceDoPC® showed enhanced neurogenesis compared to addition of unesterified DHA, PDX, or vehicle control, especially under pathological conditions. Our studies of the potential mechanisms involved in neuroprotection hinted that AceDoPC® neuroprotective and regenerative effects might be due in part to its anti-oxidative effects. These results indicate the potential for novel therapeutics against stroke that target the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thies F, Garry JMC, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, et al. (2003) Mechanisms of disease association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–485 . doi: https://doi.org/10.1016/S0140-6736(03)12468-3

    Article  CAS  Google Scholar 

  2. Colussi G, Catena C, Dialti V, Mos L, Sechi AL (2014) Effects of the consumption of fish meals on the carotid intimamedia thickness in patients with hypertension: a prospective study. J Atheroscler Thromb 941–956 . doi: DN/JST.JSTAGE/jat/22921 [pii]

  3. Hashimoto M, Shahdat HM, Katakura M, Tanabe Y, Gamoh S, Miwa K, Shimada T, Shido O (2009) Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25-35 fibrillation. Biochim Biophys Acta 1791:289–296. https://doi.org/10.1016/j.bbalip.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  4. Chauveau F, Cho T-H, Perez M, Guichardant M, Riou A, Aguettaz P, Picq M, Lagarde M, et al. (2011) Brain-targeting form of docosahexaenoic acid for experimental stroke treatment: MRI evaluation and anti-oxidant impact. Curr Neurovasc Res 8:95–102 . doi: https://doi.org/10.2174/156720211795495349

    Article  CAS  Google Scholar 

  5. Young G, Conquer J (2005) Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 45:1–28

    Article  CAS  Google Scholar 

  6. Peet M, Stokes C (2005) Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65:1051–1059

    Article  CAS  Google Scholar 

  7. Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A (2007) Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 86:1486–1494

    Article  CAS  Google Scholar 

  8. Belayev L, Marcheselli VL, Khoutorova L, Rodriguez de Turco EB, Busto R, Ginsberg MD, Bazan NG (2005) Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:118–123. https://doi.org/10.1161/01.STR.0000149620.74770.2e

    Article  CAS  PubMed  Google Scholar 

  9. Belayev L, Khoutorova L, Atkins KD, Bazan NG (2009) Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 40:3121–3126. https://doi.org/10.1161/STROKEAHA.109.555979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hong S-H, Belayev L, Khoutorova L, Obenaus A, Bazan NG (2014) Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci 338:135–141. https://doi.org/10.1016/j.pestbp.2011.02.012.Investigations

    Article  CAS  PubMed  Google Scholar 

  11. Calon F, Cole G (2007) Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 77:287–293. https://doi.org/10.1016/j.plefa.2007.10.019

    Article  CAS  PubMed  Google Scholar 

  12. Brenna JT, Salem N, Sinclair AJ, Cunnane SC (2009) Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fat Acids 80:85–91. https://doi.org/10.1016/j.plefa.2009.01.004

    Article  CAS  Google Scholar 

  13. Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J (1994) Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Phys 267:R1273–R1279

    CAS  Google Scholar 

  14. Bernoud N, Fenart L, Molière P, Dehouck MP, Lagarde M, Cecchelli R, Lecerf J (1999) Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J Neurochem 72:338–345. https://doi.org/10.1046/j.1471-4159.1999.0720338.x

    Article  CAS  PubMed  Google Scholar 

  15. Lagarde M, Bernoud N, Thies F, Brossard N, Lemaitre-Delaunay D, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a carrier of docosahexaenoic acid to target tissues. J Mol Neurosci 88:173–177

    CAS  Google Scholar 

  16. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh ELK, et al. (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506 . doi: https://doi.org/10.1038/nature13241

    Article  CAS  Google Scholar 

  17. Quek DQY, Nguyen LN, Fan H, Silver DL (2016) Structural insights into the transport mechanism of the human sodium-dependent Lysophosphatidylcholine transporter MFSD2A. J Biol Chem 291:9383–9394. https://doi.org/10.1074/jbc.M116.721035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV (2017) Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-11766-0

    Article  CAS  Google Scholar 

  19. Hachem M, Géloën A, Lo Van A, Fourmaux B, Fenart L, Gosselet F, Da Silva P, Breton G, et al. (2016) Efficient docosahexaenoic acid uptake by the brain from a structured phospholipid. Mol Neurobiol 53:3205–3215. doi: https://doi.org/10.1007/s12035-015-9228-9

    Article  Google Scholar 

  20. Lagarde M, Hachem M, Bernoud-Hubac N, Picq M, Véricel E, Guichardant M (2015) Biological properties of a DHA-containing structured phospholipid (AceDoPC) to target the brain. Prostaglandins Leukot Essent Fat Acids 92:63–65. https://doi.org/10.1016/j.plefa.2014.01.005

    Article  CAS  Google Scholar 

  21. Goldberg M, Choi W (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524

    Article  CAS  Google Scholar 

  22. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, Hu X, Sun B, et al. (2014) Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 34:1903–1915 . doi: https://doi.org/10.1523/JNEUROSCI.4043-13.2014

    Article  CAS  Google Scholar 

  23. Lo Van A, Sakayori N, Hachem M, Belkouch M, Picq M, Lagarde M, Osumi N, Bernoud-Hubac N (2016) Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie 130:163–167. https://doi.org/10.1016/j.biochi.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  24. Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801:1260–1273. https://doi.org/10.1016/j.bbalip.2010.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spite M, Clària J, Serhan CN (2014) Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab 19:21–36. https://doi.org/10.1016/j.cmet.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Chen P, Fenet B, Michaud S, Tomczyk N, Véricel E, Lagarde M, Guichardant M (2009) Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett 583:3478–3484. https://doi.org/10.1016/j.febslet.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  27. Bazan NG, Marcheselli VL, Cole-Edwards K (2005) Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann N Y Acad Sci 1053:137–147. https://doi.org/10.1196/annals.1344.011

    Article  CAS  PubMed  Google Scholar 

  28. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, et al. (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176:1848–1859

    Article  CAS  Google Scholar 

  29. Levy BD (2010) Resolvins and protectins: natural pharmacophores for resolution biology. Prostaglandins Leukot Essent Fatty Acids 82:327–332. https://doi.org/10.1016/j.plefa.2010.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen P, Véricel E, Lagarde M, Guichardant M (2011) Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation. FASEB J 25:382–388. https://doi.org/10.1096/fj.10-161836

    Article  CAS  PubMed  Google Scholar 

  31. Liu M, Boussetta T, Makni-Maalej K, Fay M, Driss F, El-Benna J, Lagarde M, Guichardant M (2014) Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. Lipids 49:49–57. https://doi.org/10.1007/s11745-013-3863-6

    Article  CAS  PubMed  Google Scholar 

  32. Zhu M, Wang X, Hjorth E, Colas RA, Schroeder L, Granholm A-C, Serhan CN, Schultzberg M (2016) Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol Neurobiol 53:2733–2749. https://doi.org/10.1159/000381474.A

    Article  CAS  PubMed  Google Scholar 

  33. Jung TW, Kim HC, Abd El-Aty AM, Jeong JH (2017) Protectin DX ameliorates palmitate-or high-fat diet-induced insulin resistance and inflammation through an AMPK-PPARα-dependent pathway in mice. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-01603-9

    Article  CAS  Google Scholar 

  34. Holte LL, Separovic F, Gawrisch K (1996) Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids 31:S199–S203

    Article  CAS  Google Scholar 

  35. Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137

    Article  CAS  Google Scholar 

  36. Hashimoto M, Hossain S, Shido O (2006) Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol Cell Biochem 293:1–8

    Article  CAS  Google Scholar 

  37. Yehuda S, Rabinovitz S, Mostofsky DI (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 56:565–570

    Article  CAS  Google Scholar 

  38. Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372

    Article  CAS  Google Scholar 

  39. Sakayori N, Maekawa M, Numayama-Tsuruta K, Katura T, Moriya T, Osumi N (2011) Distinctive effects of arachidonic acid and docosahexaenoic acid on neural stem/progenitor cells. Genes Cells 16:778–790. https://doi.org/10.1111/j.1365-2443.2011.01527.x

    Article  CAS  PubMed  Google Scholar 

  40. Ming G, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. https://doi.org/10.1016/j.neuron.2011.05.001.Adult

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD (2006) Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc B Biol Sci 361:1477–1497. https://doi.org/10.1098/rstb.2006.1887

    Article  CAS  Google Scholar 

  42. Kawakita E, Hashimoto M, Shido O (2006) Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139:991–997. https://doi.org/10.1016/j.neuroscience.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  43. He C, Qu X, Cui L, Wang J, Kang JX (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A 106:11370–11375. https://doi.org/10.1073/pnas.0904835106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reynolds BA, Weiss S (1992) Nervous system generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  Google Scholar 

  45. Sakayori N, Kikkawa T, Tokuda H, Kiryu E, Yoshizaki K, Kawashima H, Yamada T, Arai H et al. (2016) Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells 34:470–482 . doi: https://doi.org/10.1002/stem.2246

    Article  Google Scholar 

  46. Katakura M, Hashimoto M, Shahdat HM, Gamoh S, Okui T, Matsuzaki K, Shido O (2009) Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience 160:651–660. https://doi.org/10.1016/j.neuroscience.2009.02.057

    Article  CAS  PubMed  Google Scholar 

  47. Song JH, Fujimoto K, Miyazawa T (2000) Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils. J Nutr 130:3028–3033

    Article  CAS  Google Scholar 

  48. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496. https://doi.org/10.1073/pnas.0402531101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H (2008) Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. J Nutr Sci Vitaminol (Tokyo) 54:501–506. https://doi.org/10.3177/jnsv.54.501

    Article  CAS  Google Scholar 

  50. Song JH, Miyazawa T (2001) Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil. Atherosclerosis 155:9–18. https://doi.org/10.1016/S0021-9150(00)00523-2

    Article  CAS  PubMed  Google Scholar 

  51. Lukiw WJ, Cui J-G, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783. https://doi.org/10.1172/JCI25420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, et al. (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817 . doi: https://doi.org/10.1074/jbc.M305841200

    Article  CAS  Google Scholar 

  53. Begum G, Kintner D, Liu Y, Cramer SW, Sun D (2012) DHA inhibits ER ca 2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem 120:622–630. https://doi.org/10.1111/j.1471-4159.2011.07606.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Katakura M, Hashimoto M, Okui T (2013) Omega-3 polyunsaturated fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int 2013:1–9. https://doi.org/10.1155/2013/490476

    Article  CAS  Google Scholar 

  55. Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation. Neuron 28:69–80. https://doi.org/10.1016/S0896-6273(00)00086-6

    Article  CAS  PubMed  Google Scholar 

  56. Okada Y, Matsumoto A, Shimazaki T, Enoki R, Koizumi A, Ishii S, Itoyama Y, Sobue G, et al. (2008) Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem Cells 26:3086–3098 . doi: https://doi.org/10.1634/stemcells.2008-0293

    Article  CAS  Google Scholar 

  57. Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:129–138. https://doi.org/10.1016/S0022-3476(05)81247-8

    Article  Google Scholar 

  58. Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW (1980) Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev 4:121–129. https://doi.org/10.1016/0378-3782(80)90015-8

    Article  CAS  Google Scholar 

  59. Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94. https://doi.org/10.1016/S0163-7827(00)00017-5

    Article  CAS  PubMed  Google Scholar 

  60. Hattiangady B, Shuai B, Cai J, Coksaygan T, Rao MS, Shetty AK (2007) Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus. Stem Cells 25:2104–2117. https://doi.org/10.1634/stemcells.2006-0726

    Article  PubMed  Google Scholar 

  61. Ma DK, Ming GL, Song H (2005) Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol 15:514–520. https://doi.org/10.1016/j.conb.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  62. Sairanen T, Ristimaki A, Paetau A, Kaste M, Lindsberg PJ, Karjalainen-lindsberg M (1998) Cyclooxygenase-2 is induced globally in infarcted human Brian. Ann Neurol 738–747

    Article  CAS  Google Scholar 

  63. Tomimoto H, Shibata M, Ihara M, Akiguchi I, Ohtani R, Budka H (2002) A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol 104:601–607. https://doi.org/10.1007/s00401-002-0590-0

    Article  CAS  PubMed  Google Scholar 

  64. Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T (1995) Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain. Am J Physiol Heart Circ Physiol 268:H1249–H1257

    Article  CAS  Google Scholar 

  65. Ciceri P, Rabuffetti M, Monopoli A, Nicosia S (2001) Production of leukotrienes in a model of focal cerebral ischaemia in the rat. Br J Pharmacol 133:1323–1329. https://doi.org/10.1038/sj.bjp.0704189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Usui M, Asano T, Takakura K, Model O, Instruments M, Ka-Y (1987) Identification and quantitative analysis of hydroxy-eicosatetraenoic acids in rat brains exposed to regional ischemia. Stroke 18:490–494

    Article  CAS  Google Scholar 

  67. Sun L, Xu Y-W, Han J, Liang H, Wang N, Cheng Y (2015) 12/15-lipoxygenase metabolites of arachidonic acid activate PPARγ: A possible neuroprotective effect in ischemic brain. J Lipid Res 56:502–514. https://doi.org/10.1194/jlr.M053058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yagami T, Koma H, Yamamoto Y (2016) Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol 53:4754–4771. https://doi.org/10.1007/s12035-015-9355-3

    Article  CAS  PubMed  Google Scholar 

  69. Lin H-J, Chen S-T, Wu H-Y, Hsu H-C, Chen M-F, Lee Y-T, Wu K-Y, Chien K-L (2015) Urinary biomarkers of oxidative and nitrosative stress and the risk for incident stroke: a nested case-control study from a community-based cohort. Int J Cardiol 183:214–220. https://doi.org/10.1016/j.ijcard.2015.01.043

    Article  PubMed  Google Scholar 

  70. Tyurin VA, Tyurina YY, Borisenko GG, Sokolova T V, Ritov VB, Quinn PJ, Rose M, Kochanek P, et al. (2000) Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J Neurochem 75:2178–2189 . doi: https://doi.org/10.1046/j.1471-4159.2000.0752178.x

    Article  Google Scholar 

  71. Brault S, Martinez-Bermudez AK, Marrache AM, Gobeil F, Hou X, Beauchamp M, Quiniou C, Almazan G, et al. (2003) Selective neuromicrovascular endothelial cell death by 8-iso-prostaglandin f2: possible role in ischemic brain injury. Stroke 34:776–782 . doi: https://doi.org/10.1161/01.STR.0000055763.76479.E6

    Article  CAS  Google Scholar 

  72. Yokose J, Ishizuka T, Yoshida T, Aoki J, Koyanagi Y, Yawo H (2011) Lineage analysis of newly generated neurons in organotypic culture of rat hippocampus. Neurosci Res 69:223–233. https://doi.org/10.1016/j.neures.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  73. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563–572. https://doi.org/10.1002/cne.10675

    Article  PubMed  Google Scholar 

  74. Sasaki T, Kitagawa K, Yagita Y, Sugiura S, Omura-Matsuoka E, Tanaka S, Matsushita K, Okano H, et al. (2006) Bcl2 enhances survival of newborn neurons in the normal and ischemic hippocampus. J Neurosci Res 84:1187–1196 . doi: https://doi.org/10.1002/jnr.21036

    Article  CAS  Google Scholar 

  75. Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, Chuang YH, Liao SL, et al. (2009) Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem 20:715–725 . doi: https://doi.org/10.1016/j.jnutbio.2008.06.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science and Core-to-Core Program, LISA Carnot institute, National Institute of Applied Sciences-Lyon and the French Ministry of Education and Research. We thank the Functional Lipidomics Platform for lipid analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Bernoud-Hubac.

Electronic supplementary material

ESM 1

(DOCX 1233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Van, A., Sakayori, N., Hachem, M. et al. Targeting the Brain with a Neuroprotective Omega-3 Fatty Acid to Enhance Neurogenesis in Hypoxic Condition in Culture. Mol Neurobiol 56, 986–999 (2019). https://doi.org/10.1007/s12035-018-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1139-0

Keywords

Navigation